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The dependence of the plaquette energy on lattice size L4 for the four-dimensional SU(2) lat-

tice gauge model is obtained in the crossover region by Monte Carlo calculations for L =4 to

10, Extending finite-size scaling theory to non-Abelian gauge models, a fit to the data verifies

the validity of scaling and asymptotic freedom. The value obtained for the coefficient yo in the

beta function, corresponding to the one-loop term in perturbation theory, is yo =0.041, in good

agreement with the result of SU(2) gauge field theory, yo =11/24m =0.046. . . . We estimate an

upper bound to the giuebaii mass m =1.24» where» is the string tension.

Monte Carlo calculations for the SU(2) lattice
gauge model in four dimensions have shown that the
Wilson loop satisfies an area-law dependence" in
both the weak- and the strong-coupling regimes. An
approximate boundary dividing these two regimes is
determined by the rapid crossover in the variation of
the area-law coefficient as a function of P at P =—2.2,
where P =4/g' and g' is the bare coupling constant.
Recently, at this value of P, a sharp maximum was
found in the specific heat of the lattice, using the
Wilson form of the action. Furthermore, only about
half of this maximum was accounted for by the
nearest-neighbor plaquette-plaquette correlations in-

dicating that longer-range correlations were impor-
tant. Near this peak more evidence for a growing
correlation length g(P) was given by a nonvanishing
dependence of the specific heat on the size L of the
lattice for L =4, 5, and 6. In the weak-coupling re-
gime the correspondence between the behavior of g
and the area-law coefficient Ka' can be understood by
scaling, which implies that »a' ~ g ', where» is the
string tension and a is the lattice spacing.

In order to establish the relevance of lattice calcula-
tions to the problem of quark confinement, it is

necessary to show that this weak-coupling regime sa-
tisfies the asymptotic-freedom properties of continu-
um non-Abelian gauge field theory. 4 5 While the
present Monte Carlo data for Ka are consistent with

asymptotic freedom in a narrow range of values of P,
it is important to obtain further quantitative confir-
mation for this hypothesis. In this paper we propose
a new test of asymptotic freedom by extending
finite-size scaling theory to the case that the correla-
tion length g(P) increases exponentially with P, and
we apply this theory to very accurate values of the
plaquette energy E(P,L) obtained by Monte Carlo
calculations for the SU(2) lattice gauge model as a

function of both P and L. Finite-size scaling theory6

has been applied successfully in the past to determine
the critical behavior of spin systems, and more re-
cently to the U(1) lattice gauge model in four dimen-
sions. ' For this model, the correlation length ( has
a power-law behavior near the critical value P„
g
=

~P
—P, ~

", where the critical' 9 exponent v = 3.
For non-Abelian lattice gauge models we expect that

g
—e'~ where c is approximately a constant.
In the scaling regime, the dependence of the free

energy per plaquette F(P,L) on the linear size L of
the lattice for periodic boundary conditions takes the
form6

AF (/3, L ) = L df (L/()

where BF(P,L) —= F(P,L) —F(P, ~), d is the
dimension of the lattice, and f(x) is a scaling func-
tion. The corresponding contribution to the energy
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per plaquette E(/3, L) —= (d/dp) F(/3, L ) is given by

SE(/3, L) =L-".(L/g)
d

(2)

G(r, /3, L) = (EpE~ ) —(E~)2 (4)

where r is the separation between plaquettes labeled
by p and p', ( ) denotes the thermal average, and

(E~) =E(P,L). We can obtain AE(P, L) by integrat-
ing the relation

dP
BE(P,L) = $[G(r, P,L) —G(r, P, ~)]

which depends only on G (r, /3, L ) for large values of
r. In the scaling regime the asymptotic form of
G(r, /3, L) is conjectured to be

g (r/(, r/L )
rp

(5)

where the exponent p will be determined below. We
find that for d =4

goo

AE(P, L) =L~ I' dxx~ ~ 'c(x) (6)

where

tx
c(x) = n, Ji dy [g(yy/x) —g(y, 0)]

0 y
p-4+1

(7)

and Ad is proportional to the area of the unit sphere,
Setting p = 2d, we recover' the scaling form for
AE(P, L), Eq. (2), provided we neglect higher-order
terms in I/P in the asymptotic-freedom expansion,
Eq. (3). To incorporate these terms additional contri-
butions to the correlation functions are needed which
lead to corrections to scaling which will not be con-

where e(x) = xdf(—x)/dx. If the scaling regime on
the lattice corresponds to SU(2) gauge field theory,
then the function dP/d In/ is the renormalization-
group beta function

dp = —yP+Syp+32yt —+1

d In)

where y = d —4, yp =11/24n2, and yt =34/192m".
These coefficients are independent of the renormali-
zation cutoff scheme. For d =4, the prediction that
AE(/3, L)L4 scales can be tested by applying Eq. (3),
which implies g ~ P 5'~'2'e3 S ", without knowing
the form of the scaling function p(x). Furthermore,
the coefficients of the beta function can also be
determined by a scaling fit which will be described in
detail below.

The scaling function e(x) is determined by the
asymptotic form of the plaquette-plaquette correlation
function G(r, /3, L) averaged over plaquette orienta-
tions,

sidered here.
We have carried out Monte Carlo calculations for

values of P =2.05 to 2.70 in steps of 0.05 and for
L =4 to 10, and evaluated E(P,L). For this range
of P and L ~7 it was found" that AE(/3, L) & 10 '.
To obtain the L dependence, we need E(P,L) to
high accuracy. The statistical error in E(P,L) is
given by (I//3L') [C(P)/6N]' ', where C(P) is the
specific heat and N is the number of Monte Carlo in-
teractions. We require E(/3, L) to an accuracy of
—10 ~, which implies N & 107/6L~. The Monte Car-
lo data for E(P,L ) are shown in Fig. 1 together with
a least-squares fit in accordance with scaling and
asymptotic freedom which will be described below.
The statistical errors were used in the fit together
with an estimated systematic error of 1.5 & 10 4.

The validity of the scaling equation for AE(/3, L)
= E (P,L ) —E (/3, ~), Eq. (2) together with the
asymptotic freedom dependence for the correlation
length g, Eq. (3), can be tested by plotting
AE(P, L)L~ as a function of L/(. From Fig. I we
note that E(P,L) approaches rapidly its asymptotic
value E(/3, ~) which can therefore be determined
from the data for L =8, 9, and 10. Since the scaling
relation does not depend on the overall magnitude of
g(P) we have chosen arbitrarily g(2,3) =1.0. The
resultant plot is shown in Fig. 2 for lattice sizes
L =4, 5, and 6. It is evident that within the errors
the data fall on a single curve corresponding to the
existence of a unique scaling function p(x), Eq. (2)
Note that as L increases the errors for AE(P, L) are
greatly magnified in this plot by the factor L4, and
for this reason we have left out the L =7 data,
although they are also consistent with scaling. All
our data for E(P,L) can be fitted by least squares,
with E(P, ~) as a free parameter, assuming a Pade
approximate for e(x) of the form

ap+a~x
1+a2X + a3x

suggested by Fig. 2. The resultant values of E(P, ~)
are given in Table I, and we obtain a0=0.089
+0.004, al =0.0019+0.0015, a2 =0.403 +0.002,
and a3 =0.0455 + 0.0005.

The plaquette energy E(P, ~) for an infinite-size
lattice can be accurately fitted in the scaling domain
by a polynomial in I8. From this fit we obtain the
specific heat C(P, ~) =/3~dE(P, ~)/dP shown in
Fig. 3. Also shown in Fig. 3 are the corresponding
values of the specific heat C(P, L ) for L =4, 5, and
6 which were obtained by adding the size-dependent
scaling contribution P2dhE(P, L)/dP. The resultant
values of C (P, 4) are in excellent agreement with the
specific heat obtained previously from a direct
evaluation of the energy fluctuations. It is clear that
as L increases the specific-heat peak broadens and
the maximum value decreases approaching rapidly
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FIG, 2. The scaling plot of AE(p, L) L4 vs L/( with

t=e ~ ~ ":Q(L =4), $(L =5), and $(L =6).
The curve is a least-squares fit for a Pade approximate to
e(x) =(11/3)m e(x), Eq. (2).
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freedom beta function, we assume that the coeffi-
cients yo and y~ are undetermined, y =0, and neglect
the P variation in Eq. (3) setting P =P —2.0. Then

g ~ e'~, where c = (8ya+32y~/P) ', and c becomes a

parameter in the least-squares fit. The result is

c =3,03 +0.11 which is in good agreement with the
predicted value c = 2.5. . . . Alternatively, neglecting
the higher-order terms in the P function, we obtain

) a =1/8c =0.041 + 0.001 in good agreement with the
theoretical prediction ya ——11/24m' =0.046. . . .
Similar results are obtained if we allow the dimension
d in Eq. (2) to become a free parameter, and we find
d = 3.9 + 0.1 in strong support of the scaling hy-

pothesis, while c =3.11 +0.13. Finally, we have al-
lowed also the parameter y in Eq. (3) to become a

0.556—
TABLE I. Plaquette energy for infinite-size lattice.
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FIG. 1. Monte Carlo values of the plaquette energy

E(p, L) with statistical errors. The vertical scale has an ori-
gin shift for each value of p with a scale factor 0.0004 per
division. The curves correspond to a least-squares fit in ac-
cordance with scaling and asymptotic freedom described in
the text.

the limiting behavior for an infinite lattice. Although
the specific-heat maximum persists at P =—2.2, this L
dependence implies that the crossover between weak
and strong coupling is not associated with an ordinary
phase transition.

To test further the validity of the asymptotic-

2.05
2.10
2.15
2.20
2.25
2.30
2.33
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70

0.5174
0.5345
0.5518
0.5692
0.5862
0.6020
0.6112
0,6169
0.6300
0.6416
0.6519
0.6613
0.6700
0.6781
0.6855.
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free parameter which implies that ( cc i(P —P, ) i

where P, =1/cy. We obtain again the same result for
c, while y is small, . but only an upper bound iy i

(
45

can be determined by our least-squares fit.
The results presented here give direct evidence that

the weak-coupling regime on the lattice satisfies scal-
ing properties and the asymptotic-freedom behavior
of continuum SU(2) gauge field theory. However,
our scaling analysis so far does not give the scale of
the correlation length g. This quantity is of physical

FIG. 3. The specific heat C as a function of p for L =4, 5,
6, and ~ obtained from the scaling fit to the energy.

interest because it determines a relation for the mass
m of the lowest excitation of the gauge field theory
commonly known as the glueball. " Since the results
of our analysis indicate that the scaling regime ex-
tends down to P —2.05, we can obtain an estimate
for an upper bound to m if we make the reasonable
assumption that g & 1 for scaling to be valid. We
then find that ma = g

' = 184p"i' 'e ~ a ". Apply-
2

ing this result to the asymptotic-freedom fit for the
area-law coefficient'2 gives the relation m = 1.2J~
or, alternatively, ~a =0.7$ . This second relation
is expected to be valid for a Wilson loop of fixed size
on the lattice provided the area of the loop & (' and

g & 1. This gives the range in P over which the
area-law coefficient for fixed-size loops satisfies
asymptotic freedom in good agreement with current
Monte Carlo calculations. " However, in order to
determine the scale of g without special assumptions
further theoretical input regarding the form of the
scaling function e(x) is required, and this is currently
under investigation. "
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