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Four-body Efimov effect in a Born-Oppenheimer model
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The possibility of a zero-energy Efimov effect is investigated in a model consisting of three identical heavy particles
and a lighter one, when the light-heavy interaction leads to a zero-energy bound state for the two-heavy-one-light
subsystem. The model is solved in the Born-Oppenheimer approximation with the light-heavy interaction taken to
be a separable s-wave potential of Yamaguchi form. The heavy-heavy interaction is short range and, if attractive, is
to be taken weak enough to support no two- or three-heavy-particle bound states. The relevant parameter is the
potential strength 2, of the light-heavy interaction which for 2, = 2,, supports a single zero-energy light-heavy bound
state. If the first zero-energy bound state of the two-heavy —one-light subsystem occurs for 2 =2, ' such that
~2'~ & g, ~, there are no Efimov four-body bound states. On the contrary, if the chosen heavy-heavy potential is

repulsive enough to prevent the existence of three-body bound states for (A,
~

& ~iL, ~, then as A, ~A,, a few four-body
Efimov states may emerge but their number remains finite. These states disappear for ~A. [

~ [iL, (
as the three-body

cut overrides them.

I. INTRODUCTION

It was first suggested by Efimov' that the num-
ber of bound states for three particles interacting
through short-range potentials may grow to in-
finity as some of the pair interactions increase
to just bind two particles and then decrease for
stronger binding. A detailed proof of the occur-
rence of this phenomena as well as a justification
for the disappearance of three-body bound states
with increasing potential strength have appeared
in the literature. " The Efimov effect can be
considered as a long-range effect in hyperspace'
or alternatively, as Amado and Noble have shown, '
as an infrared divergence of the Faddeev kernel
in momentum space which is responsible for the
divergence of the trace of the kernel. A long-
range effect in hyperspace and an infrared diver-
gence of the three-body kernel in momentum space
are both complicated mathematical concepts diffi-
cult to visualize. Recently, Fonseca, Redish,
and Shanley' and Quchinnikov and Sigal4 used the
Born-Oppenheimer (BO) approximation' to study
the Efimov effect in a, model consisting of two
heavy particles and a lighter one interacting by
means of short-range potentials. When the light-
heavy interaction is strong enough to support a
single zero-energy bound state, they demonstrated
that the Efimov effect in this case can be con-
sidered as a long-range effect in the physical coor-
dinate space. Because of the "large size" of the
light-heavy bound state in the Efimov limit, the
two heavy particles feel an effective long-range

potential of the & ' type at large separation by
exchanging the light particle between them. This
long-range potential is responsible for the occur-
rence of an infinite number of bound states for
the system. In this work we use an extended ver-
sion of the BO method in a four-body molecular
problem in order to shed light on the physical
aspects of the problem.

The possibility of occurrence of a four-body
Efimov effect has been previously investigated by
Amado and Greenwood' in a four-identical-boson
model and they concluded that such a system could
not show an Efimov effect. They pointed out that
the value ~ =~, of the two-body coupling strength
that supports a single zero-energy two-body bound
state cannot lead to an infinite number of four-
body bound states, because at ~ =~, a three-body
bound state should a.lready exist with a finite bind-
ing energy q, . The resulting scattering threshold
at E =&, in the four-body problem makes it im-
possible for any four-body bound state to emerge
at g = 0 in the ~ =x, limit. Therefore, if an infinite
number of Efimov bound states is to be found in
the four-body problem, it should emerge for the
value of the two-body coupling strength ~ =~'
((A.'( & (lt, () which leads to the first zero-energy
three-body bound state. In their work, Amado
and Greenwood looked for an infrared divergence
of the four-body kernel in momentum space and
found that the singularity of the connected three-
body amplitude at ~ =g' was not strong enough
to make the trace of the four-body kernel diverge
at g = 0 and hence produce an infinite number of
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four-body bound states.
In this work we make use of elementary quantum-

mechanical arguments to show in a simple model
that a four-body molecular system consisting of
three heavy particles and a lighter one interacting
by short-range pair interactions cannot have an
infinite number of bound states when the two-
heavy-one-light system has a zero-energy bound

state. In the four-boson model of Amado and
Greenwood all pair potentials are attractive in
nature. Therefore, as explained above, four-body
Efimov states cannot occur for ~ = p, and the only

possible threshold to look for them is at ~=&'.
In the present model the heavy-heavy and heavy-
light potentials are independent of each other and

by choosing them conveniently we have two dis-
tinct situations under which a four-body Efimov
effect may take place. The first one is similar
to that studied by Amado and Greenwood; the
heavy-heavy potential, though weak enough to
support no two- or three-heavy-particle bound

state, is such that the heavy-light potential
strength X =~' that leads to the first zero-energy
two-heavy' —one-light bound state satisfies (X'( & (A,, [

where A. =~, leads to the first zero-energy light-
heavy bound state. The second one has not been
studied in the past and involves a repulsive heavy-
heavy potential such that no zero-energy two-
heavy-one-light bound state occurs for ~A. '( & ~A.,(.
The relevant limit to study the four-body Efimov
effect is, in this case, A. =~„where in the langu-

age of Amado and Greenwood the infrared diver-
gence of the four-body kernel in momentum space
leads to a divergence of the trace of the kernel.
It is in this latter case that a finite number of
four-body Efimov states may possibly appear for
p =&„which will eventually be run over by the
three-body cut for increasing potential strength ~.
The model is solved in the framework of the Born-
Oppenheimer approximation which allows one to
develop an intuitive understanding of why there
should be no zero-energy Efimov effect in a four-
body molecular problem or for that matter in any
N-body molecular system.

In Sec. II we describe the model and in Sec. III
we solve the appropriate equations and show why

there is no Efimov effect in a four-body molecular
system. Finally in Sec. IV we give a brief dis-
cussion of our findings.

(2)

and = M/nz is the heavy-light mass ratio. The
coordinates P, p, and R are shown in Fig. 1 and
the wave function + is subject to the boundary
condition that it approaches zero when either y, p,
or g go to infinity. The potential v, represents
the interaction between the light particle and the
heavy particle labeled by the index z, . and p, is
the heavy-heavy potential in the "odd-man-out"
notation common to three-body work. The heavy-
heavy potential is short range and weak enough
to support no heavy-heavy bound state or for that
matter any bound state of the three-heavy-particle
system. The light-heavy interaction is chosen
to be a separable s-wave potential

(3)

where the form factor [f) is of Yamaguchi form'

(vlf& =(p'+P') '

In the presence of a light-heavy bound state the
two-body coupling strength ~ is related to the
binding energy e, in the following way (e,& 0):

(4)

Defining g,'= —v'e, and substituting (4) into (5)
we obtain

X '= -vV/P(P+~g'. (6)

molecular approach, in particular, making use
of the Born-Qppenheimer approximation. For a
system of three identical heavy particles of massI and a light particle of mass ~ interacting by
means of short-range potentials, one must solve
the equation

If+(r, p, R) =Ze(r, p, R),

where (in units of I = 2m = 1)

II. THE MODEL

Although at the present time there are several
formulations of the four-body problem that allow
for. an exact calculation of the four-body binding
energy, we find it convenient to study the possi-
bility of a four-body Efimov effect through the

FIG. 1. Jacobi coordinates for the four-body molecu-
lar system.
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For e0= 0 then A, = X, = —I6'/w'v' is the critical coup-
ling strength above which there is no light-heavy
bound state. Equations (5) and (6) are only defined
for ~A( ~ (X, [ since for [A[ & [A., [ Eq. (5) has no neg-
ative-energy solution.

It is mell known that for very large mass ratio
5tf (If =2000} molecular systems can be treated
accurately by the BO approximation. In recent
studies, ' it has been shown that the BQ method
may be also used with reasonable accuracy to
describe molecular three-body systems with small
heavy-light mass ratio (5)f ~ 5) if short-range
potentials are used between pairs. The BQ approx-
imation is therefore used to solve the Schrodinger
equation defined in (1). This amounts to assuming
that the four-body wave function can be approxi-
mately written as the product of two terms

e(V, p, R}=y(V, p, 5) C (p, R), (f)

where g('f, p, R) is the wave function describing
the motion of the light particle when the three
heavy particles are taken as fixed centers in a
configuration defined by the vectors p and R. The
light-particle equation is

-V„'/g+Q v, ~y(r, p, %) =e(p, %)q(r, p, R),
)

(8)

where e(p, %) is the lowest negative-energy eigen-
value of the three-center problem that depends
parametrically on p, p, and the angle between p
and R. Substituting (I) in (1) and making use of
(8} one readily obtains the heavy-particle equation

V~' ——V~'+g V&+i(p, R) 4(p, R)

=E+(T,R), (~)

after neglecting the terms resulting from V ' or
Vs' acting on p(r, p, R). This is the three-body
Schrodinger equation for the movement of the
heavy particles, where g( p, R) plays the role of
an effective three-body force that is due to the
presence of- the light particle. Although the separ-
ation of the four-body Schrodinger equation (1}
into two separate equations may be valid in much
broader circumstances' it mill at least be appro-
priate whenever the motion of the light particle
is rapid compared to the motion of the heavy par-
ticles so that the dynamics of the light one may
be solved while the heavies are instantaneously
fixed. Formally the separation works if the kinetic
energy operators —(3/2%) V ~' and —(2/SR) V„'
operating on g('P, p, 0) are small compared to
other terms in the equation which is certainly the
case when gg»1.

To calculate the binding energy q, of the. three-

——Vs'+ V(R) + e (R) 4( R) = e, 4 ( R)

for the relative motion of the two heavy particles.
The vectors 'f and 5 are defined as in Fig. 2.

III. SOLUTION OF THE BORN-OPPENHEIMER
EQUATIONS

We now solve the light-particle BO equations
for the three-body and four-body molecular sys-
tems. In the absence of a heavy-heavy potential
we show the results of a model calculation for
the value of the coupling strength g = g' that leads
to the first zero-energy three-body bound state.
The lowest-energy eigenvalue of the three-center
problem is calculated for a typical value of p'

such that fZ'( & /X, j.

A. Three-body system

Since the two-body light-heavy potential is non-
local but separable, and g is a parameter, we
rewrite the three-body light-particle equation
(10) in operator form

(P/v+ vi+ v.) lg) = & 14)

where p is the momentum operator i V„and

v, (r, r') =(r' —-'. @f)X(fP —-'. R,),
v,(r, r') =(r'+ ~R ~ f) X(f [ r+ —,'R).

(12)

(13)

FIG. 2. Jacobi coordinates for the two-heavy-one-
light subsystem.

body molecular subsystems or for that matter
the coupling strength A, '((A. '

~
& (A.,)) that leads to

the first zero-energy three-body bound state, we
also make use of the three-body BO approach.
Since the heavy particles are all identical this
implies the solution of another set of Schrodinger-
type equations. They are'

f—V„'/v+v(r —-', R) +v(r+-', R}]y(r,%) = e(R)y('P, R),

v = 23tl/(23tf + 1), (10)

for the binding energy of the light particle in the
potential field of any two heavy particles fixed
in space at a distance g, and
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A detailed account of how to solve the two-center
problem with separable potentials has already
appeared in the liteiature. ' Here we present a
brief review which is appropriate to the present
work. Introducing the translation operator

e (a) = exp(f p K),

we have

e(-', R) I qr =
I
W+-', 0&,

e'(&) =e(-&)=e(&) '.

(14)

(15)

(16)

Since Eq. (12) is invariant with respect to%- —R
reQection we find it convenient to define the oper-
ator

e'(a}= [e(a)+e(- a)],

which satisfies the relation

[e'(%)]' =+ e'(&). (18)

Making use of (14), (15), and (17) in Eq. (12) and
inverting the negative-definite operator (e -$'/p)
after moving 'fi'/p to the right-hand side, we get

ly) =G.(e'lf) &&f Ie'-e lf) &(fle )le&,

G, = (e -P/v) ', (20)

where we suppressed the argument —,'R in all the
operators 8. Defining

(21}

and noting that

&f Ie'G. e"If&= 5 &f Ie'&.e'If&, (22)

with A, A' =+, we get a separate equation for each
A,

[1-»&fle'G.e"If&]s'=0. (23)

Since we are interested in g~ g0, for each& there
is a solution for & that makes the coefficient in
square brackets vanish. Defining K = —pQ and the
function J(~) as

in the limit g = g, e (g) has the g ' behavior for
large & that is responsible for the three-body
Efimov effect. Here we study the eigenfunctions
of the two-center problem for IA. I & IA., I and find
that there is no q„solution for all& and that &

only exists up to a certain value of p =p, that
depends on ~. The weaker the potential strength
g, the smaller the value of g, above which the
light-particle BQ equation has no bound-state
solution. In Fig. 3 we show q for several values
of q = (g/A, ,) & 1. Although the shape of these curves
depends on the nature of the light-heavy interac-
tion, the nonexistence of a negative-energy solu-
tion of the two-center problem for a separation&
greater than some finite g, is potential independent.
This characteristic results exclusively from the
knowledge that the eigenvalues of the light-particle
equation at & =~ coincide with the negative-energy
solutions of the asymptotic two-body problems-
the absence of a light-heavy bound state (IA, I

& IA.,I)
implies the absence of a bound state of the two-
center problem in the separated atom limit;. If
at g =~ there is no solution, and at g = 0 there
is one, and e(ft) is a smooth function' of g then
there is a separation p, above which the two heavy
particles fixed in space can no longer sustain a
bound state of the light particle.

Although for Ixl &
I A., l

and ft &ft, we cannot define
the BQ wave function, we can nevertheless esti-
mate the three-body binding energy by solving
Eq. (11) with q (g) = e, (~) up to ft =ft, and e (p) = 0
thereafter. This procedure allows the calculation
of the coupling strength p '(Ig'I & IA,, I) that leads
to the first zero-energy three-body bound state
(e, = 0). The accuracy of this estimate has been
tested against the results of an exact Faddeev
calculation'for the same system in a model where
there is no heavy-heavy interaction. The values
of g' obtained in this case are shown in Fig. 4
as a function of the mass ratio gg. The BQ pre-

0

s'( )z(B)=—xu f d'p ' ' e'&'
~2 +p2 (24)

we get

1 —»( f le'Goe" If& =1 —z(0) —A J(R) =0. (25)

The solutions are denoted e (g) for A =+ and e„(g)
for A = —and the corresponding wave functions
are symmetric and antisymmetric under 5
reflection. This problem is solved in detail in
Ref. 3 and here we discuss the relevant results.

%'e consider a large enough to justify the BQ
approach. As was pointed out in Ref. 3, for lgl
& IA,, I

both e~ and e„converge to e, as g —~ and

z -4
C5z
az
03

m-8

LLI

0

Cg{ R)

-l2

R{fm)
FIG. 3. Two-center binding energy vs R for dif-

ferent values of g=V'A, & &.
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FIG. 4. Ratio V /A~ vs ~ in a model where the heavy
particles do not interact. The solid line corresponds
to the exact Faddeev result while the dashed line cor-
responds to the BO prediction.

diction for ~' approaches the exact result within

2% for 3II& 15. In general the value X' that is
responsible for the first zero-energy three-body
state depends on the sign and strength of the
heavy-heavy interaction. An attractive heavy-
heavy potential that supports no two- or three-
heavy-particle bound state favors values of ~'

such that IX'I & IA,, I, while a repulsive heavy-heavy
potential requires a stronger heavy-light interac-
tion. If the first zero-energy three-body bound
state emerges for y =y' (Iy'I & IA.,I), we are in a
situation similar to that studied by Amado and
Greenwood where the relevant limit to investigate
the existence of a four-body Efimov effect is

On the contrary if the short-range heavy-
heavy potential is strongly repulsive, it may
happen that the first zero-energy two-heavy-one-
light bound state to appear is an Efimov state that
at A, = Z, is supported by the R ' tail' of e (R). In

this last situation the relevant limit to study the
four-body Efimov effect is X- ~, where both the
two-body and three-body subsystems are near a
zero-energy bound state. For IA. I

& IA., I
the two-

heavy-one-light Efimov states disappear and there
are no three-body bound states left until the light-
heavy interaction is strong enough to overcome
the heavy-heavy repulsion.

For IA. 'I & IX, I
the effective potential e(R) is of

the type shown in Fig. 3. The absence of an effec-
tive potential e (R) for R &R„ though it inhibits
us from making any simple assumption on the
asymptotic behavior of the BO wave function, sug-
gests that any bound state of the three-body sys-
tem is "localized" in space, even in the three-
body zero-energy limit. In the absence of two-
body-subsystem bound states the asymptotic be-
havior of the three-body wave function is given by'

y(r, R) ~ (26}

where $
= (vr'+ IIR'/2)'A is the usual hyper-radi-

us and r andR are shown in Fig. 2. Equation (26)
shows that in the zero-energy limit the three-body
wave function decays with inverse —,

' power of dis-
tance whereas in the case of the zero-energy two-
body problem the wave function decays with the
inverse of distance. The BO wave function cannot
represent this complicated asymptotic behavior
but the absence of a light-particle bound state
for & &p, indicates that the two heavy particles
have to stay predominantly within a finite region
of space if the two heavy particles and the light
one are to form a three-body bound state.

(& p'/p—)
I 0& =[8(-—,

' p)e'(-,'ll) lf &&& f
I
t3'(—,

' II)8(-,' p)

-e(--', p)e (-', Il) If»&fle (-', II)I3(-,' p)

+ e(l » lf»& f I
e(- l »] I e&

where p, R, and the angle between p and 5 a.re
parameters. Inverting the negative-definite oper-
ator (I —p'/p, ) and defining

g =«16 (l »e(l »I&& (26)

we get a set of three coupled equations for g', g,
and g:
[I —~«l e'(-'. &)G.e'(-'. &) If&] g'

—~&f
I
I)'(-', &)G,e(p) If &g = o,

[I+~&fl6I (-,
' H)G, 6 (-', 5) lf&) g

—~&fl6I (-,
' &)G.f)(p) If&g = o, (29)

[I g&f IQ If)]g g&f I6I(-p)Q p'(- Q) If&g'

+ ~&f
I
@(-p) G ~ (—It) lf )g = o.

Defining 5'= —p, & we get

x&f
I
p'(-,' H)G, 8(p) If) =[J(x)+J(Y)]/W2,

where

X = (R'/4+ p'+R p cos8)'~',

(30)

(31)
Y = (R'/4+ p' —Rp cos9)'i',

and 8 is the angle between 5 and p. We can also
write

1+&«I6'G.6' If&
=1 —J(0)+ J(R), (32)

where J'(R) is given by Eq. (24) with v and v sub-

B. Four-body system

In this subsection we indicate how to solve the
three-center problem defined in Eq. (8) with the
light-heavy interaction given by Eq. (3). Making
use of Eqs. (14)-(18) we can write Eq. (8) in oper-
ator form,
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stituted by p, and 5, respectively. For fixed 8,
p, and 8, Eq. (29) is a homogeneous algebraic
equation which has a solution for the values of
& &0 that makes the matrix determinant vanish,

[1 —J(0) —j(R) ][1—J(0) +J(R) ][1—J(0)]

—[1—J(0) +J(R) ][J(X) +J(Y) ]'/2

—[1 —J'(0) —J(R) ][J(X)—J(Y) ]'/2 = 0 . (33)

Since J(~) =0, at p=~ the above equality reduces
to

[1 J(0) J(R) ][1 J(0) +J(R) ][1—J(0) ] =0 . (34)

Therefore, taking note of Eqs. (5) and (25), the
solutions of the three-center problem at p= ~ are
e,(R), e„(R), and e, for lxl & IA., I

but only &,(R)
for

I
~I ~

I
~.

l
ln Figs. 5-7 we show the lowest

eigenvalue e(R, p, 8) versus R for several values
of p and 8=0, 30', and 90, respectively. The
coupling strength A. =@A., has been set at the value
corresponding to q =0.8 but the curves look qual-
itatively the same for any other value of g& 1.
Again there is only a finite region in 5 space
where we can find a negative-energy solution of
the three-center problem since, for a given p and
as long as g& 1, the effective three-body potential
&(R, p, 8) is only defined for finite values of R.
As ~ approaches X, the region of space where
there is a solution to Eq. (33) increases and as
shown in Figs. 8 and 9 at X= ~, there is a negative-

g -5
0

I
Zw.
cl )0z
O
R
fn

R
LLI

zw-)5
D

.41m )

e=ao
q= 0.8

-20

0 4 6
R{fm)

FIG. 6. Three-center binding energy vs R for g=0.8,
0=30', and different values of p.

energy solution of the three-center problem for
all values of 8 and p. As shown in the Appendix,
at ~=~, the effective potential presents for all p
an asymptotic R ' behavior similar to that found
in Refs. 3 and 4 for e (R). Using our model prob-
lem we also compare in Figs. 8 and 9 &(R, p, 8)
with

g —5
o

CO
lR
4J
Z
W
6 -)0
X
O
Z

I
Rw-)5
O

--5
0

C9

~-)0
R
Q
Z
Cl

Ct
LLII-
~w -15
D

=90
= 0.8

-20 -20

0 2 4 6 8
R{frn)

FIG. 5. Three-center binding energy vs R for g=0.8,
6) =0, and different values of p.

0 R(fm) 6 8

FIG, 7. Three-center binding energy vs R for q=0.8,
8=90, and different values of p.
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FIG. 8. Three-center binding energy vs 8 for g=1,
8 =30o, and different values of p. The solid line cor-
responds to e and the dashed line to W3.

FIG. 9. Three-center binding energy vs R for @=1,
8=90', and different values of p. The solid line cor-
responds to e and the dashed line to TV3.

W,(R, p, 8) = e,(R) + c,( i
—,
' R + p

~
)

+e,(~-'R- p~). (35)

We find that for large separation between all
three heavy particles the ratio between & and 5',
is constant though slightly dependent on p and 8.
Since in the X=X, limit'

lim e (R) =-A'/R', A =e "=0.567143 ... , (36)
g ~oo

for large interheavy particle separation we can
write

e(R, p, 8) = -A'(R '+
i

-,' R + p
l

+ i-,'R —pi '), (37)

where g depends weakly on p and g. At p = ~,
A' =A and at p=0 we find that A' =B/3 where (see
the Appendix}

B=Se e(B —e ) '=1.4733745 (36)

For intermediate values of p and 0&8&v/2 we
have B/3 & A' &A which indicates that in the asym-
ptotic region and for A. =A.„™&can be approximately
expressed as the sum of three -A'/r, ,

' pair po-
tentials whose net effect is weaker than the sum
of the corresponding long-range tails of e (R). In
other words e can be written as the sum of three

pair potentials plus a repulsive three-body
force that weakens the effective two-body poten-
tials for large but finite values of p and R. Unlike
Eq. (36) which has been proved to be valid for any
short-range light-heavy interaction, "owing to
the nonlinearity of both (25) and (33) we cannot,

prove (37} in a general way, nor even for the
separable interaction used here. Nevertheless,
this shows that the large size of the light-heavy
bound state in the ~=A., limit is again responsible
for an effective long-range interaction between all
three heavy parti'cles,

We are now in a position where we can study the
possibility of a four-body Efimov effect in a four-
particle molecular system. As discussed in Sec.
IIIA, depending on the strength and sign of the
heavy-heavy potential, we have to consider in our
model two distinct limits which may lead to an
Efimov effect. If the zero-energy bound state of
the two-heavy-one-light subsystem occurs for
A =X' such that ~A.') & ~X,

~

then the relevant limit
is X- A. ' and we are in a situation where e(R, p, 8)
is confined to a finite region of space. In the ab-
sence of a long-range component for the effective
three-body potential in the A. =X' limit, the heavy-
particle equation (9) has only a finite number of
bound states and there is no four-body Efimov ef-
fect. As we have seen in the previous subsection
the three-body zero-energy bound state of two



FOUR-BODY EFIMOV EFFECT IN A BORN-OPPENHEIMER MODKI

heavy and one light particles is "localized" in
space. When the third heavy particle stays infin-
itely separated from this zero-energy bound state
it cannot feel its effect through the exchange of
the light particle, and hence there is no l.ong-
range force between the heavies that may lead to
an Efimov effect. On the contrary if there is a
repulsive short-range heavy-heavy potential that
prevents the existence of non-Efimov three-body
bound states for ~&~ &

~

&, ~, then the relevant limit
for the Efimov effect is ~-~, . The large size of
the heavy-light bound state is now responsible for
a long-range force between the three heavy par-
ticles that could lead to a four-body Efimov effect.
This does not happen because the Efimov bound
states of the two-heavy-one-light subsystem that
emerge as X- X, produce two-body cuts in the
four-body problem that prevent an accumulation
of four-body bound states at Z=O. Nevertheless
if the long-range tail of the effective potential
e(R, p, 8) in the A. =X, limit is strong enough to
support four-body states whose binding energy is
lower than the lowest two-heavy-one-light Efimov
state, there may exist a few Efimov bound states
that disappear for

~

&
~

&
~

&
~

when the three-body
cut overrides them. The general pattern for the
analytic structure of such four-body molecular
problems in the ~= ~, limit is sketched in Fig. 10.
As ~ —~, a few Efimov-type four-body bound states
emerge at E=O. Their number remains finite be-
cause as soon as the first two-heavy-one-light
Efimov state comes to exist the resulting two-body
cut in the four-body sector prevents any new four-
body bound state from appearing at E =0.

Within the framework of the BO method this
structure can be easily understood. As shown in
Ref. 3 the binding energy of the two-heavy-one-
light Efimov bound states is obtained by so)ving
the two-heavy-particle BO equation (11) and is
related to the —Ii'/R' tail of e . In the present
work the binding energy of the four-body Efimov
bound states is obtained by solving the three-
heavy-particle BO equation (9) and is related to
the strength of the long-range '«& —g' x,.&

be-
havior of &. It is well known" that the potential
strength that binds two identical particles with
binding energy B, also binds three with deeper
binding B,&B,. Since for all p and 8, g' is con-
tained between B/3 =0.491 124 ... and Il
= 0.567 143 ..., the long-range component of E is,
on the average, only slightly weaker than the sum
of three A'/ro' pa-ir potentials. Owing to the
complicated nature of the problem we find it diffi-
cult to predict, without going through lengthy num-
erical calculations, the exact binding energy of
the lowest four-body Efimov states compared to
the lowest two-heavy-one-light Efimov bound
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FIG. 10. Analytic structure of the four-body molecu-
lar system in the A, A~ limit.

state. Nevertheless, taking note of the above con-
siderations concerning the strength of the long-
range component of e compared to the strength of
the long-range tail of &,, we find it possible that
a few Efimov four-body bound states may exist
below the lowest two-particle threshold. These
states disappear for

~

X
~

&
~

&,
~

when the three-par-
ticle cut due to the light-heavy bound state over-
rides them. For increasing coupling strength
&(~&~ & ~X, ~) both e and e become short range.
Once the four-body and three-body Efimov states
disappear there are no four-body bound states
left until the light-heavy interaction becomes
strong enough to overcome the short-range repul-
sion.

Adding an extra heavy particle and looking for
a five-body Efimov effect when the four-body mo-
lecular subsystem has a zero-energy bound state
is not going to bring anything new. If the zero-
energy four-body state results for X= X" where

~

&
~

A. '
~

&
~
X,

~

the effective four-body potential
is confined to an even smaller region of space
and there is no Efimov effect. On the contrary if
we manage to avoid subsystem bound states until
A. =A., we are then left with the possibility of hav-
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ing a few Efimov bound states but never an infin-
ity.

IV. SUMMARY

In this work we consider the possibility of the
occurrence of a zero-energy Efimov effect in a
four-body BO model consisting of three heavy and
one light particles. In the model the four-body
wave function is written as the product of two
terms which, under certain approximate condi-
tion, leads to the splitting of the four-body
Schrodinger equation into the light-particle equa-
tion and a separate three-body Schrodinger equa-
tion for the movement of the heavy particles.
The solution of the light-particle equation yields
an effective three-body potential to be used in the
equation for the three heavy particles. We find
that the effective potential is either short ranged
and hence the Schrodinger equation for the three
heavy particles always has a finite number of
bound states or it has a long-range component
that may lead to the existence of a finite number
of Efimov bound states. Therefore, we find that
a four-body molecular system cannot show an
infinite number of bound states that could be de-
scribed as an Efimov effect. Our work confirms
the conclusions of Amado and Greenwood though
it does not exclude the possibility of finding a
few Efimov states in the four-body problem that
emerge for the specific value of the two-body
coupling strength that leads to a zero-energy
light-heavy bound state, and that disappear other-
wise. The same conclusion remains true in gen-
eral for the zero-energy Efimov effect in an N-
body molecular system with a single light particle.
If there is more than one light particle the system
becomes too cumbersome to be discussed within
the framework of such a simple method and more
elaborate mathematics may be required. Never-
theless, because the Born-Oppenheimer approx-
imation holds independently of the number of light
particles, the existence of Efimov states boils
down to the existence of a long-range force be-
tween the heavy particles in the Efimov limit.
Since a zero-energy Efimov effect requires the
absence of subsystem bound states we expect no
new scenario to emerge that is any different from
the two discussed above.

The possibility of finding Efimov states in the
He-trimer has been reported recently. " They
use a three-body model with an effective He-He
potential that is not strong enough to bind the He-
dimer. These states are presumably K-body
Efimov states but further work is still needed on

the finite-energy Efimov effect to find out their
true nature.

Recently Kroger and Perne' have shown in a
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APPENDIX

Considering that 5R is large enough such that
p. = v = v' -—1 we now study the long-range behavior
of K(R, p, 8) in the A. = X, limit. Substituting (4)
in (24) and making use of (6) with g, = 0 we get

p2 2p e&z e Pz

(P+ 5)' (P —5)' Z

(A1)

J(0)= ), , (A2)

where 5'= —pZ. Since Z goes to zero for large
p and R we are interested in Z(Z) for large Z and
5 «P. Therefore,

[1 -J(0)+Z(R)]s„, 6~ ———(5R we ~s),21
(A3)

[1 —J(0)]~,~ ——5 .=2 (A4)

Defining

&=R[~+ (p/R)'+ (p/R) cos8]' '=Rx,

Y =R[—,'+ (p/R)'+ (p/R) cos8]'i'=Ry,

together with 5R = 8 we obtain from (33)

(A6)

model consisting of four identical particles that a
separable representation of the 1+3 subamplitudes
in the four-body kernel reduces the four-body
equations to effective three-body equations that
can show an Efimov effect in the X=X' limit where
the three-body subsystem is having a zero-energy
bound state. In their model they freeze a con-
tinuous degree of freedom in momentum space
and because of this the trace of the kernel of
their approximate four-body equation develops an
infrared divergence in the ~ =~' limit. Since in
their work they do not discuss the validity of their
approximation in the limit where the three-body.
subsystem has a zero-energy bound state, we
find it difficult to believe, in the light of our
present work and the related work of Amado and
Greenwood, ' how an infinite number of Efimov
bound states can emerge in the ~=~' limit.
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which, for fixed p and 8 is a transcendental equa-
tion for B. If p=~ then x=y=~ and (A7) reduces
to

(B —e"s)(B+e s)B=0,
which has a nontrivial solution for B=e B =A
=0.567143... . For p=0 thenx=y=2 and (A7)
reduces to

(B -e s)B= Be s

(AB)

(A9)

which has a solution for B=1.473374. . . . Taking

e-Bx e--By) 2

(B—e s)(B+e s)B ',-(B-+e s) — +
X

e-By 2
--,'(B-e-') — -- =0 (A7)

X

note that for p= 0 the separation between all the
three heavy particles is r»=R/2, r»=R/2, and
r»=R (see Fig. 1) we can write

B2 4 4 1
R

(A10)

such that A'=B/3=0. 4911248.. . . For interme-
diate values of p and 0&8&w/2 our numerical stud-
ies indicate that we can always write

E(R, p, 8) = —A "gr,

with B/3&A'&A, and w&& is the distance between
all three heavy particles.
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