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Quark confinement in 'a finite-temperature SU(N) gauge theory is formulated as the realization of a global Z~
symmetry. Spontaneous breakdown corresponds to a transition to a nonconfining, plasma phase. The free energy of
a single quark is an order parameter which probes the phase structure, and it may be calculated in the Euclidean

theory in terms of a "Wilson line" running the length of the system along the (periodic) time axis, We present results

of a Monte Carlo calculation in the SU(2) lattice theory which confirm the transition at a critical temperature

computed in terms of the zero-temperature string tension; data for the quark-antiquark potential are presented as

well. We discuss the implications of the finite-temperature transition for efforts to calculate zero-temperature

.quantities on finite-size lattices. Finally, we note that restoration of Z~ symmetry as the temperature is lowered may

be understood as a condensation of instantons and other topological objects.

I. INTRODUCTION

The study of hot hadronic matter may yield a
particularly clear picture of the physics of quark
confinement. ' A wide variety of arguments, based
on asymptotically free perturbation theory' or on
strong-coupling lattice gauge theories, "suggests
a transition from a confining phase to a plasma
phase at some critical temperature and density.
By investigating the nature of this transition, one
may hope to gain an understanding of the physics
of the zero-temperature vacuum as well as to pre-
dict new phenomena in nucleus-nucleus collisions, '
in neutron stars, ' and in the early stages of a big-
'bang universe. '

In this paper, we discuss the confinement-plasma
transition in quarkless Yang-Mills theory. We
identify an order parameter which is directly re-
lated to the free energy of an isolated (static)
quark; the transition then corresponds to the ap-
pearance of a magnetization in this order param-
eter. This may be interpreted as the spontaneous
breakdown of a global Z„symmetry of. the gauge
theory [the center of SU(II)]. In order to probe
the realization of this symmetry, it is convenient
to impose an ultraviolet cutoff and thus to deal with
the Euclidean lattice theory; we present the re-
sults of a Monte Carlo investigation of the dynam-
ics of this theory for the case that the gauge group
is SU(2).

Recently, Monte Carlo techniques' have been em-
ployed in the direct evaluation of vacuum expecta-
tion values in lattice gauge theories. Numerical
"experiments" have been performed on zero-tem-
perature theories in this way, ""and a smooth

connection between the strong- and the weak-cou-
pling regimes has been established. Even with
lattices of small size, the confining nature of
Yang-Mills theories is apparent. A more precise
extrapolation of these results to the continuum
limit is a goal of current research, but we may
employ present knowledge to make statements
concerning the behavior of our system when the
lattice is removed.

The Monte Carlo calculation verifies the phase
transition in the SU(2) gauge theory as described.
At low temperatures, the system is disordered
and quarks are confined, while at high tempera-
tures the Ising-type Z2 symmetry is broken and a
(screened) Coulomb phase appears. "

Our focus on the realization of the global Z„
symmetry yields a picture of the role of finite-
temperature instantons" in bringing on the phase
transition as it is approached from above. '4 In
the language of the Ising model, the instantons are
domains of flipped Z, spins embedded in a mag-
netized medium. The phase transition is then a
condensation of instantons (and of other topological
objects) which destroys the magnetization.

The organization of this paper is as follows.
In Sec. II, we briefly review the formalism of

finite-temperature Yang-Mills theory~' and of its
realization on a Euclidean lattice, periodic in the
time direction.

In Sec. III, we introduce the operator I which
measures e ~~~, where +, is the free energy of an
isolated, static quark. This operator is an order
parameter. In an ordered phase, it has nonzero
expectation value corresponding to finite quark
free energy. In a disordered phase, (L)=0, im-
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plying a divergent quark free energy and quark
confinement. The two-point correlation function of
L yields the free energy of a quark-antiquark
pair.

The fact that (L)=0 in the disordered phase is a
consequence of Z~ symmetry which arises from an
invariance of the Yang-Mills theory under certain
aperiodic gauge transformations like those con-
sidered by 't Hooft. ~s In the absence of spontaneous
breakdown, this symmetry is sufficient to show
that nonsinglet configurations of static quarks have
divergent free energy. The only configurations
with finite free energy are states for which the
number of quarks minus antiquarks is an integral
multiple of N. The ordered phase spontaneously
breaks the Z„symmetry and admits free quarks.

In Sec. IV, we explain briefly how one removes
the lattice regulator and renormalizes to obtain
finite physical results, expressed in terms of
some physical scale parameter such as the zero-
temperature string tension.

In Sec. V, we present numerical results of our
Monte Carlo computations. We determine the
critical temper ature of the confinement-plasma
transition by studying the critical behavior of our
order parameter and extrapolating to the continu-
um limit. We discuss the quark free energy and
the quark-antiquark free energy, "and we argue
that the transition is second order.

We also discuss the appearance of a phase tran-
sition in the space-time-symmetric "zero-tem-
perature" lattice considered by Creutz. " We be-
lieve this creates difficulties for any determina-
tion of zero-temperature string tension via square
Wilson loops unless the lattice considered is very
large.

In Sec. VI, we present conjectures concerning
the underlying dynamics of the transition. We in-
terpret our results as indicating that as the transi-
tion is approached from the plasma phase, a con-
densation of instantons and other objects takes
place. An instanton calculation of the expectation
value of our order parameter and a comparison
with our Monte Carlo data would throw light on
the validity of this conjecture.

In the Appendix, we discuss the statistical analy-
sis of our data. "

II. FINITE-TEMPERATURE GAUGE THEORY
AND THE LATTICE

The starting point for our analysis is the Feyn-
man path-integral representation for the expecta-
tion values of quantum operators at finite temper-
ature, "

Tr 6 -88

Tre» (2.l)

The continuum limit corresponds to the limits N„
N, - ~, and a- 0 with P and V held fixed. The lim-
it a - 0 may be approximated by making a small
compared to scale sizes typical of the operator
being evaluated and of the quanta of the field theory
generated by ~.

For renormalizable field theories such as Yang-
Mills theories, the limit of zero lattice spacing is
singular. The bare coupling constant g, must be
adjusted simultaneously with the lattice spacing to
yield finite limiting values for physically measur-
able quantities. The asymptotic freedom of Yang-
Mills theories implies that g, should be adjusted
to zero as the lattice is removed. If the zero-
temperature theory truly confines, the (zero-tem-
perature) string tension, which is a measure of the
strength of the quark-antiquark force, may be held
fixed as this adjustment is made.

A conventional transcription of the gauge theory
to the lattice begins with the definition of the link
variable

U"(x) -=e"""*' (2.5)

on the link leaving site x in the p, direction, where
r are the generators of SU(&) in the fundamental
representation. The Lagrange density may be ex-
pressed in terms of these link variables as

&(x)=, , Q —tr[1 —U'(x) U"(x+a j)goa v u 2

x U" (x+av) 'U" (x) ],
(2.6)

where the traces are of products around the ele-

= ISA" (x, t) 6(A) exp[ —
f&& dt fy d'x &(A)]

fX)A" (x, t)exp[- f dt f d'~&(A)]

(2.2)

&(A) is the Euclidean Lagrange density, and 6(A)
is the operator 6 as a functional of the fields A.
The inverse temperature is P and the spatial vol-
ume is V'. The fields are constrained to be period-
ic in Euclidean time with period P.

The formal integrations over the fields in (2.2)
may be performed by placing the fields on the
links of a space-time lattice with spacing a,
which serves as an ultraviolet cutoff. The number
of links in the time direction is &, and in the space
direction N, . The inverse temperature and volume
are thus given by

(2.2)

(2.4)
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mentary plaquettes of the lattice. This Lagran-
gian is invariant under the gauge transformation

U'(x)- V(x+at), ) U" (x) V '(x),
where V(x) is a member of the gauge group

V( x) eiT ~ A(x)

(2 7)

(2.6)

Once we replace SA in (2.2) with SU, the invari-
ant measure on SU(2) on each link, the path inte-
gral is properly defined, and the integration over
the fields may be attempted. [Note that the lattice
spacing in (2.6) will cancel when fdtd'x-a'g. ]
In Sec. IV we shall report the results of a Monte
Carlo integration of (2.2) for various operators of
an SU(2) Yang-Mills theory.

[One may choose to employ a lattice with differ-
ent spacings in the space and time directions, "a,
and a, . In that case the couplings in (2.6) will be
different for spacelike and for timelike plaquettes.
Taking the limit a, - 0 first yields the Hamiltonian
lattice theory. "]

III. QUARK FREE ENERGIES

Quantities which characterize the phases of a
gauge theory are the free energies of static con-
figurations of quarks and antiquarks. Let us intro-
duce operators, (t)~(r, , t) and (t, (r, , t), which create
and annihilate static quarks with color a at position
r,. and time t, along with their charge conjugates
(t,~' and g for antiquarks. These static fields satis-

I

fy the equal-time anticommutation relations

R.(r, , t), g(r„t)],=5,, 5.„ (3.1)

and similarly for (t', with all other equal-time
antic ommutator s vanishing.

The quark fields obey the static time-evolution
equation'~

(3.2)

This equation may be integrated to yield

exp[-P&( r„.. . , r„,r,', . . . , r„' )]

g (s ~e '"~ s& (3.4)
~s&

with the summation indicated over all states ~s)
with heavy quarks at r„.. . , rN and antiquarks at
r,', . . . , rN . Introducing the quark fields

t

0( t)=rTeep(t dt'r t((, , t')) 0(,, 0).
0

(3.3)

The symbol T in this equation denotes a time-ord-
ered exponential.

The operators ( and (' may be employed to ob-
tain an expression for the free energy of a configu-
ration of N, quarks and N, antiquarks. This is
given by"

-()+))tc ))(0 1 Q st Q (t) ( r 0). .. (t) ( r p)(etc ( rt p). . . (etc ( r)d t 0)
N bN N

xe t dt (r„0)' ''dt (r„,0)0'(r,', 0)' ''0 * (r'„0) e') (3.5)

where now the sum is over all states (s') with no heavy quarks. Since e ~" generates Euclidean time trans-
lations, i.e.,

o(t) e '" = o(t+P)

for any operator O(t), (3.5) becomes

(3.6)

"c))(c 1 Q s' Q e ~"(tt, (r„P)g," (r„o)'' (t', (r„,P)g, (r„,o)
NN ~IN~ (a, b)

xt' (
' 0)0 (', 0) rt* (

' *0)t *
( ', 0) ') (3.7)

Using (3.3) and its charge conjugate, along with
(3.1), and introducing the definition of the Wilson
line as

~F NqNq
e =Tr[e ~"L(r,)'' 'L(rs )L"(r~) ' L (r'„)].

(3.9)

1 0L(r) =——trT exp i dt's A (r, t)
0

(3.6)
The trace is over states of the pure gluon theory.
For one quark, this quantity is especially simple:

(3.7) becomes e ~~&. 0 = Tre ~"L(0) . (3.1o)
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Dividing (3.9) by the expression for the vacuum
(the state with no quarks or antiquarks) yields the
difference &I"„„,—= +'„,~, -E«as an expression of
the form of (2.1): L(r)-e "~ "L(r) (3.16)

all gauge fixing. The gluon Lagrange density is,
of course, unchanged by this transformation. The
Wilson line is changed, however, as

e ' ' = (L ( r, ) ' ' ' L (r„)L~ ( r~) ' ' ' L ( r'„)) .N~

(s.ii)
For one quark,

e Bs=-e-8'&s'qo (L (0)) (s.i2)

Ence we are dealing with static, infinitely mas-
sive quarks, the free energy of a single-quark
system is in itself devoid of meaning. We note,
however, that the cluster property demands that

(L(0) L (r)) = (L(0))(Lt(r)) = ~( L( )0) ~2

lgl ~co

(s.is)
so that

Z„(r)=t Z„(r) — 2Z, . (s.14)
l rl ~~

Thus if E,~(r) is finite for some small value of r
(a quark-mass renormalization may be necessary
to ensure this), whether E, is finite is truly a test
of confinement.

Another approach is to isolate the temperature-
dependent piece of &,. If this can be rendered fi-
nite at high temperature, a divergence as the tem-
perature is lowered would be a confinement signal.

Note that (3.11) also serves to define the energy
of separation of quarks and antiquarks in the glu-
onic ground state when the limit P- ~ is taken,
that is, P much larger than any typical hadronic
scale size.

The Wilson line operator L(r) is invariant under
gauge transformations of the form (2.7) that are
periodic, i.e.,

v(r, p) = v(r, o) . (3.16)

The class of allowable gauge transformations in
the theory is not, however, restricted to those
which are periodic. The only physically important
constraint is that the links U" (r, t) or, in the con-
tinuum, the fields & (r, t), remain periodic in
time when transformed. A condition sufficient for
this is"

The free energy of a system of N, quarks and N,
antiquarks transforms as

pf~&q ' eRm'ip(Nq-N-)/N -SAZ~ g (s.i9)

Unless

(3.2o)N -N =AN

for some integer n, Eq. (3.19) is sufficient to
guarantee

-QL FNqNq 0e (s.21)

(L) is therefore an order parameter quite similar
to the magnetization in a Z~ spin system.

In weak-coupling perturbation theory, the quant-
ity I-, approaches unity since the free energy of a
quark relative to the vacuum is zero in the go- 0
limit.

The transcription of (3.8) to the lattice is
straightforward via (2.5):

Nt

L(r) =—tr fI'(r, t) . (3.23)

The expectation value and correlation function of
this operator are the main targets of our Monte
Carlo calculation.

corresponding to divergent free energy, as long as
the symmetry is not spontaneously broken. The
dynamical realization of the symmetry of (3.15)-
(3.1V) is thus equivalent, if %=3 for example, to
confinement of configurations of nonzero triality.

This Z„symmetry need not be dynamically re-
alized, however. If field configurations which are
related by a Z~ transformation are not continuously
connected through interpolating field configura-
tions of finite energy and measure, we have spon-
taneous symmetry breaking.

There are N possible broken-symmetry ground
states of the pure gauge system. These configura-
tions are labeled by the N possible distinct expect-
ation values of I-,

(3.22)

v(r, p) = v(r, o) c, (3.16) IV. THE CONTINUUM LIMIT

where the matrix C is an element of the center of
the gauge group,

C e 2&i j/ &I (s.iv)

Here I is the unit matrix and j is an integer. The
additional symmetry of the theory under choice of
C is aglobal Z„symmetry which remains after

The lattice spacing a appears in all our consid-
erations as the only dimensional scale: in partic-
ular, for our finite-temperature lattice, the physi-
cal inverse temperature is P =N, a. Renormaliza-
tion expresses the lattice spacing in terms of the
bare coupling and some physical scale such as the
zero-temperature string tension E as
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a'=Ã 'f(g,), (4.1)

where f for the SU(2) gauge theory may be taken
from a calculation such as the zero-temperature
Monte Carlo work of Creutz. "'" One finds that f
is described well by the strong- and weak-coupling
approximations
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Since changing g, changes a, we can vary the tem-
perature according to

I

200
I

400
PA55

P =N, a(go') . (4.3)

Monte Carlo simulations, long known in statisti-
cal physics, ' have proven useful for evaluating ex-
pectation values of operators in lattice gauge theo-
ry as well. We refer the reader to earlier work' ~"
for details of the technique. For the case at hand,
each Monte Carlo simulation was carried out for
fixed chosen values of N„N„ the bare coupling
g„and, implicitly, the lattice spacing a, which
may be related to g, via (4.1), thus fixing the tem-
perature via (4.3).

A. The order parameter

In Fig. 1 we show a set of pass-by-pass data for
the average value of L. Each point represents an

This relationship may be under stood qualitatively
by the following reasoning. Suppose a quark and
an antiquark are separated by a fixed number of
lattice sites. As g, increases, the force between
the quark and the antiquark increases. The corre-
sponding distance between the quark and the anti-
quark must, according to asymptotic freedom, be
increasing. The lattice spacing is thus an increas-
ing function of go. Since T =P ~- 1/a, increasing
the bare coupling corresPonds to decreasing the
temperature.

As we mentioned in. Sec. II, we may trust the
lattice theory to give results relevant to the con-
tinuum theory only when a is small. Equation (4.3)
shows that we can satisfy such a constraint while
probing any temperature by choosing &, large
enough. In particular, it is plausible that any
critical coupling gp should vary with N, in such a
way that the critical temperature T* determined
via (4.3) approach a finite limit as N, grows This.
is in fact what we observe in the Monte Carlo ex-
periment. (In order to interpret P as the inverse
temperature of an infinite system, we demand N,
»N, .)

V. MONTE CARLO ANALYSIS
OF THE SU(2) THEORY

FIG. 1. Pass-by-pass values of the order parameter
for N, =1, N, =5, and 4/go ——0.9. For a lattice of this
size, 4/go = 0.75. Starting conditions were U = 0„
everywhere (L = 0j.

I I I I I . I I I I I I

Q.6—

Q.4—

Q.2—

Q Q I I

2.Q

I I

2.2
I I I I I I I

2 4 2.6 2.8 3.Q
4/go

FIG. 2. Magnetization vs inverse coupling for N&=3
and several values of N, . Data points for N =5 and Ns
=7 are joined to guide the. eye. Data for N, = 8 {not
shown) are close to those for N, =7. Each lattice shows
0 ) = 0 if 4/go is decreased beyond the points shown.
Typical error bars are as shown in Fig. 3.

average over the three-volume of the lattice, taken
after one pass of touching a heat bath to every link
in turn. The SU(2) gauge theory, as probed by our
Z, order parameter, behaves much similar to an
Ising model: after reaching equilibrium, the mag-
netization fluctuates thermally about some average
value, until a large enough fluctuation causes nu-
cleation of a bubble of reversed magnetization
which takes over the lattice, reversing the sign of
the bulk magnetization. Averages of such data over
many passes may be interpreted as the true ex-
pectation value. (See the Appendix for a discussion
of our statistical analysis. )

Values of (1-).for N, =3 as a, function of the bare
coupling are plotted in Fig. 2. The transition to a
low-temperature confining phase is evident. The
shape of the curve for (I-) vs 4/g, ' is only slightly
volume dependent: one sees a slight sharpening of
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I.O—

04— 0 0.8—
0)

CF

0.6—

Q2—
0.4—

0
2.2

I

2.4 2.6
I

2.8
I

3.0
0.2

0
I

0.5
I

I.O
& (GeV)

I

l.5 2.0

FIG. 3. Pounder-law fit to the magnetization for N& = 3,
N, =7. Error bars are the size of the circles.

FIG. 4. Quark free energy vs temperature. The points
and the curve result from simple transformations of Fig.
3.

4
(I-)=& —

2 —,2 ~

go o
(5.1)

The best fit to our data for N, = 3, @,= 7 is dis-
played in Fig. 3. We find 4/go~'=2. 15 to a high de-
gree of precision, and P =0.207+0.008. (Properly
speaking, P cannot be called the critical index,
since the fit suffers from the usual experimental
difficulty in defining the size of the critical region.
For comparison, the critical index for the three-
dimensional Ising model is believed24 to be P„„,
=h)

We have three reasons for believing the transi-
tion to be second order.

(1) The magnetization appears continuous in the
coupling, and the curve does not become steeper
when N, is increased past about 2N, .

(2) In the neighborhood of gf, many more passes
are needed (say 150) to reach apparent thermal
equilibrium than far from the transition (typically
30).

(3) Pass-to-pass correlations in (I) are strong
typically over 3-5 passes far from g,*, but extend

TABLE I. Approxi. mants to T*. The scale for a and T
is set by ~~=400 MeV.

Lattice size
(Ng xN )

~(g+2)
4/«* ~GeV )

aNg T*
(GeV ') (MeV)

th'e transition as N, passes 2N, .
To obtain a more precise estimate of the critical

coupling go~ and to learn more about the critical
properties, one may fit (I ) near the transition to
the functional form

in range to as many as 15 passes near go~. These
correlations are discussed further in the Appendix.

T„(N,- ~) =170 MeV. (5.2)

Apart from uncertainty in our extrapolation, Eq.
(4.5) is subject to an uncertainty of 30%% arising
from Creutz's determination of the normalization
of (4.2). A change in this normalization would re-
sult in a rescaling of (5.2) together with all other
dimensional numbers.

B. The critical temperature

Given go and N„one may calculate the tempera-
ture of the lattice theory via (4.1)-(4.3). We have
determined go* for several lattice sizes from plots
such as Fig. 3; the values are shown in Table I
along with the temperatures to which they corre-
spond. For definiteness we have set K= (I/2v)
GeV', which is approximately the value in the
real world derived from Regge trajectories and
the string model. ' Thus, all dimensionful numbers
we present would be the ones measured if the real
world were described by an SU(2) gauge theory
without dynamical quarks.

The critical point of the largest lattice in Table I
occurs at a bare coupling corresponding to a length
scale a= ~ fm or a mass scale I/a=600 MeV.
Since one may suppose that the physical scales of
the theory are not far from these values, 7.'„for
N, =3 may not by itself be taken for the continuum
critical temperature. However, various rough ex-
trapolations yield an estimate in the neighborhood
of

1x 53

2x53

3x7

0.75

1.85

2.15

3.2
2.2
1.66

3.2
4.4

310

230

200

C. Quark free energy

Using (3.12) and (4.1)-(4.3), we may transform
the axes of Fig. 3 into more physical variables,
yielding F (Z') as shown in Fig. 4. Weak-coupling
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perturbation theory indicates that I", should be
linear in T up to logarithmic corrections. The al-
most linear dependence on T evident in Fig. 4
shows that the finite-temperature contributions to
this free energy are clearly isolated from the
zero-temperature piece. The rapid increase at T
-200 MeV corresponds to the onset of quark con-
finement.

-0.0005-

-O.OOI 0-

e ' "=-,'(e '"i+3e "3) (5.3)

Here V, ( V,) denotes the qq potential in the singlet
(triplet) channel for two isospin-2 particles. The
3 is the degeneracy of the triplet state.

Perturbation theory in the continuum predicts a
screened Coulomb potential:

D. qq potential

The averaging over quark color orientations in
(3.4) implies that our F,,(r ) is a thermal average
over potentials in the possible color channels,

—O.OOI 5—

I

I I I

2 3 4
LATTICE SEPARATION, n

1ng

(V'+ p. 'a') y (n ) = &~ 0

FIG. 6. qq potential vs separation (in lattice units)
along a lattice axis for 4/go =5, N& =2, N, =10, averaged2

over directions. The curve is the thermal average of
perturbative potentials in the singlet and triplet channels.

V,. (r) =c,.g, ' 4
e '"+0(g,') (5.4) with periodic boundary conditions. V' is the lattice

Laplacian

withe, =-&, c,=+-, and p, '=-,g'T'. For pg, '
small we may expand the exponentials in (5.4),
and we find that the 0(g,') terms cancel between
the singlet and triplet terms. This may be seen
immediately from the fact that the diagram in
Fig. 5(a) vanishes because Tr7'=0, so that the
first contribution to the qq potential is the two-
gluon diagram in Fig. 5(b).

For. our periodic lattice system we make the
replacement

1 ——y(n),
4my a (5.5)

where P(n) is the lattice Green's function satisfy-

v y(n)=Q [y(n+j) y+(n —P)] —6y(n).
(5.V)

The correlation function (L(0)L(r)) may be ex-
tracted from the Monte Carlo calculation in the
same way as (L); taking the logarithm yields
PE„(r ) according to (3.11). The high-temperature
data presented in Fig. 6 fit the weak-coupling pic-
ture discussed above. As we approach the transi-
tion we obtain Fig. 7: the potential does not show
the 0 (g,') cancellation of (5.3) and (5.4), and is
half as large as the singlet potential alone. This
may be understood as the beginning of the onset of
confinement physics. The net color flux emanating
from the triplet configuration is no longer screened

(a)

C

LL
—O.I—

—02-

FIG. 5. (a) The one-gluon graph in the correlation func-
tion of two Wilson lines, which vanishes. (b) The low-
est-order nonvanishing contribution to the color-averaged
qq potential.

FIG. 7. As in Fig. 6, but for 4/go ——2. For this lattice
4/go =1.85. The lower curve is the screened Coulomb
potential in the color-singlet channel; the upper curve is
the color-averaged screened Coulomb potential.
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TABLE II. Lattice spacing a and physical temperature
T for the data in Figs. 6-8 and for the critical point at
gp, calculated with (4.1)—(4.3) .

Fig. 6

Fig. 7

gp

Fig. 8

4/g 2

1.85

1.8

a (frn)

1.5 x10

0.38

0.44

T (Geg)

641

0.258

0.227

0.223

by a thermal bath of glue but rather is confined by
pulling a gluon out of the vacuum and binding to it.
This costs energy, so that there is an added sup-
pression in the Boltzmann factor for the triplet
state. In Table II we indicate the lattice spacings
and temperatures for these data.

In Fig. 8 we display the potential at a tempera-
ture below the phase transition. Its confining na-
ture is evident; it appears to be a linear potential
altered by the periodic boundary conditions. A
rough estimate of the slope gives

P = 0.6.
dn

The string tension at this temperature is

dF 1 dF0=—= IB—
dh N a dn

1 dF
N f(go) dn

(6.9)

yielding for these data, via (4.2), quite a strong
string tension, viz. ,

0 =0.4K at T/T*=0.98. (5.10)

E. Zero temperature?

Our prescription for the continuum limit, given
in Sec. IV, utilizes the data of Creutz" for square

Wilson loops in lattices with N, =N, . His deter-
mination of asymptotic freedom scales" makes
use of estimates of the string tension in the weak-
coupling region. However, Fig. 9 shows that for
a lattice like his, (I )&0 when 4/go ~ 2 and by our
criterion there is no confinement.

The root of the confusion is the fact that on a fi-
nite lattice there is a competition between two
length scales. For very strong coupling, the be-
havior both of square Wilson loops and of the cor-
relation function (I-(0)L (r )) is governed by the di-
mensionless confinement length (M&a) '«P/a.
For very weak coupling, the string tension is weak
and cannot be measured by Wilson loops smaller
than the lattice; the decay of the correlation func-
tion of L is theri governed by the thermal screen-
ing length (p,a) 'o-P/a. The delicate area is the
one in between, where the crossover of the two
scales brings on the finite-temperature transition.
Then the fact that (I-) &0 seems to guarantee that,
given enough room in the lattice, the correlation
function at large separation would show a noncon-
fining potential. However, the confinement scale
may still be small enough that Wilson loops as
small as half the lattice may yield an area law.

We remark that in order to have enough room to
observe the nonconfining nature of the correlation
function near the transition, we would need N,

Going to such a lattice, though, would defer
the transition toward weaker coupling (see Fig. 2),
leaving us once more in the phase where the cor-
relation function, as well as the square Wilson
loop, shows confinement.

The danger in the situation for N, =N, lies in de-
termining the scale of the string tension in the
transition region. Just as the correlation function
of I. shows effects of the confinement scale togeth-
er with the temperature scale, so finite-size ef-

04

0.3—

O.I—

0
2.2

I

2.4
I

2.6
4/Qo

I

2.8
I

3.0

FIG. 8. As in Fig. 6, but for 4/g() =1.8&4/gp .

FIG. 9. Rough data for magnetization vs inverse coup-
ling for N~=N, =5. Error bars do not reflect some un-
certainty in when equilibrium is reached.
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P* =N, a(gf'(N, ))= constant . (5.11)

On the other hand, a thermodynamic interpretation
is not obvious for N, a when N, =N„and (5.11) may
not be applied reliably. A calculation of (L) on the
lattice of Bhanot and Rebbi would dispel any sus-
picion of lingering finite-size effects.

A bump in the bulk heat capacity of the gauge
theory has been reported by Lautrup and Nauen-
berg" in a 4~ lattice near 4/g, '=2. It is tempting
to associate this with- the finite-temperature tran-
sition rather than with the zero-temperature
strong-to-weak-coupling crossover, which folk-
'lore would hold to be singularity free. This issue
as well would be decided by a calculation on a
large lattice where the crossover and the transi-
tion should be well separated.

F. Gluon thermodynamics

We have unsuccessfully attempted to isolate the
finite-temperature contributions to the free energy
and entropy of the gluon gas. This information
would be useful for determining the limits of valid-
ity of perturbation, theory. The free-energy dens-
ity F may be calculated via the expectation value
of the action (2.6), as

fects might affect the coefficient of the area law
for Wilson loops.

The lesson of this discussion should be the im-
portance of employing a large lattice in measuring
the zero-temperature string tension. One may
hope that 4/gf' increases with N, for N, =N, as it
does for N, »N„so that the finite-temperature
transition may be pushed in this way past the zero-
temperature crossover and well into the weak-
coupling region. Then the string tension measured
would be more trustworthy. The work of Bhanot
and Rebbi" on a 16' lattice probably satisfies this
constraint; it is interesting that their numbers
agree well with the earlier work of Creutz.

It is difficult to estimate howfast 4/gf' increases
with N, for the space-time symmetric lattice. For
N, »N„ the considerations of Sec. IV show thai the
assumption of a finite continuum T~ yields a re-
normalization relation gf'(N, ) via

ensemble of Z, bubbles. At. very small couplings
corresponding to very high temperatures, the sys-
tem is one large domain with (I-) = +1, which for
definiteness we take to be (L) =+1. As the tem-
perature is lowered, bubbles with (L)= -1 form
By a fluctuation, one of these bubbles might grow
large and fill the volume causing the flip-flop of
Flg. 1.

As the critical temperature is approached, the
system literally froths with bubbles of (L)=+1.
The Z~ symmetry is restored and lim~ ~*(L) =0.

A rough approximation in the lattice theory
which focuses on this picture goes as follows. "
Fix a gauge in which U=1 on all timelike links ex-
cept those in one spacelike layer, i.e., U (r, t) = 1
for t & 1. Then the remaining timelike links con-
tain the gauge-invariant quantity L, according to
(3.23). In the weak-coupling limit, choose a vac-
uum with L = 1; any such vacuum is clearly gauge
equivalent to one in which U' = 1 on all spacelike
links as well. Now turn up the coupling, while
considering only states with U'=1 and L =+1.
When restricted to these states, the action (2.6) is
that of a three-dimensional Ising model with ef-
fective temperature g, , i.e., a nearest-neighbor
coupling among degrees of freedom L(r ) = +1.

This Ising model of course exhibits a phase tran-
sition such that (L)=0 for go'&go* . The approach
to the transition from the weak-coupling phase
may be studied in a droplet picture, where the
partition function is expressed in terms of domains
of flipped L embedded in the weak-coupling vac-
uum L =+1. A condensation of such domains at all
length scales constitutes the phase transition. "

There is a continuum analog to this picture. The
finite-temperature instanton'3 is a solution of the
Euclidean Yang-Mills equations which interpolates
between L =+1 at infinity and L =-1 at the origin,

(5.12)

However, a zero-temperature (large-N, ) piece
must be subtracted from 5 to yield a quantity
which is finite in the continuum limit. This sub-
traction requires better statistics than are avail-
able to us.

VI. THE DYNAMICS OF THE TRANSITION
-I

0 I

r/p

The flip-flop behavior in Fig. 1 suggests a pic-
ture of the finite-temperature gauge theory as an

FIG. 10. Magnetization L vs distance x from a finite-
temperature instanton of radius p, for three values of g.
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and thus represents a Z, domain configuration
which is a stationary-phase point of the path inte-
gral (2.1).

An instanton of scale size p at the origin is de-
scribed by the field

a; =q„„ll(r, t) S„ll-'(r, t),
with

(A/m) sinh w
cosh zv —cos g

(8.2)
~W 277 p28= t~ 8= t, A. =

P
'

P
' P'

Using q', „=5,„, we may evaluate (3.8) as

L(r) = L(r) = cosI(r),

where

pass-by-pass volume averages such as those dis-
played in Fig. 1. Consider for definiteness the
evaluation of (L), and denote the volume average
after pass i by L, . The first step is to throw out
the data from the beginning of a run which dis-
plays the initial drift in L,. from the ordered
start. What is left should clearly represent ther-
mal fluctuations about a mean which does not
drift, along with possible reversals in sign. Cut-
ting out the points associated with the reversals
allows us to take absolute values, yielding data
(x,) which fluctuate about a constant mean.

It should be obvious that the Monte Carlo algor-
ithm generates sequences fx;} with strong correl-
ations from one pass to the next. We may quan-
tify this effect by calculating the autocorrelation
function

, agI(r)=p rf '~ dt
0

( )
(x&x&,„)—(x)'

(x' ) —(x)' (Al)

=-m 1+—

A . A
s inhzg ——cosh',

~ 1/2
D=

~

—+1 sinh'av+ —coshwsinhge
iZP K

L(r) is plotted in Fig. 10.
Thus we are led to picture the phase transition

as a condensation of instantons (and possibly of
other domairilike objects which may appear as the
coupling becomes strong). " While a dilute-gas
approximation may not be expected to yield signi-
ficant contributions to quantities such as E, a
calculation which includes some effects of in-
stanton interactions may result in a curve at least
qualitatively similar to Fig. 4.

Here the angular brackets represent an averaging
over the sequence of data (x,}. The accepted 1-o
test for correlation over a "distance" e is to test
whether

C(n) &
1

Ptl
(A2)

where p„ is the number of pairs with separation ~
available for averaging in (Al). For small n,
C(n) is a decreasing function; the smallest value
of n for which (A2) fails is the pass-to-pass cor-
relation length v referred to at the end of
Sec. VA.

Another way of studying correlations is to group
the passes into bins of some length l, defining a
new variable m~"' as the mean of the fx,) in the
jth bin. Then we may calculate the nearest-
neighbor bin autocorrelation as
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APPENDIX: ERROR ANALYSIS

The raw output from the Monte Carlo program,
whatever the quantity being measured, consists of

(m' ' )-(m' ') (As)

Again we may test whether

1C'(l) &
( 1)l

(A4)

where p, is the number of bins of length l we are
able to construct out of the data. The smallest
l for which (A4) fails, that is, for which consecu-
tive bin averages are uncorrelated, gives another
estimate for v, which should be close to that cal-
culated from (Al) and (A2).

If equilibrium has not yet been reached and the
mean about which the (x,.) fluctuate is still drifting,
v wil. l diverge. Let us assume that enough initial.
passes have been dropped so that this is not the
case.

Then the (m,'. "') comprise a set of statistically
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C„=[(m(r)m(s)) —(rn(r))(m(s))] (A5)

and the coefficients of correlation as

Crs
rs 0 0'

r s
(A6)

uncorrelated samples from which (L)=(m'"')
=(x;™ybe calculated. The population variance
is the usual o'= [p„/(p„—1)]((ml"' —(L))') and the
variance in the mean is s'=o'/p„. s is the size
of the error bars in Figs. 3 and 9.

A complication arises in estimating the uncer-
tainties in the two-point function G(n)
—= (L(r)L(r+ni")) because the sets of data (x, (n)]
corresponding to the various G(n) are strongly
correlated with each other, a cross correlation
which survives when the data are binned into

(m,'."'(n)) as above. (We drop the [v] superscript
henceforth. ) The covariance matrix is defined as

with

o„'= " [(m(n)') —(m(n)&'].
V

(AV)

'Typically, we find 1 —R„,= 10 ' for all xc s, show-
ing almost perfect linear correlation among the

fm,.(n)]. At the same time, the matrix C', posses-
ses a large eigenvalue fy corresponding to an ei-
genvector proportional to [1,1,1, . . . ]: clearly,
this is relevant to fluctuations where all the m(n)
move together rigidly. Discarding this as unin-

teresting, we take the next largest eigenvalue &,
of C„ to be the typical variance of uncorrelated
fluctuations, and we take (e,/p„)'~' for the error
bar in all the G(n)'s. Taking the logarithm of G(n)
and adjusting the error bars accordingly yields
Figs. 6-8.

Purists should note that it does not matter
whether the above procedure for G(n) is executed
before or after taking the logarithm.
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