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The four-dimensional O(2) gauge theory is studied by computer simulations and its phase structure is investigated

by three methods: (i) by accurately measuring the action per plaquette on a 12' lattice, (ii) through a scaling analysis
of a certain function of Wilson loops, and (iii) via its string tension. All these methods consistently indicate that the
theory has a line of fixed points. The end point of this line exhibits a power-law divergence of the correlation length

with index v = 0.35 +0.05.

Four-dimensional compact lattice quantum elec-
trodynamics (QED) [O(2) gauge theory] is known
to have a phase transition at finite coupling. To
understand the continuum limit of this theory, it
is necessary to understand the nature of this
transition. This has proven to be quite elusive.
The Migdal-Kadanoff recursion relations suggest
that the four-dimensional O(2) gauge theory is
similar to the two-dimensional XF model in which
the correlation length diverges exponentially at
the critical point. ' The critical behavior of the
XF model is understood in terms of the unbinding
of vortex pairs as the temperature increases
beyond criticality. In four dimensions, the an-
aloges of vortices are strings of monopole cur-
rent. Indeed, in a computer study DeGrand and
Toussaint' have observed the unbinding of monopole
strings in the O(2) gauge theory as the bare coup-
ling grows beyond a critical value. This tends to
strengthen the Migdal-Kadanoff analogy.

On the other hand, Lautrup and Nausenberg'
have measured a critical finite-size scaling of the
specific heat in this model, indicative of a second-
order transition. Their analysis points to a
power-law divergence of the correlation length
with exponent v = 3. Renormalization-group an-
alyses by Hamber also suggest an index v=0.4.

This paper reports on a further study of the
O(2) gauge theory via computer simulations. The
correlation index v was measured using three
different methods.

First, the dependence of I', the average action
per plaquette, on the bare coupling, in the region
of the critical point, was determined accurately
by long, high-statistics simulation on a 12 lat-
tice. A least-squares fit to this data in the crit-
ical region gave v =0.33+0.07 in agreement with
the results of the study by Lautrup and Nauen-
berg.

Next, following a recent suggestion of Creutz, '
a scaling analysis was performed in the critical
region on a certain function of Wilson loops (to
be defined later). Using the assumption of a

single relevant length scale and the standard arg-
uments of scaling theory, this analysis gave
v =0.3.7 + 0.03.

Further, the inverse square of the correlation
length was directly obtained by measuring the
string tension (or the coefficient of the area term
in the Wilson loop) of the theory. The data in-
dicate a power-law zero in v with exponent 2v
= 0.78 + 0.10.

Finally, using a certain renormalization scheme
(to be defined) the ratio of the renormalized
coupling g~ (d) at distance scale d to the bare
coupling go was measured in the Coulomb phase
of the theory. g~'(d) was found to become in-
dependent of d for all go &gp~, As gp go~ &

gs (d) becomes very large and at gp =gp gs'
may well be infinite. The next three sections
present our study in more detail.

THE MODEL AND SIMULATION PROCEDURE

The partition function ~ and the free-energy
density F for the lattice theory is defined in the
standard way as

Z(F, ')= Peso —
s g oose) = exP()PF(F„')],

1

8 0 p

where N is the number of plaquettes.
The variables 8 of the theory occupy links on a

hypercubical lattice and ~~ is the usual oriented
sum of 6)'s around a unit plaquette p. We take
the 8's to be elements of the group g(8), a sub-
group of O(2). It is known that the Z(8) theory
has two transitions. ' One of these is a ' freez-
ing" transition near go -0.4 from the discrete
nature of &(8). The other, near gp

- I, is the
true O(2) transition.

Recent studies' of the gauge theory defined on
certain discrete non-Abelian subgroups of SU(2)
have shown that for all couplings larger than the
critical coupling of the freezing transition, these
theories are, for all practical purposes, identical
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to SU(2). This is intuitively sensible since the
discrete nature of the group should be unimpor-
tant once the temperature is greater than the
largest entropy gap. Hence, one expects the
&(8) theory to be a good approximation to the
O(2) theory for go &0.4.

From a computational point of view, the ad-
vantage of using &(8) instead of O(2) is that more
than one link variable may be stored in each com-
puter word and several variables may be pro-
cessed simultaneously in a Monte Carlo itera-
tion. ' In the present analysis a lattice of 12
sites was used and the entire time dimension was
stored in one computer word. This reduced the
effective dimension (as far as computer time was
concerned) from 4 to about 3.2.

Using four hits per link and the Metropolis al-
gorithm to bring the system to equilibrium, the
CPU time for one upgrade (iteration) of the 82 944
link variables on a CDC-7600 computer was about
2 seconds.

THE AVERAGE ACTION PER PLAQUETTE

The average action per plaquette is given by

(2)

In the neighborhood of the O(2) critical point,
I' varies rapidly with go . Hence, it it advan-
tageous to bring the lattice to equilibrium at any
desired value I' of I' by changing the inverse
coupling P=1/g, after each upgrade to a new
value

defects in wires by spot heating along the length
of the wire causing the impurity (imperfection)
to move with the heat source.

The data for I' vs go is plotted in Fig. 1. Start-
ing at I' =0.85 and the lattice initially ordered,
200 upgrades were performed at each I' before
moving to the next. After each iteration, p was
changed to a new value using Eq. (3). The stat-
istical error on the data point in Fig. 1 is smaller
than the size of.the dots. The curves in Fig. 1
for large and small values of I' are, respectively,
the leading-order weak- and strong-coupling
perturbation theory predictions. The curve in
the critical region around go -1 is a least-squares
fit to the form

P=Po+AIgo -go, I ~4'o, go ) ~ (4a)

where g(g) is +1 depending on whether x is positive
or negative.

The best fit to the data is obtained for

&p ——0.61+0.0 ~ goc =0 997+0.010 y

(4b)
p =0.33 +0.27.

The index p in Eq. (4a) is related to the correla-
tion-length index v in the following way: By the
definition of v, near g„the correlation length g

satisfies
(- igo'-go. 'I "

(6)

The free energy density & scales similar to $

in D dimensions. Hence,

P-
o
-P + )go -go i" ~p= vD —1. (6)

Using (4b), this gives v =0.33 + 0.07 for D =4.
~- =&.id+0 2~(P-P.~» (3)

SCALING ANALYSIS
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FIG. 1. Average action per plaquette versus bare
coupling go on a 124 lattice. The curve in the critical
region is a least-squares fit which gives v= 0.33.

where I',~, is the value of I' measured after the
upgrading. This procedure results in very rapid
convergence to equilibrium even near the critical
point. This method is analogous to the zone-
refining technique used to eliminate localized

(alternately, and equivalently, r is a function of
d and P).

By calculating the leading contributions to r in
weak coupling, it is easy to show that the only
dependence it has on the cutoff is through the
bare coupling go (or equivalently, through P).
Thus r is a "physical observable. " The explicit
result is

r(d, go ) ~ exp(-0.066go )[I +0(go )],
go ~0

(8a)

or

r(d, P) ~ exp[-0.026(1 —P)][1+0(1—P)] . (8b)

An estimate of the ensemble average of planar
rectangular Wilson loops W(d, d'), (d, d' =1, 6) was
obtained from the last 100 of the 200 configura-
tions generated at each value of p. From these,
the following function was constructed:

W(d, d) W(2d, 2d)
W(d, 2d)
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Notice that r is also independent of d in this limit
(weakly coupled @ED scales).

Figure 2 is a plot of the data for r vs P for d
= 1 and d = 2. The smooth curves in the figure
are the leading-order strong- and weak-coupling
estimates.

It is clear from Fig. 2 that r is independent of
d for P~Pp=0.65. In other words, from the
point where the curves for d = 1 and 2 merge, the
theory is scale invariant.

Under the assumption that there is a single
relevant length scale g, it is possible to extract
the index v from Fig. 2. This is done as follows.
Expanding r(d, P) about the scale-invariant end
point P„to leading order in (,),

FIG. 2. r{d,P) fsee Eq. {7)]vs P for d=l, 2. The
theory becomes scale invariant when the curves for d=1
and d=2 merge. A scaling analysis of the curves indi-
cates v= 0.37 +0.03.

W(d, d)
K(d, g, ) =-ln

W(d —1, d+1

when

(16a)

using P values in the interval [0.6, 0.675]. From
these fits, o was obtained using (11). The fits
were made by grouping data points into sets which
approached Pp. If v were changing as P -Pp
(characteristic of a Kosterlitz-Thouless type of
singularity), one would obtain a larger value of

from data points closer to Pp. No such system-
atic trends were seen. The fits give

@=1.3+0.2, v=0.37+0.03,

Pp ——0.66+ 0.03 .
Creutz has recently also measured the function

r(d, P) for d = 1, 2 in this theory on a 10 lattice
with somewhat lower statistics. He finds indica-
tions that the curves for 4=1 and d=2 cross
twice and interprets this as the effect of mono-
poles. On careful perusal, this crossing is vis-
ible in Fig. 2 also. However, the effect is clearly
quite weak and analysis indicates that it depends
quite strongly on the lattice size. A careful
treatment of this effect should be carried out but
is probably quite difficult.

Finally, the string tension ~ was measured as
a function of g,'. To do this, a further 50 itera-
tions at fixed gp were done on the lattices ob-
tained after 200 iterations at fixed P. Wilson
loops up to 6x6 were measured over the last
25 of these iterations. To extract v, consider the
function

(Ljl'r«» 5) =ro(Po)+] —
I ri(Po) .

&$i

Hence, defining

dr d, P

one obtains

(9)

(10)

(16b)

I.2

I.O—

K(d~ gp ) K(gp ).
Figure 2 shows the data for K(d, gp ) vs go . It

, »(e/e)
ln2

The index g is related to v as follows. When
P is close to P, ,

r(d, P) =r,(P,)+(P —P,)r, (d, P,) .

Comparing (9) and (12) and using (5) and (6),
(-s (P P ) (])(1 vD&/s-

or

v= I/(&- o) .

(12)
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FIG. 3. K{d,gp~) vs gp for d=1, 2, 3, 4. In the limit
d-~, ~ string tension. The zero in the string tension
at gp - 0.99 is clearly seen in the figure.

The data were analyzed by making quardratic,
cubic, and quartic polynomial fits in P to r(d, P)
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FIG. 4. g& (d)/gp vs d for various coupling [see Eq.
(17b)] .
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FIG. 5. String tension vs gp . The solid curve is a
least-squares fit which gives v= 0.39.

is evident that ~ vanishes for g,'-g„'-0.99. To
obtain the index associated with the vanishing of
x requires the following observation. As gp 0,
a simple calculation shows that

(d —1)&(d)go ) go 2 I [1+o(gp')],
w j

(17a)

which suggests that (d2 —1)v(d, g, ) becomes in-
dependent of d as the theor'y approaches scale
invariance.

Indeed one may use Eq. (17) to define a re-
normalized coupling at the scale d. Thus, define

2

gs'(d) = (1+ (d' —l)(p(d, g()') . (17b)

2 2 i C(go )
K( gK ) = K(gl ) +

(gR ))
+

((KK ))R) (18)

with v(gp }=0 for gp =gp, .
If one assumes that Eq. (18) is valid, then the

combination 2= [8)((3)—3Ip(2) t/5 is a better esti-
mator of v than either )((2) or x(3). In Fig. 5,
K(2), &(3), and 2 are plotted as functions of g, '.
A least-squares fit to (p =A ~gp'-g„'~'" gives

Figure 4 is a plot of gs'(d)/gp for d=2, 3, 4
in the Coulomb phase. The presence of a line
of fixed points for gp (gp, is evidenced by the fact
that gs (d)/g, is independent of d. The renormal-
ized charge at gp =gp is very large and may even
bo infinite.

For gp gp, , the string tension is nonvanishing.
igure 4 suggests that, near gp, ',

v=0.39+ 0.05 and gp, ——0.988+ 0.005. The solid
curve in Fig. 5 shows this fit.

Finally, it must be stated that these data may
be fit to an essential singularity. The result of
such a fit is that one cannot decide between an
algebraic and an essential singularity from the
present data. However, the fact that the couplings
of the specific heat peak and the zero in the string
tension are less than one standard deviation apart,
and that one gets consistently a value v=0.35
+0.05, means that the data prefers an algebraic
singularity.

In summary, the present analysis of O(2) gauge
theory indicates that this theory has a line of
fixed points along which a scale-invariant con-
tinuum limit will result. This line most prob-
ably ends in a fixed point with a power-law cor-
relation-length divergence with index v = 0.35
+0.05. This index is in agreement with specific-
heat Monte Carlo results. It is also consistent
with a recent block-spin renormalization-group
analysis by Hamber" which gave v~ =0.4 from
the mass gap.

Note added. When this work was completed,
I learned of a similar analysis of the O(2) theory
by DeGrand and Toussaint' using the Villain
form of the action. Their results are more or
less consistent with mine.

I thank Michael Creutz, Tom DeGrand, and
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search was supported by the U. S. Department
of Energy under Contract No. DE-AC02-
76CH00016.
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