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Singular-perturbation —strong-coupling field theory and the moments problem
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Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented
for solving field equations in terms of singular-perturbation —strong-coupling expansions. Two traditional
mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are
obtained for the corresponding power moments of the field solution. The approximate continuum-limit power
moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct
the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The
latter involves reconsidering the traditional "moments problem" of interest to pure and applied mathematicians.
The above marriage between lattice methods and moments reconstruction procedures for functions yields good
results for the P

' field-theory kink, and the sine-Gordon kink solutions. It is argued that the po~er moments are the
most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space
formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the
small-momentum, infrared, domain.

INTRODUCTION I. GENERAL PRINCIPLES

In a recent publication, ' Bender, Cooper, Qural-
nik, and Sharp successfully defined a strong-
coupling expansion for Q~ quantum field theory by
generating a high-temperature lattice expansion
which, when combined with Pade resummation
techniques, allowed them to recover the continuum
limit of the theory. In a succeeding publication, '
they, together with H. Hose, applied this formal-
ism to singular perturbation theory for classical
fields. In the latter case, the determination of
global approximate solutions is possible in prin-
ciple; however, in practice it is very involved
and complicated to implement. Indeed, they only
evaluate such things as the derivative of the solu-
tion at the origin.

In this paper an alternate approach is taken
which also defines a strong-coupling expansion
but has the advantage of yielding good global ap-
proximate solutions in a very efficient manner.
Indeed, the method presented here is comple-
mentary to that developed by the aforementioned
individuals. As will be elucidated below, the full
strong-coupling expansion of a theory is built
around singular perturbation theory. Singular
perturbation theory can be regarded as an expan-
sion around the origin in momentum space. Thus,
in the alternate scheme to be presented, one ex-
pands around the large-scale behavior of the theo-
ry. In this manner, the greater the order of the
calculation the better are our small-scale (i.e. ,
derivative) results. Thus, our method gives good
global results, while theirs gives good local re-
sults. Although the examples to be presented are
of a classical nature, the principles should still
hold for quantum field theory.

Given any field equation(s), be they classical or
of the quantum-. field-theoretical Schwinger-Dyson
type, it is necessary to generate strong-coupling
expansions whenever the coupling strengths are
large. Usually the generation of such expansions
involves the implicit use of singular perturbation
theory. To illustrate this point, we will work with
a simple field-theory model, the one-space-dim-
ension P' theory. Its equation of motion is

For large g we are interested in derivative-term
expansions. Dividing by g, and regarding &' = 1/g
as an independent variable, Eq. (1.1) becomes

(1.2)

The full large g, strong-cou-pling expansion of
(1.1) entails both a A expansion (i.e. , singular
perturbation theory) as well as an m2/g expansion.

It is readily apparent from scaling that the sol-
ution to (1.2) satisfies

P,(x) -=(b(x; &),

P (x; A.) = y (x/A. ; 1) .
Thus, any formal expansion of (1.3) in powers of
A. will be ill-defined or highly singular at best.
Alternatively, if we "test" &f&~(x) on any suitable
test function T,(x), where n is some parameter
indexing the function, then things become less
singular. Def ine

E (&) = dx T (x)P,(x)

dxT x, x ~.
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Upon performing a change of variables, a finite-X
expansion (each order finite) may be defined pro-
vided g~(x) is well-behaved at infinity:

V,)P) =Pfdh T,(Pp)!,(p) . (1.4)

From

r.(x) = g V'.(p)x&/pl,

where the V are known, it follows that (1.4) has
the expansion

p
(P)

y (Z) =Z Xr'V'&r'
0t p I

dXX X

(1.5)

(1 6)

We may solve our field equation either in the Q(x)
representation, or in the E representation.
Clearly (1.5) is singular perturbation theory (SPT)
in the Il representation. SPT for the Q-space
representation will be defined as SPT in E space
combined with that transformation which relates
both repre sentations.

A full strong coupling e-xpansion entails the
combination of singular perturbation theory toget-
her with some g-' type expansion for the power
moments.

The E dynamical variables are linearly related
to the moments. The latter may, therefore, be
regarded as dynamical variables too. From the, .

preceding, it is evident that in the F representa-
tion a full strong-coupling expansion is far less
singular than an analogous expansion in Q space.
This is why the moments (or equivalently, the
E 's) form a more suitable representation in

which to discuss strong-coupling theory.
As mentioned above, in order to define an SPT

expansion in )P space, it is necessary to know how

to transform configurations in E space into their
counterparts in Q space.- In terms of moments,
we are asking how does one reconstruct a function
from its moments. Is the solution unique'? What
is the best function that satisfies a finite set of
given moment values? All these considerations
are part of the general mathematics problem
known as the "moments problem. "' We will de-
seri.be below the manner in which a function may

or

p P

The solvability criterion is

1+P=2T. (1.10)

The Fourier transform of the right side of (1.8)
becomes

be reconstructed from its moments. Contained
in this prescription is also the answer to the last
question raised above. A fuller discussion may
be found in Hefs. 4 and 5. Finally, the moments
are the Taylor expansion coefficients for the
Fourier space transform of the field. It is evi-
dent that the proper setting in which to discuss
the strong-coupling character of a theory, intim-
ately related to its long-range behavior, is in
terms of an expansion around the origin in mo-
mentum space.

Consider a given Q-field configuration. Its
Fourier space representation is

1
y(t ) = dx exp(-it .x) y(x)

2!r

p (P»(-i)'
pl

We have implicitly assumed that Q(k) dies off fast
enough to cause no problems, otherwise sub-
tractions would be necessary. If we know the first
P+1 moments, how well may we approximate
Q(x)? Clearly, the polynomial

] ~(p)(-i)~, u'
p!

has no Fourier transform; however, we may use
Pade techniques on this finite series and Fourier
transform the resultant expression back into Q

space. Specifically, we must solve (1.8) for
ju„, P,}. The series on the right is the Pade rep-
resentation for that on the left. The manner of
solution for the n's and P's is discussed in Ref. 6:

(p) ](-i)~" t ~= . +o(u~')
2m ~= P! V 2rr, , I+iP„k

(1.8)

~exp(-x/r3„), x & 0
P„

di'r exp(ik x)(Pade} = (
1

2!r
'~exp -x „, x(0

V V
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where

=—sum all terms for which Be(l/P, ) ~ 0.

In Ref. 4, Chisolm shows that the proper inter-
pretation of the very formal and singular expres-
sion

'

4(x)=/de I((k&=Q —,O'I,

or

is precisely that which has been presented. That
is, if we use Pade techniques on the Fourier
series and then transform back into (t)(x) space,
in the limit as more and more moments are taken,
we recover the desired field configuration solu-
tion, provided (j)(k) is of a Stieltjes nature.

We may approach the problem either in terms of
lattice field variables (to be defined) or in terms
of the power-moment dynamical variables. If we
proceed with the latter, as motivated by the argu-
ment in Sec. I, then we are compelled to obtain
the dynamical equations for the moments. Upon
doing so, one realizes that the generation of a sin-
gular perturbation expansion in terms of the cutoff
parameter is made readily unattainable by the
presence of a convolution kernel due to the (j)' in-
teraction term in (1.2). Only by working with the
lattice field variables may we transform these dy-
namical equations into a separable form which ex-
pedites the generation of the desired singular ex-
pansion for the power moments. Thus we use the
lattice field variables to generate the high-temper-
ature lattice expansion for the power moments;
and, it is through the power moments that a con-
sistent singular perturbation theory expansion for
the global field solution may be realized. '

II. STRONG-COUPLING EXPANSION
FOR THE MOMENTS

A. The necessity for a lattice approach

If one proceeded to generate a naive X expansion
for the P(x) solution of Eq. (1.2), "step-function"-
like solutions would appear in the zeroth-order
term. Each successive order in the expansion
would entail an appropriate order of differentia-
tion of such a step function, resulting in highly
singular expressions. The necessity for the lat-
tice as a regularizing procedure is therefore
readily appreciated.

Qne may also consider singular perturbation
theory in momentum space. In the Fourier repre-
sentation, the counterpart to a lattice approach
would be the introduction of an effective moment-
um- space cutoff.

So far there is no apparent preference for work-
ing in either one of the above two representations.

I

B. The lattice high-temperature expansions: Obtaining
the true strong-coupling series for the moments

2

(a'g) '[(t),(l +1) + (j),(l —1) —2$,(l)]+ Q, (l)

Letting a=a'g; we define

= (t),'(f) . (2.1)

(f ) g y
(m &&

-
ru (2.2)

There then results a recusion relation of the
form

As was argued in the preceding subsection, we
will work with lattice space variables, (t&,(l), and
generate an (a'g) ' expansion. Afterwards, we
construct the lattice power moments.

The continuum equation of motion (1.1) on the
lattice becomes'

2

y
((» —

(y ((& ) )
3 (2.3a)

y (a
& )y (s&2 &y (vs )

(2.3b)

The summation Z „,„,„„does not include (d&

We are interested in recovering the "kink"
solution to Eq. (1.1), (m/Mg) tanh[(m/v 2)x], an
odd solution. Accordingly, we will use a rea-
sonable zeroth-order term of the form

m/4g for l= +1, +2, . . . ,
P((') = 0 for l = 0,

—m/v'g for l= —1, —2, . . . .

It may be easily shown that all higher-order
terms are odd; consequently, the denominator in
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(2.3b) may be set at 2m'/g.
The lattice kink solution generated through

(2.3b) from the zeroth-order input value chosen
above will satisfy the following: For each 0 0
there exists an L „such that

Q,'"'=0, if ~l
~
)I„.

Accordingly, the lattice moments constructed
are done so with respect to a properly subtracted
lattice fieM solution P . We choose to subtract
as follows:

p,'(I) -=p, (I) —(m/~g) [6(I) —6(- I)],
thus, ((()), )(0)=-0:

TABLE I. Moments p(P) for the Q subtracted kink.

Pads of
lattice moments

Actual
moments

-1.64
-5.63

-61.66
-1298

-44 724

-1.64
-5.68

-59.16
-1 260

-45 360

unknowns, that is, all the N's and all but one of
the D's We .may choose D(0) = 1. The solvability
criteria are

) .("=s P («)'g.'(I)

-((+P)h& ()+P))2 g &-s&C (~)p y (2 4)

1+5"= 1+pr + &+

~'= 2 T+P»

limp' &'= (g &&)
NP +T)

D( T) cA

(2.6c)

(2.6d)

Q l&(t),(") for (@40,
2

C,(~) -=

0 for ~=0.
(2.5)

Having solved (2.2) up to some finite order W,
we must try to find some way of approximating
the continuum moment p '~', a- 0, from the availa-
ble information for )),(~) as given by (2.4). The

g ' dependence of the continuum approximant will
define the actual strong-coupling expansion for the
moments.

Because the terms of (2.2) are odd, it follows
that the even moments are identically zero. For
P = odd, (2.4) becomes )( ( &) = u '~"x polynomial
((). '). We will construct Pade approximants for
such expressions, and then take the n-0 limit,
which will define the continuum approximant. I et

1+pP =p», an integer,

It is expected that as T- ~ the evaluation of the
ratio in (2.6d) will converge to the actual con-
tinuum moment. In the examples discussed in
Sec. III, there is oscillatory convergence. In
Ref. 6, the details of solving for the N's and D's
are given.

It should be apparent from (2.1) that the N's and
D's, dependent on the C's, also depend on m'/g.
It therefore follows from (2.6d) that the con-

. tinuum approximant for )) (&), )) c(~) =g ('& x (series
in m'/g). Upon reconstructing the approximant
field solution, through the method discussed in
Sec. I, the o('s and p's given by [see (1.9)]

n„Q (-i))' c~ ko Q +0(ka.z)
pl „, 1+iPk

are seen to satisfy

~» (p) W

= Q()( "C~((d) (2.6a)
where )), c(&), o.„, and ( p„) ' involve expansions

TABLE II. Reconstructed IIt) kink.
+ 0(~ -()+))')) (2.6b)

Pads approx. Actual kink

Equation (2.6b) is the Pade approximant for
(2.6a). Things are defined so that as n-0,
Iim[u ~~ Pads (n)]- exists. The philosophy adopted
is that the lattice has given us a small p ' ex-
pansion which must be continued in some rea-
sonable way to the a '=, the continuum limit.
If (2.6b) is to be solvable, then the number of
knowns, the C (~)'s, must equal the number of

3.0
2.0
1.0
0.5
0.2
0.1

-1.0
-2.0
-3.0

0.972
0.888
0.608
0.328
0.099
0.014

-0.608
-0.888
-0.972

0.972
0.888
0.609
0.340
0.140
0.071

-0.609
-0.888
-0.972
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TABLE III. Moments p(P) for the SG subtracted kink. TABLE IV. Reconstructed SG kink.

Pade Actual Pade approx. Actual kink

1
3
5
7
9

—2.5
2 y1

—2.2
-2.2

2 Q2

-1.94
-1.99
-2.00
-2.00
-2.00

in m/vg. Fourier transforming the above Pade
expression gives

10.0
7.0
3,0
1.0
0.1
0.01

-0.01
-0.1
-1.0
-3.0

1.57
1.57
1.52
1.22
0.83
0.78
0.79
0.83
0.35
0.05

1.57
1.57
1.52
1.22
0.84
0.79
0.78
0.84
0.35
0.05

A

Pc~(&)= Z"="exp(-vg x/P „).for x&0
v P„

(similarly for x&0), where the coefficients and
the p

' quantities involve expansions in m/v g.
Thus, in the above configuration-space repre-
sentation, the actual strong-coupling expansion
parameter is m/v g. There is no g ' dependence.

A. (t) kink, numerical results

For the/'. kink, all the terms of the expansion
in (2.2) were generated up to W=70. In general,
good agreement between the actual moments and
the continuum approximamts were obtained from
W=30 and on, The approximants form an oscil-
latory converging sequence around the true value.
In Table I, the actual moment values and the Pade-
approximant moment values are compared. Be-
cause of the satisfactory nature of the data we
proceeded to use the actual moments to test the
reconstruction methods of Sec. I. It will be noted
in Table II that for small x values there is a
slight disagreement between the actual kink and
the approximate kink solutions. This is consis-
tent with our formalism, which is expected to
yield good results for the long-range behavior
of the solution, and gradually gives better results
for the short-range behavior as we increase the
order of the calculation. Table II involved the
actual moment values corresponding to p "', . . . ,
~ (31)

B. The sine-Gordon kink

The sine-Gordon equation is

—s'p + c sin(p) = 0.
Its corresponding kink solution is

Q„;„„(x)= 4 arctan[exp(x V' c)].
In the following discussion we shall let c=1.

One may apply a similar analysis to the SG kink
as was done for the P~ kink. The details are given
innef. 6. Only the numerical results are quoted
in Tables III and IV. The computational program

for the SG kink limited us to only 18 orders in the

P ' "' expansion for the lattice field configuration.
The results are satisfactory for the few orders
available. Table III gives the Pade results for
the first nine moments. Using the actual moment
values in Table IV, the reconstructed approximate
kink solution is given.

SUMMARY

In the preceding the author has endeavored to
formulate a consistent technique for solving sys-
tems of field equations in terms of singular-
perturbation-str ong -coupling expansions. Al-
though the examples discussed are simple, the
principles should still apply for more complicated
problems, including quantum field theory. Indeed,
one may consider quantum field theory as a set
of coupled differential Green's functions equations
and apply the technique to them.

The work presented here is a brief summary
of'the essentials of Ref. 6. In subsequent pu-
blications, the extension of the method to periodic
solutions in space and time (i.e. , breather modes)
will be considered.

The author has attempted to combine two tra-
ditional tools into one effective procedure for
solving strong-coupling field theory on the lattice;
The first of these is the use of Pade techniques
as applied to high-temperature lattice expansions.
This was motivated by Refs. 1 and 2. The second
of these, function-moments reconstruction me-
thods, although of concern to mathematical phy-
sicists, ' "has also been of concern to some
researchers in their work on deep-inelastic struc-
ture functions. "
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