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Coherent meson-pair states
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It is shown that the use of coherent meson-pair states simplifies and improves calculations in static-source theories
with complicated algebras.

I. INTRODUCTION

Consider the Hamiltonian for a meson field in-
teracting with a static source:

y= v* A' k dA cu k A' 'dA,
t

W= v k k 'dk.

H= ~ k&'k . akdk

—p. k a A' +v* A'ak dA'.

Here a(k) is the annihilation operator for a meson
of momentum k; the meson can be isoscalar or
isovector and can interact with the source as a
scalar or as a (p-wave) vector. The operator p
is the corresponding source current operator.
The two cases that will be discussed are (a) iso-
vector scalar, abbreviated VS, where a(k) is an
isovector and p is the isospin operator 7, and (b)
isovector vector or SU, &SU„abbreviated VV,
where a(k) is an isovector and a vector with com-
ponents a„,(k) and p is the operator 7~v, with p a
=P'. . .r~o, a„, The VV case is the usual static
model of the pion-nucleon interaction. ' This model
has recently received new attention owing to the
fact that theories of the interaction of pions with
composite-quark nucleons' lead to Hamiltonians
of the form of Eq. (1). Besides the VS and VV
cases, the trivial case of isoscalar scalar, ab-
breviated SS, where p=1, is wel1. known, and the
case of SU3 has recently received attention' as
well.

The static-source Hamiltonian of Eq. (1) has
been widely discussed in the l.iterature. It has
been shown that for many purposes the spectrum
of the corresponding single-mode Hamiltonian H"
is of interest; that is, the mesons are all in the
state with normalized wave function Q(k),

a(k) =&y(k),

A 'dk=1,

and H is equivalent to

a& = w[w'. a -&p. {~+a'}]
= S'hA,

where

The eigenvalues of HA have been connected with
nucleon isobars, ' and the ground state of H" and
the lowest isobar states have been used in calcu-
lations of meson-nucleon scattering. " The pre-
sent paper gives a coherent-state method for ob-
taining eigenvalues and eigenvectors of hA and HA;

the method is directed particularly at the VV
case, where the algebra of the p operators is
complicated enough that other methods, ' which
give good results in the VS case, are too difficult
to apply. The improved accuracy that can be
gained by using the present method will be par-
ticularly necessary in calculating the potential
between two static sources in the VV case; the
methods used to compute this potential in the VS
case' are not adequate for the VV case. %hen
the algebra is still more complicated, as in the
case' of SU„ the use of the present method, which
is algebraically relatively simple while giving
good numerical accuracy, will be even more nec-
essary, both for the simple source and for two
interacting sources.

A rather comprehensive study of H" was made
by Harlow and Jacobsohn, ' who include states
with T « —,', J« ~. It is not possible to extract the
spectrum of hA~ directly from Ref. 5, which
gives spectra of HA for various values of y, but
does not give the corresponding values of W. The
lowest eigenvalue of h," has also been studied by
Friedman, Lee and Christian' and by Halpern
et at.;" the methods used in these studies are not
suitable for extension to other than the ground
state. Finally, Schwartz" used as many as 1189
orthogonal states to compute the lowest eigen-
value of HA; his lowest eigenvalue is a useful.
standard of comparison.

In the isovector scalar case, it has been shown
that coherent states' can be used to give a simple
but reasonably accurate approximation to the
ground state of hA. The coherent state that was
used satisfies
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p A l y& = ~ A
l y& = y l y),

where y is varied to produce the best coherent
state. Equation (5) is the VS analog of the SS
coherent-state condition

Aly) =yly) (8)

that is known to give the exact ground state of h"
when y is chosen appropriately. The relative
simplicity of the algebra in the VS case makes it
possible to obtain a simple closed form for the
state ly). The VV analog of Eq. (5) is

p Aly&=g~, o,A„ly) =yly). (7)

With the aid of MACSYMA, ' I have been able to
show that coherent states satisfying Eq. (7) repro-
duce the weak- and strong-coupling results, but
the algebra is enormously complicated; the form
of the coherent states of Eq. (7) is too complica-
ted for them to be of any real use for intermediate
coupling.

The work of Ref. 7 showed that states of the
form f(A' At) lQ), where lQ) is the bare source
state, give a useful approximation to the ground
state for weak and intermediate couplings. This
leads to the idea of a coherent meson-pair (CMP)
state that satisfies

A A l y) = y l y) . (8)

The advantage of the CMP condition is that it is
relatively simple algebraically even in the VV and

SU, cases; matrix elements between CMP states
are easily evaluated. Moreover, the significant
improvement in energy values that is obtained by
using coherent states in general also occurs when
coherent meson-pair states are used.

To see how the CMP states work, the two sim-
plest (&, ~) states in the VV case are l Q) and

p A~ Q), where lQ) is again the bare source
state. If h" is diagonalized in the subspace span-
ned by these two states, its ground-state eigen-
value is -1.99 for the value 0.81476 of y cor-
responding to the parameters used in Ref. 11.
Each of the above states can be turned into a CMP
state by multiplying by an appropriate function of
At At the two coherent states are then g, (PAt ~ A~)

x lQ) andg»(qAt At)p At lQ), where $ and q are
parameters and the g functions will be constructed
below. When the two CMP states are used as a
basis for diagonalizing h", the ground-state eigen-
value is -2.21 for y =0.81476. Since W in Ref. 11
has the value 4.1m, the improvement in the eigen-
value of H" is of the order of 100 MeV. Similarly
for the difference between the lowest (-,', z) state
and the ground state when states with up to two
operators A~ are used: going from the usual two-
meson states to the two-meson states with coher-

ent pairs changes the spacing by 0.1W which is of
the order of 50 MeV. It is evident, therefore,
that CMP states can be useful in obtaining accur-
ate eigenvalues and eigenstates of HA, and hence
of H of Eq. (1). For example, in computing the
potential between two static sources of pions, the
extra accuracy obtained by using CMP states will
be essential, since the potential involves the dif-
ference of energies computed for different separ-
ations of the sources. '

The organization of the rest of the paper is as
follows: Sec. II gives the general construction for
CMP states and evaluates their matrix elements,
Sec. III details the VV computations, Sec. IV dis-
cusses meson-pair excitations, and Sec. V con-
tains some comments and conclusions.

c„(yA'. A') ln&.
mao

The commutation relation

[A .A, A~ A~] =4A A+2v,

v=3 VS,

v=9 VV,

(1o)

can be used together with Eq. (8), to show that the
CMP condition, Eq. (7), is satisfied if

I.et

(2n+ v-2)!!
2 m! (2n+ v+2m —2)!!' (12)

Cmg g~2~ g

then g„(0)= 1 and

ln, y) =g„.,„(yA~ A~) ln),

A Aln, y&=yln, y).
The g„(x) are related to spherical Bessel func-
tions by multiplicative factors. The states lQ)
a,nd p At lQ) are evidently basic states with n=o
and n=1, respectively; hence the form of the CMP
states given in the Introduction.

II. CONSTRUCTION AND MATRIX ELEMENTS
OF COHERENT MESON-PAIR STATES

Suppose an n-meson state ln) is given. In addi-
tion, let ln) satisfy the condition

A Aln&=o,

then ln) will be called a "basic" n-meson state.
In general, if ln) does not satisfy (8), it can be
converted to a basic n-meson state by adding a
linear combination of functions of At .A~ times
basic states with fewer than n mesons. Write the
CMP state ln, y) as
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Now by steps,

(mx lny& =(m lg„„(xA A) lny&

=g„„(xy)&m lny)

=g„„(xy)&m Ig„.,„(yA' A') In)

=g„„.(xy)(m ln& . (is)

The derivative relation

(18)

follows easily from Eqs. (11) and (12), so that

&mxlA' Alny&

A' Alny&=I2y —+nllny&,
d

dy )
and

(is)

Since A~ . A counts A~ operators, and the number
of At's in g(yAt At) is twice the number of y's, t„.. ., (xt) +xt„., (xt)j(mix) . ()())

Finally, with

(mx IA' A lny) =
I
2xy + n Ig„„(xy)&m ln& .

t' d

dxy j
(I V)

[A A p At]=2p A,

it follows that

(20)

&mxl p A lny& =g„„(xy)&m lp Ag„„„(yA ' A ) In)

=g„...(xy) (mlp Aln&+,
( '„, &mlp AAt A'I.&

=g„„(xy) &mlp Aln)+ (m Ip At ln&

III. COMPUTATIONS IN SU2 X SU2

In SU, x SU„ the no-meson state I 0& and the one-
meson states (At, Q&)r~ are clearly basic states;
the curly brackets will be used to indicate vector
coupling of the enclosed operators-

((t)', )t g =Q (tm~pl TM)@'x'„. (22)

The index M is omitted. In SU, ~SU„both isospin
and angular momentum are vector coupled. The
two-meson states f(At, A~)" IQ&/r~ are basic
except for the one with t= s =0, which is propor-
tional to At At IQ). Since the CMP function
g(yAt A~) describes the degree of freedom as-
sociated with the operator A~ . A~, the state A~ ~ A~

0& is not needed when CMP states are used. It
is, of course, needed when CMP states are not
used. The CMP states that involve excitations of
the A~ A~ degree of freedom are discussed in
Sec. IV. Computations that include such states
show that they have no effect on low-lying states ~

Thus, such states can be ignored in CMP calcula-
tions of low-lying states. Hence, although the
CMP states have the extra variational CMP para-
meter, there are fewer of them; for n large the
ratio of numbers of states approaches 0.

Thus, all required matrix elements between CMP
states are reduced to known functions times matrix
elements (assumed known) between basic states.

Generally, a basic n-meson state is of the form

I@p~ (23)

enumeration is required only of the basic n-meson
wave functions @„". For n =0, there is only

00
@0 =1,

for n=1 there is

and for n = 2, there are

cy" =(At At)" tl =22, 20, 02, 11 .

These functions are normalized to

(24)

(2s)

(28)

(27)

In general,

Since

p Atln) =3(At In/'~" '

it follows that

($C ",
I
~i&f" At(C "' ti&)")

(28)

(29)

=3(-)"'-t 'U(t, i, r, -', ;t, ~)
x U(l', 1,J, —,';I, —,

' )

x (@tin (At @t l B) tl ) (30)

Thus, all matrix elements can be computed if the
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norms (@
"~ I' '8) and the parentages (@"~ (A~

@' ' P') are known. These are given in the Ap-
pendix for m & 4. There are eight basic three-
meson states and 18 basic four-meson states. In
Ref. 5, states with up to three operators A~ were
included.

TABLE I. Eigenvalues for y= 0.814 76.

level

Maximum number of mesons
in basic states

1 2 3 4

(~, ~)g.s. no CP

(~, 2) g.s. with CP

(~~, ~~) g.s. no CP

g.s. with CP

(z, z) first no CP

with CP

-1.995 -2.532 -2,657 -2.692

-2.207 -2.889 -3.062 -3.115

-1.480 -2.019 -2.125

-1.731 -2.407 -2.551

2.995 1.054 0.135 -0.445

3.619 1.469 0.285 -0.524

IV. RESULTS FOR SU2 XSUg

With the matrix elements of Sec. II and the Ap-
pendix, the matrices of the unit operator and of
h~„can be constructed and simultaneously di-
agonalized to give the corresponding eigenvalues
and eigenvectors of h"v. These can be used to
discuss the foll.owing questions.

(1). How large is the coherence parameter (CP)
[y of Eg. (6)]'? Expansion in powers of y shows
that for weak coupling the coherence parameter is
of order y'. It is possible to associate a different
coherence parameter with each basic state', how-
ever, the numerical calculations show that it is
sufficient to use the same coherence parameters
for all the basic n-meson states, so that there is
one coherence parameter for each possible num-
ber of mesons. Thus for the case TJ= ~, ~, the
maximum number of coherence parameters used
was 5, since n took the values from 0 to 4. When

y is 0.81476, the best values of these parameters
were found to be 2.56, 2.32, 2.14, 2.02, and
1.77, respectively.

(2). How much difference do the coherent pairs
make? Table I gives some eigenvalues for the
case y =0.81476. It is evident that the addition
of coherent pairs substantially lowers the compu-
ted ground-state eigenvat. ues. This is somewhat
deceptive, in that in the case of no coherent pairs
the nonbasic states have not been included; the
same number of states has been used for the "no
CP" and "with CP" computations. On the other
hand, it is considerably more difficult to add the
extra states than it is to add coherent pairs to a

state for which matrix elements have already been
calculated; in this sense, the use of CMP states
is the simplest way to include nonbasic states.
From Table I, it can be seen that the CMP do not
affect the spacing between ground states as much
as they do the spacing between states of a given
T,J.

(3). What effects do other modes have? The
eigenvalues shown in Table I for the (~, &) ground
state with CMP are for subspaces with 2, 3, 5,
and 7 basic states, respectively. In terms of the
states used in Ref. 11, the eigenvalue -2.207
lies between the values obtained in Ref. 11 with
16 and 25 states; the corresponding pairs of sub-
space dimensions for the other three eigenvalues
given in Table I are (94, 115), (319,364), and

(634, 721), respectively. The states of Ref. 11
include modes other than the single mode

@(I ) = [v(u)/~(a)]„...„„.,
that has been included in the calculations that give
the results shown in Table I. It is clear that a
single mode is adequate to give the ground state
energy to very good accuracy. .

(4) How is the convergence with number of me-
sons? Table I shows that the convergence with
meson number is fair for ground states and poor
for excited states. Of course, for smaller values
of y the convergence is much better; for y =0.1
the states listed in Table I all have the same
eigenvalues for meson numbers 3 and 4; How-
ever, the value of y in Refs. 11, 5, and 7 is in
the range 0.5 to 1.2; for y of this order of magni-
tude, the four-meson calculation clearly gives
accurate results only for the lowest state with
given TJ. It would be useful. to have the basic-
state matrix elements for five-meson and six-
meson states.

V. MESON-PAIR EXCITATIONS

The no-meson CMP state in SU, && SU, is

lo, y& =g, (y~~. ~~) lfl&.

A state lO, y'& is orthogonal to lO, y& if

&O y' lO, y& =g.(yy') = O.

The first zero of g, occurs when its argument is
-48.8; other zeros occur at larger negative values.
The state lO, y') differs from l O, y& only inits meson-
pair wave function; it corresponds to meson-pair
excitation. For y of order 2, y" is very large
compared to y', and it is easily seen from Eq. (17)
that the kinetic energy expectation value in the
state lO, y& is large. This is the reason that the
meson-pair excited state has almost no effect on
computed ground-state energies; numerical com-
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TABLE II. States and normalizations.

(Cn, C'n) n (4n, 4n)

10

12

14

(22)

(20)

(02)

(22)33

(20)3i

(02) 3

(11)22

(ll)

(11)

(11)ii 6 (pp) ii

(ll) 00

i0
3

io
3

25
ii

15

16

17

19

20

23

27

28

30

31

32

(22, 22)4'

(22, 20)"

(22, 02)24

(20, 20)

(02, 02)

(22, 11)33

(22, ll) 32

(22, 11)23

(20, 11)

(02, 11)

(20, 02) ——(22, 00)

(11,11) —3 (22, 00)

(20, 11)21

(P2, 11)»

(11,11) + —(20, 00)

(ll, ll) "+-' (02, 00)

(ll, ll)
f3 (ll, 00)"

(11111) ——(00, 00)

24

28
3

28
3

40
3

40
3

20

3
20
3

68
i3
i 52

i3
20
3

20

3
140
i3

i40
i3
i00
i3
i00
11

putations that include the pair excited state show
that the pair excited state is at high excitation
energy and does not affect the lower states.

TABLE III. Nonzero P
&

for P=3-6 with a [b] =—a(b)i

10 11 12

—[5]
i0
3

—,[5j

i0
3

—[5j —[5l
5

ii—"[5lii—[5)10
ii
25
ii

VI. SUMMARY

Coherent meson-pair states that satisfy Eq. (8)
provide a way of taking into account meson-field
coherence effects without the algebraic complex-
ities that arise when coherent states that satisfy
Eq. (7) are used. Use of CMP states enables the
correlation computed in Ref. 7 to be computed in
a relatively simpler manner; it gives numerical
results for 7 states that are better than those of
Ref. 11 for 634 states.

When nonstatic sources are used, the methods

of Refs. 5, 7, and 11 are not applicable. How-
ever, the simplicity of CMP states makes possible
the construction of translated CMP states by the
methods discussed in Ref. 13.

The results given in Sec. III show that for values
of y of order 1 accurate calculations of other than
the lowest state of a given TJ do not yet exist. It
seems likely that CMP states will be an essential
tool for constructing such computations. Similar-
ly, the accuracy required for computing the static
potential between two sources will necessitate the
use of CMP states.

APPENDIX

The purpose of this appendix is to give the ma-
trix elements necessary to construct the matrix of

h~~. From Sec. III it follows that only the matri-
ces ¹'"and the parentages (@"~ (At @'' q") are
needed. The 32 basic states that satisfy Eq. (8)
with n$4 can be chosen as shown in Table II,
where the notation is

(tf)-=fw' a'3"
(ff)TI =(gt gt At)tl)TI

(&ttt tt)TI. —(gt gt/sm (~t At)tt/Tl.
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TABLE IV. Nonzero P~ &
for P=7-13 with a fb] =a{&) ~ .

7 10 12

17

20

21

22

25

28

30

31

4 [2i)

4 [2i)

4f-', l

4 f-'1
5

ii2
65

84
65

28
3

—f-l20 2
3 3

-[-]76 7
i3 i5—

[T )
8 7

i3 5

8 [35)
i3 3

28
3

4 f-')

-f-]20 2

3 3

5.[Z]—[-li3 i5

4 @35)

8 [35)i3 3

2 [5)

2 [5]

i3
iii
i3

f5]

[5]

55
73

4[3)

-10[i]3

20 [3)i3
4i [3]

-5 f-,
'

l

[15)

i5[15)

-10f-]
3

20 f3]
i3

fl 5]

-5 f&)

70 [3]
15[15]

48
i3
29
78

70
rs
70
i3
25

All (@,@6) for & +P are zero except for

25& 26) ( 26& 25)

The nonzero parentages

P~ 5= (4~,{A",46))

are given in Tables III and IV., together arith

P2 1=1,

P7.3 =P14,6
= 6

~

40
1838 1939 Y

P =24,

31~ 14

32sl3

The notation in Tables III and IV is that

a[&]-=c(b)~2.
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