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A class of string models is studied to leading order in a 1/d expansion, where d is the dimensionality of space-time.
The static potential is found to be given by V(R) =M'R(1 —R, '/R ')'", where R, is a critical distance. At
R = R„the system undergoes a phase transition to a state where a quasistatic string picture is no longer applicable.

I. INTRODUCTION

One of the outstanding problems in non-Abe-
lian gauge theories is the calculation of the static
potential between two heavy sources. In continuum
gauge theories one can systematically calculate
the short-distance Coulomb limit of this potential,
but its long -r ange behavior has thus far been
unobtainable. In lattice gauge theories it is
straightforward to deduce that its long-range
limit is a linear potential, but the departures
away from linearity are difficult to compute. It
would be desirable to have a model where a single
calculational scheme could give the potential over
a range of distances.

In this paper we shall study a class of Pheno-
menological models for the potential based on
ideas of Nambu' and Eguchi. ' These models re-
present the Wilson loop' as statistical averages
over fluctuating surfaces. The word pheno-
menological should be understood in the same
sense that the nonlinear p model is a pheno-
menological description of quantum chromody-
namics (QCD). The current theoretical prejudice
for these models is based on the strong-coupling
expansion for the Wilson loop in a lattice gauge
theory: the contributions to the loop expectation
value are obtained from the various surfaces
spanning the loop.

The functional-integral quantization of these
models was studied by Luscher, Symanzik, and
Weisz. 4 In this important paper, these authors
successfully calculated the leading correction
to a general Wilson-loop expectation value due

to the quantum fluctuations of the string. Their
result reduced, for the case of the static potential,
to

y( g )
—~2g (I It 2/g 2) & I2. (1.2)

the parameter R, will be computed later in the
paper. The above expression is linear for large
R and makes an abrupt transition to a square-
root singularity at R =R,. The expression is
nonsense for R gR,. We have not been able to
calculate V for R &R,.

The nonanalyticity in Eq. (1.2) for V(R) shall
be interpreted as the existence of a phase transi-
tion at d = ~ in these models. If one seriously
assumes that the string models can be derived
from QCD then Eq. (1.2) indicates that there is
rapid change away from linearity in the static
potential.

The rest of this paper is organized as follows.
In Sec. II, the Nambu and the generalized Eguchi
models are reviewed, and the formalism for the
1/d analysis is presented. The Nambu model is
solved to leading order in 1/d in Sec. III. The
equivalence to leading order of the generalized
Eguchi models to the Nambu model is demon-
strated in Sec. IV. Section V is a discussion of
the results of Secs. III and IV. Appendices A and
B justify some simplifying assumptions which
were used in Sec. III.

not be confused with the short-distance Coulomb
exchange contribution. Luscher, ' and Stack and
Stone' have pointed out that the v(d —2)/24 is a
universal coefficient that one expects in any model
based on a string description.

Liischer, Symanzik, and Weisz suggested that
a large-d expansion might be interesting for de-
veloping a nonperturbative approach to the static
potential. In this paper we show that one can
define a. 1/d expansion, and we are able to solve
the models to leading order in 1/d. The potential
in these models is given by the simple formula

where M' is the string tension, and d is the di-
mensionality of space-time. The I/8 piece is a
long-distance effect. There are corrections to the
above that go as B ', etc. Equation (1.1) is an
expansion around R = ~, and the I/R piece should

II. BACKGROUND

We shall study a class of models for the vacuum
expectation value of the Wilson loop in four-di-
mensional space-time. The first model is based
on the Nambu ansatz for the action of a string. '
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The other models are generalizations of the model
proposed by Eguchi. '

Let C be a contour in d-dimensional Euclidean
space R", and let S be any two-dimensional surface
with boundary C, i.e. , BS =C. Introduce coor-
dinates (z', z') on this surface so that S is para-
metrized as a mapping x "(z) from a bounded
region S in R' into R". Let g„be the induced
metric on this surface:

(2.1)

where the functional integral is taken over all
surfaces ~ with boundary C. The Nambu action
is the area of the surface. The area is invariant
with respect to the "gauge" group of coordinate
transformations on S. Gauge fixing must be in-
troduced to make the path integral well defined.
Since the invariance group of the action is the
full coordinate group, the Wilson-loop expectation
value can only depend on the contour C.

To define the generalized Eguchi models, con-
sider again the region S mapped into the surface
S by x "(z). The boundary of R is mapped into C.
The area of (R will be denoted by an upper case A. .
The generalized Eguchi model is defined by

W [C [=f AA W [C,A [exp( ——,'A ),
0

where

(2.3)

where a, b =0, 1.
The Nambu model for the Wilson loop is defined

by
P

W„[C]= [~x]exp -M' d'z(detg„)' '
{slas=c»

(2.2)

property of 6t. The evaluation of (2.3) also re-
quires gauge fixing although the gauge group is
much smaller.

To compute the static potential we choose the
loop C to be a rectangle in the (01) plane of length
7." and width R with T»R. According to Wilson, '
the loop expectation value is expected to behave
as

W[C]- exp[- TV(R)], (2.5)

where V(R) is identified as the static potential
between infinitely massive sources separated by
a distance R. We shall study the potential in an
expansion similar to the 1/N expansion of many-
component field theories. In this approximation'
there are two parameters, g' and N Th.e 1/N
expansion is defined by studying the behavior of
the theory as N- with X=g'N heM fixed. In
this paper, the role of N will be played by D
= d —2, the number of dimensions of space trans-
verse to the string. Luscher, Symanzik, and
Weisz showed that in these models the dimension-
less combination (MR) ' plays the role of g'. As
we will see later, a convenient choice for X is

mD

24M R' ' (2.6)

Functional integrals (2.2) and (2.4) are evaluated
by expanding around the stationary point of the
action. Since the stationary points of these models
are minimum-area surfaces, ' we are required
to expand about the flat rectangle with boundary
C. Let S be any surface with the rectangle as the
boundary. Choose coordinates on 8 by mapping
into it a rectangular region 6l of length a, and width
a, (Fig. 1). This leads to a convenient para-
metrization of 8 given by

2p
Wz[C,& ]= [I)x]exp

(slas=c» v ) 2v

x d'z(detg)" .

x'(z) =(rz'/a, )+rP(z),

x'(z) = (Rz '/a, )+rP(z),

x "(z)= p "(z), v = 2, 3, . . . , d —1.

(2.Va)

(2.Vb)

(2.Vc)

(2 4)
The factors in the action have been chosen such
that M' is the string tension. The models are
defined only for v& 2. The action with v=1 was
first proposed by Schild' as an alternative to the
Nambu action. For v», these actions have a
smaller invariance group. They are only invariant
with respect to symplectic coordinate transforma-
tions, i.e. , those for which ~sz'/Bz

~

= l. A the-
orem due to Moser' guarantees that any two simply
connected regions with the same area can be
mapped into each other via a symplectic coordi-
nate transformation. As a consequence, W~ can
only depend on C and A. , hand not on any other

The g's are the longitudinal deformations of the
surface, and the Q's are the transverse deforma-
tions. The q's and Q's must vanish on the boun-
dary.

The zero modes associated with coordinate
transformations manifest themselves through the
g's. In the v=1 case, the zero modes are eli-
minated by using the Faddeev-Popov procedure
as demonstrated by Luscher, Symanzik, and
Weisz. 4 Since there are D transverse modes
and only two longitudinal modes, the effects of the
[7's will not appear in the leading order in 1/D.
We will neglect the q's from now on.

Using (2.7), we find that the induced metric is
given by
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ab

8$ 8$
ez' ez &

8$ 8$
ez' ez'

(2 8)

Rd

As a warm-up exercise, we shall evaluate the
contribution to V due to the quadratic transverse
fluctuations in the Nambu model. To order trt',
the action is given by

d'z detg '

=M 8 T+ —M' dt dr —+

(2.9)

Since we are interested in the limit T- ~, the time
integral in (2.9) may be replaced by an integral
from —~ to+~. Inserting the above into (2.2) we
find that

FIG. 1. Choosing convenient coordinates (2.7) to pa-
rametrize the surfaces spanning the rectangular T && R
Wilson loop.

tt„[C]= tttt(-M'ttt]JI']ttd]. tttt :I*j dt f—d
(
—', ,)',(,')' (2.10)

= exp[-M' RT —2D Tr ln( 8,' ——8„')]. (2.'l l)

B.
lnx= ——x

9 B=0
(2.12)

The functional trace may be evaluated by Fourier
transformation. The ultraviolet divergences are
tamed by using analytic regularization. " In analy-
tic regularization, the logarithm is defined by

t= rz'/a, ,

r=Rz'/a, .

(2. 18a)

(2. 18b)

Ig= M dt
I

R

dr[det(6, 1, + 8, t]] 8, ttt)] 't',

In these coordinates, the Nambu action and the
Schild action are, respectively, given by

The trace in momentum space is given by

Tr ln(- 8,' —8„')
1 2p —y

2& -1 M2TQ 2&

(2.19)

G(d 1

8p ~, 2n []d'+(n7]/R)']'

(p 1) R2 . 8-1/2

(4w)'t2 8p 1(p)

= ~rg(- i)/R

= —11T/(12R)

We conclude that the potential is given by

V(R) = M'R —]TD/(24R) + ~ .

(2.13)

(2.14)

(2. iS)

(2.16)

(2. iv)

+ co R
dt drdet 6„+~, 8, ", 220

& 00 0

where A = aoa„and the indices a, b = 0, 1 now refer
to (t, r) The 1/.D expansion is obtained by a
standard set of manipulations: We introduce com-
posite fields o„for 8, ]T] 8, Q, and constrain o„
= 8, Q ~ 8, p by introducing Lagrange multipliers
n' . For the Nambu model the manipulations pro-
duce

Q Qg 5gq —8 ~ B~

The above result is the analog for the Nambu
model of the Luscher, Symanzik, and Weisz calcu-
lation. The universality of the 1/R coefficient is
discussed in Refs. 5 and 6.

The 1/D expansion is best discussed in physi-
cal" coordinates defined by

X) &o &e exp —S„, (2.22)

x exp -M' dtCk det &, +0,

(2.21)
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where

S„=M' dt dr det 6„+0„

+ 2M' dtdr e' ~, ~ —o~ . (2.23)

where

+00 p B
S~=~' u dr det ~.,+~., ''--,'~"~.,

0

In going from (2.21) to (2.22) we used the expo-
nential parametrization of the 5 function with
the understanding that the u functional integrals
run from -i~ to +i~ in the complex o, -plane,
The action S„is quadratic in Q, and the functional
integral may be evaluated with the result

+ —,
' D Tr ln(- &, o."&, ) . (2.25)

S~ X)0 exp —$'~, (2.26)

One can perform the same manipulations in the
Eguchi models with the result

W~= Q& So exp —S (2.24) where

S =2

——,'M' dtdr n" 0'„+ 2DTrln —~, a' ~, . (2.27)

Equations (2.25) and (2.27) are the effective
actions which will be used to generate the 1/D
expansion by steepest-descent methods.

l

eter X by Eq. (2.6) then Eq. (3.1) may be written as

S = —[(1+a )'~'(I+o )'~' ——' a v
wT D
24' p„o

III. THE NAMBU MODEL —x(a,/a, ) 't '] . (3 2)

In this section the leading term in the 1/D ex-
pansion of the static potential in the Nambu model
is obtained. The 1/D expansion is systematically
generated by expanding (2.25) around its stationary
points. There are several observations that can
be made about the stationary solution.

(1) The system becomes time-translational in-
variant as T- ~, and the stationary solution 0
= r(r), a = a(r) should be time independent.
Throughout the rest of the paper, V and n will
always denote the stationary solution.

(2) Since R is finite we expect r and o.'to depend
on r.

(3) The equations 5S~/6v(r) are algebraic.
(4) The equations 5S„/5o.(r) are functional dif-

ferential equations.
In Appendix A. we show that the situation is much

simpler than what is indicated above. The con-
clusions of Appendix A are (1) r and a may be
taken to be t and r independent and (2) r and a are
diagonal matrices. Under these assumptions, the
functional trace in Eq. (2.25) is easily evaluated
using the method explai. ned in Sec. II. The effective
action (2.25) becomes

The expression above is reminiscent of 1/N ex-
pansions. The leading term is a function of ~
with a prefactor of D. The next term in the ex-
pansion would be a function of ~ multiplied by D'.

The variational equations for the stationary
point of (3.3) are

n, = (1+o,) '~'(I+ r, )'~',

o., = (1+r )' '(1+r, ) ' ',
r, = x(a,/a, ')'~',

0'~ = —X(Q.OR~)

(3.3a)

(3.3b)

(3.3c)

(3.M)

a, = (1 —2X)'~',

a, =(I —2X) '~',

r = X(l —2A)

(3.4a)

(3.4b)

(3.4c)

(3.4d)

Inserting the above into (3.2) yields the static po-
tential to leading order in 1/D:

This system of equations is easily solved with the
result

S~=M RT[(1+oo)'~ (1+o,)'~ —
2 (o'Ooo+ &,o', )] V(R) =~'R(I —u. )'~2 (3.5)

—DDT(o. ,/a, )'~'/(24R), (3.1)

where no= ~oo and o.,= n». If one defines a param-

The matrix of second derivatives of S~ has two
positive eigenvalues and two negative eigenvalues
at the stationary point. This is required since the
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(3 6)

where

0 integrals run east-west in the complex plane,
but the a integrals run north-south. Solution
(3.4) is stable with respect to small fluctuations.

The potential may be written in the form

V(Z) =M'a(1-Z, '/Z2)'/',

two different times:

C(~) (a=d) I d. (((t,,) d( , 0,))
0

= —(27(M') 'ln(1 —e '/'),

where

(3.12)

A, '= )(D/(12M'). (3.7)

A graph of V is given in Fig. 2. It appears as if
the solution given by Eq. (3.6) breaks down at a
critical distance B, corresponding to ~ = —,'. We
shall interpret this difficulty as a signal of a
phase transition in the string models when D= ~.
We shall accumulate more evidence of what oc-
curs at this point and postpone our discussion of
it to Sec. V.

There are two correlation functions which are
by-products of the static potential calculation.
'The average fluctuation + will be defined by

& = (&/~)(~. /~, )"
= (Z/w)(1 —2) )".

(3.13)

(3.14)

(detg)'/ = (1 )(.)(1 —2))) (3.15)

The effect of the m's makes its appearance through
For large t, the function G(t) has exponential

decay with correlation time (. The correlation
time vanishes as A. --,'.

Another interesting quantity is the ratio of the
area of the dominant surfaces at the stationary
point to the area of the flat rectangle. This ratio
is given by

F=(DB) ' f dr(Q(tr) d(t, r)). ,
0

A short calculation shows that

&=(2~M') '(o' ()' ) "»(&/&*)

(3.8)

(3.9)

a divergent quantity as X-—,'.
We shall postpone the discussion of these obser-

vations to Sec. V.

IV. THE GENERALIZED EGUCHI MODELS

= (2~M') ' in(~/Z*), (3.10)

l.5

V(R) ~ 0.81R [I-(0.86/R) ]
'

where 8* is some constant. Equation (2.23) is
responsible for the appearance of a in (3.9). At
the stationary point e,n, = 1 and their effect disap-
pears in &.

The second correlation function we consider is
the function G(t) which measures correlations at

The 1/D expansion of the generalized Eguchi
models is more involved than the corresponding
one of the Nambu model due to the additional area
integration [see Eq. (2. 3)]. We shall use our ex-
perience with the Nambu model to assume that
().' and o are (t, r) independent. We have not suc-
ceeded in proving this statement, but we believe it
is true. This ansatz is at least self-consistent.
The arguments in Appendix A can be used to show
that 0 and c7 are diagonal matrices.

Under these assumptions, we will show that to
leading order in 1/D, the generalized Eguchi mo-
dels are equivalent to the Nambu model. Equation
(2.27) simplifies to the form

—graf TQ Q~(xo+ A~v~

—T7(D(e/, /e/ )'/'(248) ' (4. 1)

0.5— The Wilson loop is obtained by evaluating an area
integral [see Eq. (2.3)] in addition to the a and o
integrals:

f o.s
Rc

l. 5 We[CJ- dA. Jt do(dvexp( —2d4. —Se). (4.2)
0 m OQ

R [(m]

FIG. 2. A plot of the potential with D=2, M =(27t.~')
where e'=1 GeV is the Hegge slope. V is measured in
GeV and g in fm. 8 =0.36 fm.

The easiest way to demonstrate the equivalence of
the models is to evaluate the A. integral first. This
integral is evaluated by steepest-descent methods.
The stationary point A is found by solving the
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equation

—(-A+S )-=0.
A ~ . EA— (4.2)

The solution to this equation is given by

(4.4)

Substituting the expression for A into (4.2) leads
to the result

—TmD(a, /a, )~'(24R) 'j) . (4.5)

The argument of the exponential is precisely Eq.
(3 1)

V. DISCUSSION

The analysis of Secs. GI and IV indicates that in
the models considered there is a phase transition
at D= ~. The static potential is not analytic at
&= &, i.e. , there is a singularity in the free
energy of the system. The area of the dominant
surfaces diverged as (1 —2A) '~'. The amplitude
of the transverse fluctuations approached a con-
stant, but the fluctuations also became completely
uncorrelated in time. AD these observations are
summarized by saying that Q' is not becoming
large but (&Q)' is diverging.

The analysis of Secs. IG and IV was based on the
assumption that the surfaces which dominate the
functional integral differ from the flat rectangle by
a "small amount. " This statement is embodied
in Eqs. (2.7). At X= 0, the dominant surface is the
flat rectangle, For 0& ~& ~, the dominant surfaces
are small perturbations about the rectangle. As
&-2, the dominant surfaces are becoming very
hilly and no longer resemble the flat rectangle.

For» &, one can extrapolate and guess that the
path integral is no longer dominated by small
fluctuations about the flat rectangle, There is no
longer a weD-defined class of surfaces which
governs the functional integral, i.e. , Eqs. (2.7)
are no longer starting points for a perturbation
expansion, A quasistatic string description of the
potential is no longer adequate. In some sense,
the string has spread over space.

There are 1/D corrections to the results of
Secs. III and IV. We started with a nonrenormali-
zable field theory, and discovered that to leading
order in 1/D there were no renormalizations re-
quired if one used analytic regularization. It is
not obvious that this will persist to higher orders
in 1/D The higher-. order corrections might re-
quire the introduction of additional nonrenormaliz-
able interactions. Dimensional analysis shows

W~ - da do exp(- jM2TR[(1+ vo)'~'(I+ o,)'~' —2 a o]

that these interactions cannot change the coeffi-
cient of the long-distance 1/R piece of the poten-
tial, but they can affect all the other higher
powers in 1/R. We shall not worry about these
questions. As a working hypothesis we shall as~
sume that the effect of all the 1/D corrections
is to smooth out the sharp transition in the theory
at finite D. It is an open question whether the
Nambu model and the generalized Eguchi models
are equivalent to higher orders in 1/D.

Since we do not know how to do perturbation
theory for» 2, we can only sPeeulgte on the
short-distance behavior. The limit ~- ~ may be
obtained by letting 8 0 or M'- 0. At M = 0 there
is no scale in the problem, and one might hope
that the potential assumes the scale-invariant
form V~1/R. Peskin" has argued that, in gauge
theories with a second-order phase transition,
this scale-invariant form follows even if one in-
cludes renormalization effects. His argument,
however, applies to any theory in which the order
parameter is a renormalized loop operator; it
should apply to the string as well.
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APPENDIX A

This appendix is devoted to the justification of
the assumptions used in Sec. III. Many of the
remarks made in this section are also applicable
to the generalized Eguchi models.

Scaling arguments can be used to extract infor-
mation about the behavior of effective action (2.25)
at the stationary point. %'ithin the framework
of analytic regularization

Trln(- &, a' &,)=Trln(- &, pa"&~) (Al)

for any positive constant p. If a and ~ are the
stationary points of the action, then S& has to be
stationary with respect to an arbitrary variation
about o and a. In particular, if Ca=0, 5m=ca
then 5S„[a,o]=0. The transformation on a is an
infinitesimal scale transformation. The functional
trace of the logarithm is automatically invariant
under such a transformation; thus we conclude
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that the only other term containing n must be
stationary under such a transformation:

dt dr n"(t, r)o„(t, r) = 0. (A2)

The a o term never contributes to the potential
in leading order. This may be verified explicitly

from the expressions given in Sec. III.
To obtain more information, we have to study the

action as 1'- ~. The stationary solutions are
expected to be t independent because of the time-
translational invariance. Under this most rea-
sonable assumption, we may rewrite action (2. 25)
as

s~/7 M' f =Jr((de((5„+v„(r}}'&——,
' a"' (r}a„(r}}

0

+ 2D ~
— dr(r ~In[+ 'n o(r)+t en"(r)&„+i+&,n"(r) —&, n "(r) &„]~r) .

g) F p

(A3)

Time-reversal invariance (~- —~) guarantees
that the logarithm term is an even functional of
n"(r)

By performing the o-variational derivatives
one obtains the algebraic equations

n„=[1+v„(r)][det(1+r)] '~',

n„= [1+a„(r)][det(1+(})] '~',

n„= —a„(r)[det(1+ o)]

(A4a)

(A4b)

(A4c)

From the above it follows that deta = 1, and if
o'o ] 0 then no y 0.

We shal l now argue that 0'op 0 and cl0] 0 As
A-~, the system becomes invariant with respect
to the group of Euclidean transformations on the
plane. In particular, one expects n and o to be
(t, r) independent by translational invariance,
and n' = nD' by rotational invariance. At A=~
the stationary point is given by a=1, o=0. Re-

memberingg

that 8 = ~ corresponds to X = 0 we
conclude that the power series in ~ for a begins
at order A.', and the corresponding one for o

begins at order ~'. Let L represent the logarithm
term in (A3). Its evenness in n„will be sym-
bolically written, as L= L(n»'). The functional
derivative of (A3) with respect to n„ leads to the
symbolic equation

(To~ = A no~I ( n)o.( (A5)

The factor of X is due to the M' in (A3). Equations
(A4c) and (A5) generate the perturbation expan-
sion in A, of n» and o». We immediately see that
Ao j 0 and o'Oy 0 to any finite order in X. Any
possible nonzero value of n» and oo can only oc-
cur at a finite distance away from A. = 0. Since
a„and o„are diagonal, we shall use a single
index to label the diagonal entries.

The next step" is to show that n and o are r
independent if 0&r&B. Define 8 and L, by the
equations

d d
X) = — —n, (r) —.

n, (r) dr ' dr ' (A8)

This operator has positive eigenvalues ~„', and
eigenfunctions (t(„(r) orthogonal with respect to the
weight function n, (r):

(A9)

R
dr n, (r)y„(r)y„(r)= 5„.,

0
(A10)

(A11)

The completeness of the eigenfunctions allows L,
to be expressed as

d(u
"

d n.(r)4.(r)'
2n &. „[n,(r) ~'+ n, (r) ~„']' (A12)

d(u
"
d„p n.(r)' "4.(r)'

(A13)

z R

=(4n) '~' " "g «n. (r)' '0.(r)'~. ' "I V „0
(A14)

The last expression may be split into two pieces:

'" d(o8= 2 2
dr (r(1n[n, (r)u' —B„n,s„]jr),

0

(A5)

cfco
dr(r~[(u'n, (r) —s n, s„] '~r) .

~00 Q

(A7)

Note that the derivative of L, with respect to v at
v=O gives —28. Let D be the self-adjoint Sturm-
Liouville operator
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1

I,„=(4m) '/' ' Q (o„' "Jf dr a,(r)y„(r}'
n 0

R
dr'/n, (r').

0
(A21)

+(4m) '/' ' Q~„' '" dr[a, ' 1-]a,y„'.
ft 0

(A15)

The second term is of order v' and does not con-
tribute to 8. We conclude that

y ranges from zero to L, . Note that J depends
on z, . The variational principle may be reformu-
lated in the form

J= d7 q +z ~ 1 — d7'&0&x

1
2 (A16)

y(0) = y(L, ) = 0.

(A22a)

(A22b)
where the sum is understood to be analytically
regularized as in (A15). Equation (A16) states
that the zero-point energy is Fur/2 for each mode.
Equation (A3) may be written

d @
~ 2 & aonA'd7'

(A23a}

The Euler-Lagrange equations for the above are

R
S„/T= M' dr[(1+ o,)'/'(1+ o,)'/' ——,

' n,o, ——', a,o, j
/' 0

L
1 — d7'n On gQ

= 0.
0

.(A23b)

+ ~D 40„(X (A17)

The variational equations obtained by differen-
tiating (A17) with respect to n require the knowl-
edge of the derivatives of the ~„'s with respect
to n. This may be obtained by first-order pertur-
bation theory about the operator X). The Sturm-
Liouvi11e problem defined by Eqs. (AQ)-(A1, 1) may
be derived from a variational principle for p and

According to Eqs. (A4), n, (r)u, (r) =1 at the sta-
tionary point. The zeroth-order eigenvalue prob-
lem reduces to a harmonic oscillator.

In computing the effect of the perturbation on
the eigenvalues, it is important to remember
that L, depends on ~,. The dependence of the vari-
ational principle on L, is computed by using meth-
ods similar to those used to derive the Hamilton-
Jacobi equation from a variational principle. The
changes on the eigenvalues due to the perturba-
tions are given by

J'[Q, ~'7 = dr —,
' u, (r) —

l

0

5~./5a o(~) = —k~„a,(r)y„(~)',

Ru„/5n, (r) = ,'&u„n,—(v—)y„(~)'.

(A24a)

R
+ 2 ~' 1 — dr a,(r) y'(r)

0
(A18}

I[/„+ eP„, a+ 5n] = ~ (&u„+ 5e„)'. (A19)

By using the variational principle one can show
that 5+„ is determined by the 5n's, and by the
unperturbed eigenfunctions and the unperturbed
eigenvalue s.

It is convenient to change to a new independent
variable v defined by

with $(0) = Q(R) = 0. If P„ is an eigenfunction then

J[P„,u„'] = ~„'/2. The variational principle will
be used to determine the change in co when one
perturbs u, and u, . If P„ is the eigenfunction
for the eigenvalue problem defined by n0 and a„
and if P„+eP„ is the eigenfunction for the problem
defined by e+ &5', then the perturbed eigenvalues
may be obtained by the relation

540„
,",--.n„(~)o,(7), (A25a)

D 54)„
2M2 5

— -3Ql T gl2M „5nq 7

a 1( }
[(1+o )1/2(1 +—)1/2 x g

—
]

ny t
+[(1+o,)' '(1+o,)' ' --', n ~ o], . (A25b)

The zeroth-order Sturm-Liouville problem is
defined by

—d'p/d7' —&v'Q = 0, (A26a)

L
dr y(7)',

0
(A26b)

+[».ni(7}7 '(d4. /«), '.
To derive Euler-Lagrange equations for $N it

is necessary to change variables from p to 7 in
(A17). The results are

r
dr'/a, (r'),

0
(A20)

(A26c)

The eigenvalues and eigenfunctions are given by
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FIG. 3. The contour K for the integral representation
of E(g, s). The crosses are the poles at z=2m(x+n).
The wavy line is the branch cut of (-z)'

nator of the integrand has simple zeros at
z =2mi(x+n), where n is an integer. For non-
integer g, the contour does not enclose any of
the zeros. For integer g it only encloses the zero

at the origin. Contour-integral representation
(B8) allows us to analytically continue E(x, s) to
the whole complex s plane.

Assume s is fixed, and let 0&g&1. As g-0,
the singularity in the integrand at z = 2m&z must
cross the contour. We conclude that E(x, s) is
continuous in z except for a possible discontinuity
at x = 0. By periodicity this statement is extend-
able: E(x, s) is continuous in x except for possible
discontinuities at integer values of g.

The analyticity properties in s are al.so obtain-
able from the centour representation. If g is an
integer, then the contour representation reduces
to the contour representation of g(s) as required.
The Riemann g function is analytic in the entire
complex plane except for a simple pole at s =1.
If x is not an integer, then E(x, s) is analytic in
the entire complex plane. The residue is zero
at the potential poles located at 8 =1,2, 3, . . . .
The change in the analyticity properties at integer
g is a consequence of singularities crossing the
contour of integration.

Evaluating (B8) at s = —l leads to the results

C (x, -i)= ~ = integer

~ g integer,

0, x = integer
S x, —I

—,'4, ~ g integer .

Y. Nambu, in Symmetries and Quark Models, edited by
R. Chand (Gordon and Breach, New York, 1970).

T.. Eguchi, Phys. Rev. Lett. 44, 126 (1980).
K. Wilson, Phys. Rev. D 10, 2445 (1974).
M. Luscher, K. Symanzik, and P. Weisz, Nucl. Phys.
B173, 365 (1980).

M. Luscher, DESY Report No. DESY 80/87, 1980 (un-
published) .
J. Stack and M. Stone, Illinois Report No. ILL-(TH)-80-
51, 1980 (unpublished).

A. Schild, Phys. Rev. D 16, 1722 (1977).
~J. Moser, Trans. Am. Math. Soc. 120, 286 (1965).

K. Wilson, Phys. Rev. D 7, 2911 (1973); S. Coleman,
R. Jackiw, and D. Politzer, ibid. 10, 2491 (1974);
D. Gross and A. Neveu, ibid. 10, 3235 (1974).

io E- Speer, Generalized Eeynman Amplitudes (Princeton
University Press, Princeton, 1969). Analytic regular-
ization is closely related to ( function regularization:
S. W. Hawking, Commun. Math. Phys. 55, 133 (1977).
M. E. Peskin, Phys. Lett. 94B, 161 (1980).
This section was motivated by the work of R. Dashen,
B. Hasslacher, and A. Neveu, Phys. Rev. D 12, 2443
(1975).


