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Using functional-integration techniques, the time-dependent probabilities for all possible transitions are calculated

(in the occupation-number representation) for the Lee model of a single heavy nucleon interacting with a light-

particle field, without restriction on the number of light particles.

I. INTRODUCTION

The Lee model'" describes a Fermi field of
particles (called heavy particles) with two isotopic
states (called V-particle and N-particle states)
interacting with a boson field of particles (called
light particles, or 8 particles). The Hamiltonian
describing the system is

Q, =-g b'„(p)b, (p)

Q. -=Z b', (p)&,(p) + Q ~p~"-„ (4)

& = Q E,(p)b'(p)b, ( p) + Q h(v~4
y ~ X k

go m f(~g)
~y ~ (2@ ) g [bv(p')b

p~ p'k
5'=p+k

+~;bk(P)b v(P')],

where X is an isotope index with domain (V, N),
b„(p) and b~(p) are fermionic creation and destruc-
tion operators for a heavy particle of isotopic
type X and momentum p, a» and a- are bosonic
creation and destruction operators for a 8 par-
ticle of momentum k, E„(p) is the energy of a
heavy particle of type X and momentum p, h-
is the energy of a 8 particle of momentum k, g,
is a coupling constant, V is the normalization
volume [which ultimately is to be taken to ~, in
which limit summations over momenta are to be
evaluated by the rule

which represent, respectively, the number of
heavy particles and the sum of the number of V

particles and 8 particles.
The Lee model is a simplistic, but nontrivial

model for the interaction of nucleons (heavy par-
ticles) with mesons (light particles). Much of
the original interest in the model pertained to
renormalization methods. ' The Lee model can
be handled mathematically fairly easily only in
the special case for which Q, = Q, = 1, in which

case a complete set of states consists only of
those states for which either there is exactly one
V particle present or there are present exactly
one N particle and one 8 particle. This special
case is commonly called the %+8 sector.

There is a somewhat simplified, widely used
version of the model (which retains most of the
elements for which the original model. is of
interest) obtained by regarding the heavy particles
as being equally massive and so heavy that one

may neglect their momenta (which are necessarily
present in the momentum-conserving original
model due to their recoil upon absorption and
emission of light particles). In this version

and f(~-) is a "cutoff" function which will be
presumed here to have some form such that all
integrals over 8-particle momenta will be finite.
The first two terms in Eq. (1) represent the en-
ergies of the heavy-particle field and the light-
particle field, respectively, without interaction
and the third term characterizes the interaction
of these two fields. This interaction induces
processes consisting of suecessions of the basic
reaction process V= X+8, which conserves not
only the momentum of the system, but also the
two quantities

E~(p) = b+ =- constant.

the V-particle state =
~

(0
(6)

It is this simplified version of the Lee model which
will be used in the remainder of this work.

It is the purpose of this paper to obtain a com-
plete description of the dynamics of the Lee model
for the case Q, = l. In this case the number of
heavy particles is restricted to one, which has
only two independent states:
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and

/0'I
the N-particle state =-i

kli
but the number of light particles is unrestricted.
This case provides a simple model of a physical
nucleon (consisting of a heavy bare nucleon to-
gether with its cloud of an unrestricted number
of light mesons) and of meson-nucleon scattering
processes involving a single nucleon. The Ham-
iltonian is

(7)

H=A Q)+4 Q)»a»a» I(
k k k

k

-' 0 a-+a~0
k (8)

where

and

(I oi /'0 I) /0 oi

(0 13 (0 0/ (1 Oi

f-„' =gg((g-„)/[R—(2A~p)'i']. '

In order to describe the dynamical behavior
of this system, one has in essence to solve the
time -dependent Schrodinger equation

,.@ 0() @(t)at

(10)

4(t ) = gcv(t ) IN)

where N denotes a set of integer values, (Ng
specifying the number of 8 particles with each
possible momentum value k, and where

(12)

for the state g(t) of the system at any time t, as-
suming that at some initial time t' the system is
known to be in some initial state P(t'). If it is
supposed that the initial state is specified in the
occupation-number representation,

is the so-called time-evolution propagator in the
occupation-number representation.

Since this propagator characterizes explicitly
the time development of the system for all pos-
sible initial states, then a satisfactory mode of
complete description is obtainable by evaluating
expression (16). In Sec. II, the propagator is
evaluated exactly and in general by first trans-
forming to the coherent-state representation,
performing all of the required operations, and
then transforming back to the occupation-number
representation. In view of its generality, the
result is quite complicated. In Sec. III a simplifi-
cation is obtained for the N+8 sector, and in
Sec. IV the (time-dependent) survival probability
for a bare V particle is expressed by a very
simple formula for the special case of a disper-
sionless 8-particle field.

Most of the research on the Lee-model theory
has been directed toward resolving questions
regarding renormalization and dressing trans-
formation procedures which arise in the deter-
mination of the energy eigenstates and in the
description of scattering processes involving
dressed initial and/or final states separated by
infinite time intervals. (See Refs. 4-7 for such
examples. Also see Ref. 8 and some of the refer-
ences contained therein, for example, involving
finite-time evolution of certain important produc-
tion and decay processes. ) Because of the com-
plexity of the general result obtained in Sec. II,
it is difficult to relate that result to the results
of the types obtained in the previously mentioned
references, except in a general formalistic (and
therefore unenlightening) way. It is possible,
however, to relate in specific details the result
obtained here for the bare V-particle survival
probability, for the special simplifying case of
the dispersionless 8-particle field, to the well-
known energy eigenstates in the N+8 sector.
This relationship is developed in the last paragraph
of Sec. IV.

0(t")=Z cg-(t") IN"), (14)

where

c~- (t")= QK„- „.(t" —t')c„.(t'), (15)

wherein

Z - . (t"-t')= (N" ie «' '&"'"iN')-
1 (16)

are specified one-by-two'coefficient matrices,
then the general solution to Eg. (11) for the state
of the system at any given time t" ~ t' is

II. EVALUATION OF THE PROPAGATOR

It is convenient to introduce single-mode co-
herent states defined as

ia|;) = e "~i ' g [a-"~/(n-!)' '] in„-), (17)
nk-=0

where in~) is the state with exactly n„- 8 particles
of momentum k and where a „- is any complex-val-
ued function of k. These coherent states are eigen-
states of the bosonic creation operator ak- with cor-
responding eigenvalue ak. They satisfy the com-
pleteness relation

d
(g) (i)

ia) " " (a
i
=1, (18)
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(r& (i&
where a„- and a„- are the real and imaginary
parts of a"„. The relationship between the occupa-
tion-number representation of the propagator
K„„„,(t«, t'} and the coherent-state representation
of the same propagator K,„„(t»,ta) is given by

and

(r&
dayd a=—...,

77
(20}

K „„(»,t ) O(=N«( )aK, , , (», )a( a~»')d a"d a'
(19)

where

/a) =, ... /a„-). (21}

By repeated application of Eq. (18}, the coherent-
state propagator may be expressed as follows:

(t» ta}=(a« ~e
&

" ' "
~aa)

»

=ljm . . . aI~ ei' " aM —1 a -1 .. . a2 a2 e" "a1 a1 e "~" a'
N &

i)LL.

x
"'

d~a(l),
wL41

where

& = (f« t))fM

and, as a notational convenience,

a (M) -=a«, a (0) =- a) .
Expansion of the exponential functions in Eq. (23) to first order in e yields

N" 1

K,„,(t" f) = lim ... $ (
(a(l) [a(l —1})[l—le(a(l} [It)a(E —1})/(ha(l} )a(l —1))] I d a (l}

N & E l 1 (=1

= lime '"""-" . I' a e "'D" ' a

(22}

(23)

(25}

(28}

(27}

where

and

D" '(a) -=, . . . .dna-„(l),
k

N

S(a) -=-2 g g [~a), (l) ('+ ~a), (l —1)~' —2(1 ie&)), )-a(),(l)a), (l —1)],
k

(28)

(29)

P(a) —=.(..[I+ icy*(l)o& + lay(l —1)&x&]
5= 1

t g/2] N
r

&V' ~ ' "' [l6y (l2() )][&fy(l2„
p= 0 l 1&r o 1

2p

[N/2] Ar

—1)1+a» ~~, ~( ";[lay*(1,„,)] [icy(l, „—1)]
1 2p

(3o)

[gal-1

~/2]

Z
[(+-1)/2]

1 2' +1
r»

r&r
2@+1

. .. . [icy*(l,„)]... i [Zey(l, „,—1)]
v '=1

„„[&&y*(4.-&)1 .... [&&y(l2, —1)]
o=1 (31)

wherein the arrow under the product symbol in-
dicates the direction in which the index increases
in the time-ordered product, i.e. ,

f(l) = f(M)f..(.)}f 1) f(2)f (1), -

I

and wherein

y(l) = EfkaX«»

(1 01 (0 0)

ko oi E, o 1j

(32)
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and

ii= 1 li 1=1

8 8

Z Z
lg= 1 lg+ 1= ly+ 1

lg 1-1
if joi ~1

l)=1

8
~ ~ ~

~if g &g& 1.
li= l i 1+ 1

(34)

multifold integration. Each of these four matrix
elements may be obtained by multiple differentia-
tion of the following generating function with re-
spect to the parameters A„X„.. . , X„and
A.,', A2', . . . , A. „' which occur in its definition:

tt "(t'.. t ")=, 'f»»»t"tt (»"),'t

The square brackets used in the summation limits
in Eq. (31) indicate that the greatest integer less
than or equal to the enclosed quantity is to be
taken as the summation limit.

Equations (27)-(34) yield the coherent-state
propagator in the form of a two-by-two matrix,
the evaluation of whose elements still requires

where

S,(a)=S(a)+g [icy*(&)~, +i~@(t-l)~t]. (36)

Performance of the integration indicated in Eq.
(35) yields

K,'". , (t", t') =, „,exp —-2(~ a"
~

'+
~

a'I') + a-""a-'(1 —i earp"
k

Af (

ie -[f-'a ~(1 ie(d-„—)" 'X, +f'a-'(1 —iotas „)' 'l-(t]

N-1 N

»f' Q -(t'—t»t»j) X X
k l= 1 l '= l+ 1

This result may now be used to derive the occupation-number propagator by differentiation of K,'Ã, , (t", t')
with respect to the X parameters, setting the X parameters to zero, taking the limit M- ~, using Eq. (19)
with Eqs. (21) and (17), and by performing all of the integrations remaining in the resultant expression
for K„„„(t",t'). The final outcome is

K»-,» (t" t') =e"p -«t" —t')I ~+ &-"~-
I (K'v-av+K»-»&»+K»-W)+K'v-»&()v~ v»»»» f v» (33)

where

v= 1
v~n'. (i= 1, ... ,m)i

Nu 5»2v-1 k k2V-1 2v-1

i

�V=0
vm. ( i= 1,... , m)

2v+1 k2v+1 k2v
(40)

and

«'„,= - g g tt,„„
v~1

v&ni(f =1,~ ~ ~
2v-1 2v-i av-i i

(41)

with

v=O
( l=l, 2,~ ' e m)

1/2 g
k-1f- (42)

krak

(t.= 1 p)

(43)

(44)

nl=nl n2 n2 =n
m m

(45)
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and

It'= =-
5rr rk,k2 r N~, N

2 nj' 2 n j+j.
2n 2n.j v&n& (i=1,' ', m )

r- X/2
'e)Nlt N r

2v k k
2v 2v

(46)

k2 ~, k r N~, N~
2nj 1 2n j

v&n'(S=Z ~ ~ ~ nt )

wherein Eq. (34) applies and

rr j./2
~N

k2V
2v 2V

(4I)

F -trr tr n rr = &k ~) ~j
n=P ($ P) 2=1

y tp (~+ I)

where

(48)

y2=0 y=O
with (49)

III. N+0 SECTOR

In the N+ 8 sector, the propagator can be expressed much more simply by Eq. (38) together with the fol-
lowing results obtained by simPlifying Eqs. (39)-(49) for the sPecial case q, = q, = ].: If' = 0 unless both
the initial and final states comprise exactly one P particle, in which case

(50)
n=2 p=l (y: p) @=1

K„' „=0 unleSs the initial state consists of one N particle and one 6 particle (with some momentum k') and
the final state consists of one N particle and one 0 particle (with momentum k"), in which case

j
&nr x= +f1, f„Z )

Z Z ( ) ( ~T" &T' "' G(&n). (51)
n=2 v=~ (y: I +» (1=2

K„' v
= 0 unless the initial state consists of one N particle and one 8 particle (with momentum k') and the

final state contains just one V particle, in which case

~[-z(t"-t')]" ""g"
X~V

n=t 8 ~ p-0
ye+&

(y: If+&)

(52)

and K~ N
= 0 unless the initial state consists of exactly one V particle and the final state comprises one N

particle and one 8 particle (with momentum k"), in which case

((n-1) /2] n-2p -1

f g [ l (t t )] g g ( I )
n=~ nl p=o (y: p+a)

(53)

where

G(n) =Q f-„'(u-„".

IV. DISPERSIONLESS CASE

The results of the prior section are still quite
complicated. They may be greatly simplified,
however, for the special case for which the light-
particle field is dispersionless, i.e. ,

(0k = 4)0 P (55)

where &„ is a constant. for all values of k for which

I

the cutoff function f (+&) is nonzero. To illustrate
this simplification, the bare V-particl. e survival
probability

(56)

will be derived as an analytically simple function of
time t=-t" —t'.

Substitution of Etl. (55) into (54) and use of the
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result in Eq. (50) lead to the simplified expression

~ (-i(o,t)" '~ /n —g —1t
n2 ' ))1

(57)

where p is a single dimensionless coupling con-
stant defined by

x[cos[-,'(1+4p)'~'w, t]

+ i sin[2 (1+4p)~)'2(got] /(1+ 4p)')"),

so that, from Eq. (56),

(59)

p =(u ' f- = ' d'kf'((o-), (58
0

wherein Eqs. (2) and (10) have been used. Equa-
tion (57) may be reduced further to

4(dpt/2
V~V

tion

E =a(o—
5 ((d + (dT, ) —Z ~

PS (dp

K(&d + (do) —Z
(62)

(63)

-=e ' 'g' = P exp --tH V (64)

wherein definitions (55) and (58) of e, and p have
been used. The least such value is the nondegen-
erate energy g, of the stable dressed V-particle
state V„ for which

li)'I)'. & I'= I» Z „(, ")

where p is the bare p-particle state whose sur-
vival probability amplitude is

, (t) =1 [(1-~ . }/2][1-cos(2))t/T)],

where

(60)

=1/(1+4p)' ' and T=(2))/(uo)/(1+4p)' ' (61)

Equation (62) readily yields

g —g ~+~ $y g+4p
gf

(65)

Thus, the bare V -particle survival probability
simply oscillates in time sinusoidall. y between
its maximum value of unity and a minimum value
& . , with a period 7, where p . and 7 are given
by Eqs. (61) in terms of the frequency u, of the
dispersionless light-particle fieM and the coupling
constant p, characterizing the strength of the
interaction between the heavy-particle and light-
particle fields.

This result may be verified by using the well-
known energy spectrum in the pf+ 8 sector. ' The
energy eigenvalues of the Hamiltonian, & given
by Eq. (8), restricted to the N+ 8 sector, are
those values of g which satisfy the secular equa-

This result, along with Eqs. (55) and (58), allows
Eq. (63) to be reduced to the following simple ex-
pression:

l«li:) I'= l [1+1/(1+ 4P)"l.
Consequently,

(66)

&,', = e" ' exp(-'—tZ, ft(V]V, }J'( i
tw'

+ e*)
I,—;«')()-l«l). & I

*),
(67)

which may be reduced by use of Eqs. (65) and (66)
to the same result as expressed previously by Eq.
(59).
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