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We study the instantaneity of the state-reduction process in relativistic quantum mechanics. The conclusion of
various authors that this instantaneity will restrict the set of relativistic observables to purely local ones (i.e., that the
measurement of any nonlocal property of a system at a well-defined time would give rise to violations of relativistic
causality) is found to be erroneous, and experiments (of a kind not encountered before in measurement theory) are
described whereby certain nonlocal properties of some simple physical systems can be measured at a well-defined
time without violating causality. The attempts of certain authors to reconcile the reduction process with the
covariance of the relativistic quantum state are considered and found wanting, and it is argued that the covariance of
relativistic quantum theories resides exclusively in the experimental probabilities, and not in the underlying
quantum states. The problem of nonlocal measurement is considered in general: distinctions (which are not to be met
with in the nonrelativistic case) arise in relativistic quantum mechanics between what can be measured for fermions
and what can be measured for bosons, between what can be measured for individual systems and what can be
measured for ensembles, and between what kinds of states can be verified by measurement and what kinds of states
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Can we make sense out of the measurement process in relativistic quantum mechanics?

can be prepared by measurement; and these pose difficult questions about the nature of measurement itself.

I. INTRODUCTION

By now it is well known that the change of state
associated with the measurement process, par-
ticularly the insitantaneity of this change, will
produce novelties and difficulties in relativistic
quantum mechanics which are not to be met with
in the nonrelativistic theory. Two of these are in
the form of paradoxes which we have begun to
reexamine in a recent paper.! They arise roughly
as follows:

(1) Suppose that a particle is initially localized?
to within some finite region of space-time A, and
that at some well-defined time ¢, a measurement
of the momentum of the particle is carried out.
Whatever value is obtained for the momentum,
the measurement will instantaneously redistribute
the probability uniformly throughout all space,
since it will certainly cause the wave function
to collapse onto some eigenfunction of the mo-
mentum (Fig. 1). Thus, if the position of the par-
ticle is measured at time ¢, +€, a nonzero prob-
ability exists that the particle may be found in a
region entirely spacelike separated from A. Ap-
parently the momentum measurement process
is capable of moving the particle around at super-
luminal velocities. Thereby a paradox arises:
on the one hand we may formally attribute a given
momentum at a well-defined time to a particle
in relativistic quantum theories; on the other hand
the possibility of actually measuring the momen-
tum at a well-defined time seems to give rise to
violations of causality.

(2) Suppose that at time ¢ =-« a free particle
has been prepared in a momentum eigenstate and
that at time ¢ =0 the same particle is found at the
origin by means of a detector which has been po-
sitioned there, and which interacts locally with
the particle. The wave function associated with
the particle will change instantaneously at ¢=0,
according to the reduction postulate, from an
eigenfunction of momentum to an eigenfunction of
position (Fig. 2). What is paradoxical in this for
the relativistic theory is that the ¢ =0 hypersurface
across which the state changes will not be an
equal-time hypersurface in any other frame. Thus
if the change of state is, say, stipulated to occur
instantaneously in some particular frame, then
it will not occur instantaneously in any other (Fig.
3). On the other hand the statement that the de-
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FIG. 1. A particle is first localized to within a region
A (solid region), and subsequently the momentum of the
particle is measured at time 7 =¢;. The shaded regions
are those in which the amplitude of the wave function
will be nonzero.
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Light cone of (0,0)

FIG. 2, A particle is prepared in a momentum eigen-
state at ¢t = —«, and is subsequently located at the ori-
gin at £ =0. As in Fig. 1, the shaded regions are those
in which the amplitude will be nonzero.

tector has located the particle and thereby meas-
ured its position is apparently an entirely covari-
ant one, so that the position measurement cannot
be said to be attached to any particular frame.
The prescription that the change of state be co-
variantly instantaneous, however, is as we have
seen a contradiction in terms.

The first of these two paradoxes was considered
half a century ago in a paper by Landau and Pei-
erls, ® wherein they concluded that the momentum
at a given time and indeed all nonlocal properties
of the wave function at a given time cannot be
observables for relativistic quantum-mechanical
systems.*® Upon a more careful examination (which
we shall undertake in the present paper), however,
this conclusion turns out to be erroneous.

One must take care, in arriving at such conclu-
sions, to have considered the most general class
of experiments which can measure these proper-
ties, and to prove that all such experiments will
give rise to violations of causality. However,
the argument of Landau and Peierls assumes not
only that the momentum measurement is carried
out at a well-defined time, but also, as will be-
come clear, that it is carried out in a particular
way. In fact it is possible to measure a variety
of nonlocal properties of the wave function at a
well-defined time without any violation of causal-
ity. We shall have occasion in the course of this
paper to construct a number of explicit examples
of such procedures, which are of a kind not en-
countered before in measurement theory.

t = O hypersurface
XI

FIG. 3. A Lorentz-transformed verion of Fig. 2.

The question of what can and what cannot be
measured at a well-defined time, which, there-
fore, needs to be re-opened, gives rise to a hoard
of difficulties and anomalies (which are peculiar
to the relativistic case); and a substantial part
of our paper will be devoted to discussions of
these.

The problem of the second paradox® is that the
reduction postulate is not, as it stands, Lorentz
covariant. Apparently we must design a new pre-
scription for the relativistic case, and to this
end it has been proposed® that the relativistic
reduction process be taken to occur not instantan-
eously but rather along the backward light cone
of the measurement event (Fig. 4). This process
is first of all manifestly covariant (since the light
cone will transform into itself under Lorentz
transformations), and indeed Hellwig and Kraus
(Ref. 6) have shown that, despite appearances,
it will yield the correct probabilities for all meas-
urements of local observables.

The probabilities for nonlocal observables, how-
ever, are another matter. If, for example, a
momentum measurement is carried out at =0 -¢,
then the measurement will with certainty confirm
that the state at 0 — ¢ is not the one depicted in
Fig. 4, but rather the same momentum eigenstate
in which the particle was prepared at t=—: the
one depicted in Fig. 2. Hellwig and Kraus will
now respond that no such momentum measurement
is possible (at {=0—¢), since Landau and Peierls
have shown that such a measurement would violate
causality; however, the conclusion of Landau and
Peierls is, as we have already remarked, incor-
rect. Attempts to design a satisfactory covariant
reduction postulate will, therefore, fail. The
second paradox, like the first, demands not to
be tampered with superficially but rather to be
carefully reconsidered from the ground up, and
this we shall also undertake to do in the present
work.

We turn now to a detailed study of these prob-
lems. The free one-particle system with which
we have been concerned above, as we shall pres-

FIG. 4. The “covariant” reduction postulate of Ref. 6,
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ently see, is not well suited to such a study, and
we shall consider instead a system of two spin-3
particles, one of which we take to be fixed (by
some potential, perhaps) at the point x,, and the
other at x,. We shall be concerned only with meas-
urements of the spin of these particles, and thus
the particular simplicity of this system is that it
has a four-dimensional relevant Hilbert space
of states, whereas the dimension of the Hilbert
space for the free particle is infinite.

The organization of our paper is as follows.
Section II will review and expand upon the work
of Ref. 1. It will begin with a description of the
two paradoxes as they arise for the system of two
fixed spin-3 particles, and then proceed to a more
detailed analysis of the first paradox. We will
describe explicitly how certain nonlocal properties
of the system can in fact be measured at a well-
defined time without any violation of causality,
and in particular we will design experimental pro-
cedures for verifying that the system is in either
of the nonlocal states: k

o), = 7o (1,100, 19, 115, M)

(which we have written in a hopefully obvious no-
tation) at a well-defined time, without violating
causality. In the latter part of Sec. II we will con-
sider the importance of these nonlocal procedures
for the discussion of the second paradox. As we
have already remarked, the possibility of carrying
out such procedures will invalidate the “covariant”
reduction postulate of Hellwig and Kraus, and in-
deed it will turn out that zo covariant succession
of states at a given time can consistently be asso-
ciated with the system, although the notion of a
state will continue to make sense within a given
Lorentz frame. In Sec. III we will begin to con-
sider the question of nonlocal measurement in a
more general way.

The experiments for verifying the states |a),,
which are described in Sec. II, are repeatable:
the experiment for |a),, say, will leave a system
in the state |a), entirely undisturbed (just as a
momentum measurement, for example, will not
disturb a system in a momentum eigenstate), and
can therefore be carried out again and will with
certainty find the same result (hereafter such ex-
periments will be referred to as nondemolition
experiments’ for |a),). |a),, then, can be verified
at a well-defined time by means of nondemolition
experiments, but in Sec. III we shall present a
proof that states of the form

|B)p=sing|4), [¥),,+cose|¥), [4),

where <p¢ﬂ, n=0,1,2,... (2)

cannot (i.e., that any nondemolition experiment
for |B), will necessarily give rise to violations
of causality).

A procedure for preparing some particular state
need not be repeatable (on the same system),
however, and indeed in Sec. IV it will be shown
that although |B>¢ cannot be verified by means
of a nondemolition experiment at a well-defined
time, it can nevertheless be prepared at a well-
defined time, without invoking the equations of
motion of the system, by means of a definite se-
quence of observations. Whether this preparation
may be considered a measurement of I,B)¢ is a
matter of taste; indeed what will emerge here
is that in the relativistic case the subject of meas-
urement embraces a variety of very different
processes, which have different causal properties,
and which perhaps are oversimplified in being
referred to collectively as “measurements”. Such
differences arise again and again; it turns out,
for example, that what can be measured at a well-
defined time for a single system differs from
what can be measured at a well-defined time for
an ensemble of systems.

In Sec. V we will describe how differences arise
between what can be measured at a well-defined
time for fermions and for bosons, and also for
ensembles of these.

II. NONLOCAL OBSERVABLES

We will begin by describing our system of two
fixed spin-3 particles in somewhat pedantic detail.
The Hilbert space of spin states for this system
is as we have already remarked four-dimensional,’
and it may be spanned, for example, by the four
state vectors

1, [12,=14),
[, 14, =1C), 3)
[9), 10, =1B),
[9):,19)x,= 1D},
where
0'?1)“>x1=+%“>x1: ng)l*xz: "'%lw:cz’ ete.,
[of=s, Uﬁx'")] = ﬁlmeijkal(zxm) . )
In this basis the states |a@), defined in (1) will take

the form

o), = (1C) B 75 (%)

The operétors o¢?, which refer to the spins of
the two particles individually, can in the usual
way be combined to form total spin operators for
the two-particle system as follows:
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=g¥®1) +g%2)
Jy=oyti+oy?, (6)

Jin J{z
i=1

and we may alternately form a basis out of eigen-
states of, say, JZand J,, viz.

|7,=0, 7*=0) =|a)_, |J,=0,J%=2)=|a),,
l[7,=1, 7*=2)=]4), |J,=-1,J°=2)=|D)

as a reader can easily confirm.

Now it is possible to conveniently restate the
two paradoxes as they arise for this system.

(1’) If the system is initially prepared in the
state |A), say, and at some well-defined time ¢,

a measurement of JZ is carried out, the measure-
ment will leave the system entirely undisturbed
(since |A) is already an eigenstate of J?); and if,
for example, a measurement of ¢%2’ is carried
out at time ¢, +€, the result will with certainty

be 0¥2)=+3. Suppose, on the other hand, that an
experimenter flips the spin of the particle at x,

at time ¢, — €, just before the J? measurement,
and thereby produces the state |B) at ¢, —¢. In
this case the J° measurement will disturb the
system (since |B) is not an eigenstate of J?); in
particular it will change the state instantaneously
into either |a). if the result is J2=0, or |a), if
J?=2 (since J,|B) =0|B)). So in the event that the
spin at x, is flipped as we have described, ‘then,
whatever the result of the measurement of J? is,
the probability of finding o%2)=+3 at time ¢, +¢
will be 3, whereas if the spin at x, is not flipped,
then as we have seen the probability of finding
o¥2=+% at t, +¢ will be 1. Thus if a measurvement
of J% is carried out at time t,, the probabilities at
x, at t,+¢€ will depend upon the spin at x, at t, —€
(where € may be arbitrarily small and [x, —x,|
arbitrarily large). The J* measurement is thus
appareni:ly capable of transferring discernible
information between x, and x, at superluminal
velocities; that is, the possibility of measuring J2
at a well-defined time apparently gives rise. to
violations of causality.

(2") Suppose that at time ¢ = - the system has
been prepared in the state |a)., and that at time
t=0 a measurement of ¢%1) is carried out by means
of an apparatus positioned at x, and which inter-
acts locally with the particle at x,, with the result
that ¢¢1’=+3. The state of the system will change
instantaneously at £ =0, according to the reduction
postulate, from |a@)_to [C). What is paradoxical
in this, as in the case of the one-particle system,
is that the ¢ =0 hypersurface will no¢ be an equal-
time hypersurface in any other frame, and so
although the local action of the apparatus is en-
tirely covariant and cannot be attached to any
particular frame, nevertheless the collapse cannot -

(7)

possibly be defined so as to be covariantly in-
stantaneous.

That the argument of the first paradox is flawed
may best be made clear by means of a counter-
example, wherein we will design a procedure which
combines several local (and so necessarily causal)
interactions between the system and a measuring

- device in such a way as to end up measuring a

nonlocal property of the system.

To begin with, consider a device which is de-
signed to measure o%1’, say, by means of a local
interaction with the particle at x, as follows: The
device interacts with the particle through a term
in the Hamiltonian of the form

Hyn =g(t)qof?, (8)

where ¢ is some internal variable associated with
the measuring device, and g(¢) is a coupling which
is nonzero only during a short interval ¢,<¢<¢,,
when the device is switched on. Then in the Heis-
enberg picture

5y = -, (9)
where I1 is the momentum canonically conjugate
to g, and so if we consider a very short interval
(t,~t,) wherein we may approximate ¢ by a con-
stant then we have

m(t<t,) ~I(¢>1,) (10)
f'zdtg(t)

131

o-g‘l):

and this is how the device is used to measure ¢¢1),
Now consider two such devices, which interact
with the system through the Hamiltonian

Hine =hy+ Ry, (11)
where
hy=g;(t)q;08%’ ' (12)

and where for the moment we will set g,(¢) =g,(¢).
Our intent here is to design some combination of
these two devices which will collectively measure
J, =081V +0%2) without measuring either ¢¥1) or
o%2) individually. This can be accomplished as
follows: Imagine that at some time ¢,<¢, [¢, is
the time at which g, (¢) begins to be nonzero] we
bring the two devices together and prepare them
in an initial state which has the properties

I, (o) +11,(2,) =0, (13a)
q:1(to) —q,(t,) =Q- (13b)

Then we separate the devices again and allow them
to interact with the particles. When the interac-
tion is over, the devices will have measured ¢%1)
+o@2), that is,
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=g&1) %5) = —'[Hl(t>t2) +H2(t>t2)]
Temogr o [f2dtg(t) (14)

where we have used (13a) to eliminate IT,(¢<¢,)
+I1,(¢<t,)]. On the other hand they will nof have
measured ¢¥1) or ¢¥1) or ¢¥1) —~¢¥2). In order to
measure, say, o¥1), we need to know II,(¢<¢,)
—1,(¢t>¢,); however II, does not commute with

4. —q,, thatis, II, is not well defined for the state
(13) in which the devices were initially prepared.
So no measurement of ¢¥1) has occurred; i.e.,

no information about ¢%1’ can be discerned from
the devices. Similarly,

[Hz,ql_qz]*or (15)
(M, -11,,4,-¢,]#0

so no measurement of ¢¥2) or 0¥1) —¢¥2 has taken
place either. We have thus succeeded in designing
a system of purely local experiments which meas-
ures a nonlocal property of the system at a well-
defined time (since ¢, — ¢, may be arbitrarily
short).
Let us now design an experiment which will

-verify at a well-defined time that the system is
in the state |@).=|J2=0). This is simple enough:

]
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|@). may be uniquely defined by the requirements’
T, =08V +0F =0,
Jy =00 +0f2 =0, (16)
Jy=051 +0§2 =0

and therefore we shall construct our measuring
devices so as to interact with the particles through
Hamiltonian

Hine =g(8)(0§Vq, +0§Vq,+051q,
+o¥2lg, +0%Pq +082q,), (17)
and the devices shall be prepared iﬁitially so that
41594 927495 437 qes
I,=-M, I,=-II;, H3=-I4 (18)
with the aid of (18), (17) may be rewritten as
Hin =g(D(0F1 +082) (g, +q.)
| + (0% +0%2) (g, +q,)
+(0fY +052) (g5 %44z (19)

and the resulting equations of motion for the ¢’s
will be

)
o7 05V +072) =g(tl(g, +q ) OFY +052) = (g5 +qa) 05V +0§2)] 3,

ot

9
o7 050 +052) =g (Dl (4, +4.) 080 +08) + (g2 +a )0V +o52)13

. ,
5 ©F1 +0¢2)=g(t)(g, +q) OV +0¥2) = (g, +q ) (0FV +0¥2)]5 .

The constant functions (16) are, by inspection,
a solution of (20); and thus the procedure we have
designed is indeed a nondemolition experiment
for |a)., whereby |a). can be verified at a well-
defined time, using only local interactions, and,
therefore, without any violation of causality.®

The argument of the first paradox will not apply
to this procedure, since it is not a measurement
of J2 in the usual sense (which hereafter will be
called an opevator-specific experiment), but rath-
er a measurement of whether or not J2=0 (which
hereafter will be called a sfate-specific experi-
ment). It is composed of three measurements of
three variables, the J;, which commute only for
the state |a).. Thus, whereas this procedure will
not disturb the state |a).=[J2=0, J,=0), it will,
for example, disturb the state |A)=[J2=2, J,=1);
this contradicts the assumption of the paradox.
Indeed it is not difficult to show explicitly that
if this procedure is carried out at time ¢,, then
the probabilities of x, at #,+€ will be independent
of the conditions at x, at ¢, — €.

We have stipulated that the local interactions
(12) at x, and x, are simultaneous [i.e., that g,(¢)
=g,(#)]; but this is certainly not a covariant state-
ment, and in general, in any other frame, it will
not be the case. Consider, therefore, the follow-
ing experiment: The system is initially prepared
in the state |a).=|J, =J,=J,=0) and subsequently
a measurement of J, is carried out according to
the prescription of Eqs. (11)~(14), but where g,(¢)
is nonzero for ¢,<t<t,+6, and g,(t) =g,(t —y),
with y> 6. We have studied a case analogous to
this one in some detail in Sec. III of Ref. 1, and
it will be sufficient for our purposes here simply
to review the main conclusions:

First, insofar as the end result of the measure -
ment is concerned, it will make no difference
whether the two interactions (12) are simultaneous
or not. That is, the measurement will with cer-
tainty record that J, =0,° and it will leave the
system undisturbed and in its original state (Ja)_)
when the process is completed, irrespective of
the timing of the two interactions. During the
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interval following the first interaction and pre-
ceding the second, on the other hand, the system
will not be in any eigenstate of J, or J,, and indeed
the full state will not be separable into a state of
the two-particle system and a state of the measur-
ing apparatus (i.e., the full state will not be any
direct product of a state of the system and a state
of the apparatus). The interaction at x, will,
therefore, disturb the system, and subsequently
the interaction at x, will undo this disturbance

and restore the original state (|a).); in the event
that these two interactions are simultaneous, as
we have seen, no disturbance will occur at all.

Thus, if within the interval between these two
interactions a measurement of J, is carried out
by means of interactions at the space-time points
c and d in Fig. 5, the result will nof necessarily
be J, =0, and the original J, measurement, having
thus been interrupted in midcourse, will no¢ neces-
sarily find J, =0, and, finally, the state |a). will
not necessarily be restored at the end of the meas-
urement. If on the other hand a measurement of J,
is carried out at the points ¢ and f in Fig. 6, this
will with certainty find J, =0, the original meas-
urement, now uninterrupted, will with certainty
find J,=0, and the state |a). will with certainty
be restored at the end of the process.

All of this leads to a curious observation about
the covariance of the state-vector. Consider a
measuring process which verifies the state |a).
without disturbing the system, which hereafter
‘will be called a nondemolition experiment for |a)..
Such a measurement can be repeated an arbitrary
number of times and at arbitrarily short intervals,
and in principle a limit can be approached in which
the state is checked at every instant by a non-
demolition experiment, without any disturbance

F8 |

._1-2..

. drs

-t ]
X, X2

FIG. 5. A measurement of J, is carried out by means
of interactions in the vicinities of (xy,#;) and (x,,#,) and
a measurement of J, is carried out by means of inter-
actions in the vicinities of ¢ and d. The two measure-
ments will disrupt one another, as explained in the
text,

of the system; which shall be called a monitoring
of the state history of this system. Now suppose
that A and B are two observers in different Lor-

_entz frames K and K’, respectively. Since the

condition g,(t)=g,(¢) in (12) cannot be satisfied

in both frames by any single process, a measure-
ment which verifies |a). without disturbing the
system as observed by A will necessarily disturb
the system, during some finite interval, as ob-
served by B. Furthermore if both A and B attempt
to monitor the state history of the two-particle
system in their own frames and in overlapping
regions of space-time, then these two monitoring
procedures will disrupt one another as in Fig. 5.
The formal covariance of the state history will
therefore be destroyed by any attempt to monitor
this history experimentally, since such a proce-
dure can only leave the system undisturbed in one
particular frame [the frame for which g,(¢) =g,(¢)],
and must necessarily disturb it in all others.

Let us apply this observation to the second para-
dox. The two observers witness the following
events: at t=-—« the two-particle system is pre-
pared in the state |@)_, and at =0 a measurement
of o%1) is carried out, with the result o%1) =+,
The paradox is that if each observer applies the
postulate of instantaneous reduction in his own
frame, then according to A the reduction will
occur along the ¢#=0 hypersurface, whereas ac-
cording to B the reduction will occur along the
t'=0 hypersurface (see Fig. 7), which certainly
is not covariant, and, apparently, is a contradic-
tion.

The proposal that the reduction be taken to occur
covariantly along the backward light cone of (x=x,,
t=0), or, indeed, that it be taken to occur along
any hypersurface other than =0, will fail, as we
have remarked already, since it cannot account

if 5

L »s |

1 ; 1
Xy X2
FIG. 6. A measurement of J, is carried out at (x, #)
and (x3, ;) and a measurement of J, is carried out at e
and f. The two measurements will not disrupt one an-

other and the original state |a)_ will be restored at the
end of the process.
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for the results of nonlocal measurements of the
kind we have described here. Thus a measurement
carried out at time ¢ =0 - ¢ will with certainty
confirm that J?=0, whereas according to the co-
variant prescription of Hellwig and Kraus the sys-
tem will zot be in an eigenstate of J? at =0 -¢,
nor indeed in any eigenstate of any observable
whatever.

So it seems that the reduction process must be
instantaneous, and this, puts us back where we
started. If each observer imposes this condition
in his own frame, then A and B will give conflict-
ing accounts of the reduction process which can-
not possibly be incorporated into any single co-
variant state history of this system. Apparently
we must either accept both of these accounts and
so relinquish the covariance of the state, or de-
cide, somehow, which of them is correct.

Suppose that the entire state history of the sys-
tem is monitored experimentally so as to deter-
mine where the reduction “really” occurs. The
trouble with this is that the state history cannot be
‘monitored covariantly, since any procedure which
monitors this history as observed by A will disturb
the history as observed by B; and if on the other
hand each observer were to monitor the history in
his own frame, these two procedures would disrupt
one another as in Fig. 5.

If A monitors the succession of states at a given
time in his own frame, this will with certainty
confirm that the reduction process occurs along
t=0, and it will alter the state history as ob-
served by B; and, conversely, if B monitors the
state history in 2/, then ¢kis will with certainty
confirm that the reduction occurs along ¢'=0,
and will alter the history as observed by A. Either
of these two conflicting accounts, therefore, can
be confirmed by experiment, and in this sense
each of them is correct; and this involves no con-
tradiction, since the two different measuring pro-
cedures whereby these two accounts can, re-
spectively, be confirmed cannot botk be carried
out on the same system.

No single covariant state history of our system
may be defined, therefore, which properly ac-
counts for the experimental results. The covari-
ance of relativistic quantum theories (about which
we shall have more to say in Appendix A) resides
exclusively in the experimental probabilities, and
not in the underlying quantum states. The states
themselves make sense only within a given frame,
or, more abstractly, along some given family
of parallel spacelike hypersurfaces; and this is
markedly in contrast to the nonrelativistic case.
Hereafter we shall continue to use the terminology
of states, since in subsequent sections we shall
be concerned mainly with questions of causality

and not of covariance, but, in light of what we
have found, this terminology must be understood
to refer only to noncovariant states within a
given frame.

III. A CAUSAL RESTRICTION

We return now to the study of what can and what
cannot be measured at a well-defined time (in
some particular frame) without violating causality;
and in the present section we shall be concerned
particularly with what can be measured, causally,
by means of nondemolition experiments (various
other kinds of measuring procedures, whose
causal properties are markedly different, will
be considered later).

In Sec. II we have described state-specific
nondemolition experiments for the nonlocal states
|@), [as they are defined in (1)], which can be
carried out, causually, at an arbitrarily well-de-
fined time. This abolishes the suspicion that
only local properties of physical systems can be
measured in relativistic quantum theories, and
therby it raises a question: Is it, then, possible
to verify every linear combination of the states
(3), by means of nondemolition experiments,
without violating causality? The answer, curi-
ously, is no. In the present section it will be
shown, in particular, that any nondemolition ex-
periment for |8), [as defined in (2)] will neces-
sarily give rise to violations of causality. We
shall assume nothing about this experiment other
than that it is capable of verifying the state [B),
without disturbing a system in that state, and that
it may be carried out at a well-defined time; and
thereby we shall take care to avoid the error of
the first paradox.

We will begin by describing the experiment in
somewhat greater detail. First of all, it is to
be capable of verifying the state |8),; that is, it
is to be capable of distinguishing between |B) ,
and any state orthogonal to |B8),. The experiment
must with certainty yield one particular result if
it is carried out on a system in the state IB)W
and it must with certainty yield some other result
if it is carried out on a system in any state ortho-
gonal to [B),.

Let us make this notion more precise. Our
experiment must, for example, distinguish

[B)y=sin¢ |C) +cos ¢ | B)
from
[B) g, =sing B —cosp|C) (21)

that is, it must necessarily involve the measure-
ment of some observable M, which distinguishes
between |B), and |B),, as follows: If a measure-
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ment of M, is carried out on a system in the state
[By, then the result will with certainty be M,

=y, where Mqy|B)¢=v|B)¢(|8)» must, clearly, be
an eigenstate of any observable measured in the
course of a nondemolition experiment for ]B)¢);
and if a measurement of M, is carried out on a
system in the state [8)¢,, then the result will
with certainty #o¢ be My=7. The experiment, to
put it another way, must necessarily involve the
measurement of some observable My (where
My|B)s=7v|B)¢) of which any eigenstate degenerate
with |8)¢ is orthogonal to |B)¢,.”° In what follows,
we will refer to such observables as observables
of the type M.

At this point it will be convenient to introduce
some further notation. We will associate the four
states (3) with the orthonormal basis vectors of
a four-dimensional space as follows:

1 0 0 0
=, B="], 10=|°|, »=|°|,
0 0 1 0
0 0 0 1
(22)
wherein |a)., [B),, and [B),, will take the form
0 0 0
laa=s T | 1B=[%0] L 1B)gu=| Y
+ 1] sin @ cos @
0 0 0
' (23)

The three-dimensional subspace of states ortho-
gonal to [B)y is spanned by |B8),,, |A), and |D),
and we will associate these three states with the
basis vectors of a three-dimensional space ¢ L,

wherein

1 0 0
Bo,=l0 ] , la={1] , ID=|0
0 @1 0 (2N 1 @i

(24)
Every observable of this system will have four
(perhaps degenerate) eigenstates; and any observ-
able 0y which is to be measured in the course of
a nondemolition experiment for |3) ¢ must neces-
sarily have for its four eigenstates |B), itself
and some three mutually orthogonal vectors in ¢ L

1 0 0
R\ u,v){ 0 ), Ryyu,v){1 ), RO, p,v)f O],
0 /0. 0/ Vo,
(25)

where R(\, u, v) represents the three-dimensional
matrix of rotations through the Eulerian angles

A, 1, and v (these, hereafter, will be called the
Eulerian angles of 0y).

Now we are in a position to consider the central
issue of the present section. Suppose that a mea-
surement of some observable of the type M, is
carried out on the two-particle system at some
well-defined time /,. If the measurement is not
to give rise to violations of causality, then

(A) the local probabilities at x, at ¢, + € must
be independent of the conditions at x, at ¢, — € and

(B) the local probabilities at x, at £, + € must
be independent of the conditions at x, at £, — €.

We will presently show that (A) and (B) can
both be satisfied (for such a measurement) only
in the event that ¢ =nn/4 (where n=0,1,2,...);
thereby (since, as we have seen, any nondemoli-
tion experiment for |B)¢ will involve the mea-
surement of an observable of the type M) we
shall have proven that any nondemolition experi-
ment for |B), (where ¢ # nn/4) will necessarily
give rise to violations of causality.

Consider the following two scenarios:

(1) The two-particle system is initially prepared
in the state |a)_, and at the well-defined
time {, a measurement of some particular ob-
servable 0,, of the type M,,; is carried out. The
probability that a measurement of 0,("2), carried
out at time £, +€, will find that o*2’=+ %, is, then:

P&2)(+ 5)=[(1 - 2 sing cosp)cos?y
+(1+2sing cosg)sin®p +n,)] 3, (26)

where 7, will depend on the Eulerian angles of
0, (the calculation of the local probabilities at
t, + €, for both scenarios, shall be considered
in detail in Appendix B; here, so as not to ob-
scure the main line of the argument, we will
simply quote the results).

(2) The system is initially prepared in the state
[@)., as above. At time £ — € an experimenter
at x, rotates the x and y components of the spin
of the particle at x, about 2 by 180°, and thereby
changes the state at ¢, — € from |a@). to |a), [this
can be done, for example, by means of a magnetic
field in the z direction in the vicinity of x, (if the
particles are charged); that is, it can be done
entirely by means of local interactions with the
particle at x,]. Finally at #,, as in the first scen-
ario, a measurement of 0¢ is carried out. In this
case the probability that o2’ =% at £, + € will be

P&2)(+3)=[(1 +2 sing cosg)cos’p
+(1 - sing cose)(sinp +n,)] 5, (27)

where (in accordance with the results of Appendix
B)
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N,=1,=1. (28)

In the event that P¥2)(+ 1) # P$#2)(+ 3), the proba-
bilities at x, at £, + € will depend on whether or not
the spin at x, is rotated at ¢, — €; and thereby the
measurement of 0, will violate (4), and give rise
to violations of causality. If the measurement
is to satisfy (A) then Pl("z)(+ +) must equal Pz("2)(+§);
that is, either ¢ must be chosen so that

sing cosp =0 (29)

or 0, (more particularly: the Eulerian angles of
0,) must be chosen so that

n=cos?p — sin’p . (30)

Now let us attend to the question of satisfying
(B). Consider another scenario, (2’), wherein
|a)- is changed to |a), at ¢, — € by rotating the
particle of x, (instead of the particle at x,), and
which in all other respects is identical to scenario
(2). The probability, in scenario (2’), that a
measurement of ‘o§’2’, carried out at ¢, + €, will
find that o{1)=+ 3 is

P&2)(+ §)= 3[(1 + 2 sing cosy)sin®p
+(1 - 2sing cos@)(cos®p +1)]. (31)
The probability that 0’ =+ % at £, + € in scenario
(1), on the other hand, is
7 P&(+ 3)=[(1 - 2 sing cose)sin’e
+(1+2sing cosp)(cos?p +n)] 5 . (32)

If the measurement of 0 is to satisfy (B), then
P&(+ $) must equal PGY(+3); that is, either
sin¢cos¥=0 or

n=sin®p - cos®y. (33)

Finally, if the measurement of 0, is to be
causal [that is, if the measurement is to satisfy
both (A) and (B)], then either sin®cos =0 or
[combining (30) and (33)]

1 =sin®p — cos®y = cos?y ~ sin®p =0. (34)

The possibility of carrying out any nondemolition
experiment for |B)e at a well-defined time, there-
fore, will necessarily give rise to violations of
causality unless

nm
v="7 n=0,1,2,...
and thereby our proof is complete.
It is not difficult to extend this analysis to arbi-

trary complex linear combinations of |B) and |C);
and it turns out that states of the form

cosg |C) + e!Psing | B) (35)

will be verifiable by means of nondemolition ex-

periments if and only if ¢ =nn/4, for all values
of 6.

IV. OTHER VARIETIES OF MEASUREMEN.T

As we have remarked already, there are pro-
cedures other than nondemolition experiments, -
with very different casual properties, whereby
a system can be measured to be in some particular
state. We shall presently show, for example, how
the two-particle system can be prepared in the
state |B8)y, in an arbitrarily short and well-de-
fined time, by means of a definite sequence of
measurements without any violation of causality
[although, as we have seen, any nondemolition
experiment for |B) ¢ (Where ¢ #nw/4) will neces-
sarily give rise to violations of causality].

Consider the following scenario.

(1) The two-particle system is initially prepared
in the state |a), (by means, say, of the state-
specific experiments described in Sec. II); an
experimental apparatus of the kind described in
Eqgs. (8)-(10) for measuring 0&?) (where t,=~t,
and fﬁf dtg(t)=1) is initially prepared in the state

sing [1=—3) +cosp|r=+3%). (36)

(2) At time £, — €, the state of the two-particle
system (|a@),) is verified by means of a nondemoli-
tion experiment, and at time ¢, ~ ¢, the experiment-
al apparatus for measuring oz(”l’ is allowed to in-
teract with the particle at x, [as described in (8)
and (9)]; whereby, as the reader can easily con-
firm, the full state of the system plus the meas-
uring apparatus becomes

—5 sing(|1=0)|B)+ [7=-1)|C))
+—\/%—cos<p(ln=0)lc>+]1r=+1)[B)). (37)

(3) Finally, at time f,+€, a measurement of 7
is carried out on the apparatus.

In the event that 7 is found to be zero at {=%,+¢,
we shall have measured'' that the state of the
two-particle system at £, + € is with certainty
|8) » (without giving rise to any violation of
causality, since all of the interactions involved
are purely local ones). Consider, however, what
sort of measurement this is; the experiment will
“succeed” (that is, 7 will be found to be zero at
t,+ €) only half the time [as is obvious from (37)]
and the procedure requires that the initial state
of the system be |a),, rather than |B),. This
experiment, therefore, will not suffice to verify
the state |B), (we have already seen indeed that
such a verification is impossible); rather, it is
an experiment whereby the state [8), can be
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prepared, on those occasions when the procedure
is successful, at a well-defined time. Thus the
causal properties of a preparation experiment for
|B) 4 are very different from those of a verifica-
tion experiment for the same state.

Such discrepancies also arise between the cau-
sal properties of verification experiments for
single systems and those of verification experi-
ments for ensembles. The reason is this: Any
state of the two-particle system will be uniquely
determined by the associated local probabilities at
x, and x, and the probabilities of the results of
state-specific experiments for |a), and |a). [the
latter are required in order to determine the
phase relations between the various local states
(3)]. The state of any ensemble of identical sys-
tems (all of which have been prepared in identi-
cal states) can, therefore, be determined at a well-
defined time by means of an ensemble of causal
experiments (whereby the required probabilities
can be measured statistically). The causal ob-
servables of this system, then, are precisely
enough to verify an arbitrary state for an en-
semble; but too few to verify an arbitrary state
for an individual pair of particles. (It is tempting
to suppose that, in this sense, the relativistic
theory is fundamentally a theory about ensembles,
and not about individual systems; but this seems
to us at best premature.)

V. BOSONS AND FERMIONS

Let us now apply some of what we have learned
to the case of free particles. Consider, for
example, a single-particle state |8). in which the
particle is in a superposition of two localized
states: one at x, and the other at x,, i.e.,

19). = 75 (%) ~ 1)), (38)

Now we define an operator ¢{*1) by

o) [x=x)=+%|x=x),
(39)
& [xtx)=~%|x#x)

and we define 01 and 0{*1) so as to satisfy the
appropriate spin commutation relations with of‘l).
If the particle is a boson, then the various o,("l)

will all be local observables, and in particular

[of ), 0F2)]=0 if x, #x,. (40)

)

The conditions (16), then, will uniquely define
|8)., and everything will now proceed exactly as
before; that is, the process described by Eqgs.
(17)-(20) will now constitute a causal nondemoli-
tion experiment for the state |6)..

By the same token, whatever we have learned

about the two-spin system will apply to the one-
boson states as well: the localized states [x,) and
|x,) and the maximally nonlocal states |3). are
verifiable by means of nondemolition experiments
at a well-defined time without any violation of
causality; the “intermediate” states of the form

|2) ,=sing |x) +cos @ |xy),
where ¢ # 2% n=0,1,2,... (41)

can, causally, be prepared, but zof verified at a
given time; arbitrary linear combinations of |x,)
and |x,) can be verified at a well-defined time,
without violating causality, for ensembles of
bosons.

The measurement of superpositions of » local-
ized boson states (and, as n— =, of momentum
eigenstates) is more complicated. Apparently,
such states are all preparable; whether any of
them are verifiable, on the other hand, remains to
be seen and shall be the subject of a future work.
[It has on occasion been suggested!? that the mo-
mentum could be measured by means of inter-
actions with the “local” momentum density (p(x))
at every point in space, where

P= fﬂ &x p(x), ) (42)

but this would constitute an operator-specific
measurement of P, and thereby, as we learn
from the first paradox, would necessarily give
rise to violations of causality. ]

Now let us consider the case of fermions. The
fermion field anticommutes with itself at space-
like separations; and therefore the operators ¢{*
and o), which are both linear in the field at x,
will not be local observables for systems of 3 -
integral spin. A measurement, say of oy("l) or
o¥1) 4 0{*2) will observably disrupt the system at
points spacelike separated from x, and x,, and will
thereby give rise to violations of causality. This
changes everything: nondemolition experiments
for |6), cannot causally be carried out for fer-
mion systems, nor can the preparation experi-
ments for |z) ¢, nor can the verification experi-
ments for ensembles.

There are, however, yet other procedures;
albeit of limited usefulness. A second fermion,
for example, can be introduced into the system,
which, together with the first, will (not with
certainty but with some finite probability, as
in the preparation experiments) constitute a single
boson whose state can then be measured by the
methods described above. We can in this way
verify that the state of the original fermion was,
say |6).; but this requires that the second fer-
mion (which is to be introduced in the course of
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the measurement) be initially prepared in the
state |6). (which cannot, so far as we know, be
accomplished at a well-defined time), and once
the measurement is complete (if it succeeds) the
original one-fermion state will have been irre-
pairably destroyed.

Yet, whatever can or cannot be achieved along
these lines, it is certain that no causal nondemoli-
tion experiment can be constructed for any non-
local fermion state; thus it is certain that what is
measurable for fermions is, oddly, very different
from what is measurable for bosons.
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APPENDIX A: THE COVARIANCE OF RELATIVISTIC
QUANTUM FIELD THEORIES

Let us consider in somewhat more detail how the
covariance of the probabilities (which is neces-
sary if the theory is to make any sense) and the
noncovariance of the state history (which we have
described in Sec. II) manage to peacefully coexist.

The local observables of any relativistic quantum
field theory are required to commute at space-
like separations, and therefore the results of
two spacelike-separated local experiments will
not depend upon the order in which these experi-
ments are carried out. Suppose, for example,
that our two-particle system is prepared at time
t =—c0 in the state |a@)., and that at # =0 a mea-
surement of o,f"l) is carried out, with the result
oz("l) =+3. Any spacelike separated measurement
of 6%*2), whether before or after t=0, will then
with certainty find that o{*2)= -1 [see Fig. 7(a)].
Alternately, a measurement of 0,5"2) carried out
at the point A in Fig. 7(b) will with certainty find
that 0*2)= — 3 whether the state reduction asso-
ciated with the measurement of x, is taken to
occur along =0, or along another spacelike
hypersurface ¢'=0; indeed the reduction may be
taken to occur along any spacelike hypersurface
which passes through (x, 0) without affecting the
results of local experiments (see Ref. 6). If,
therefore, each observer applies the postulate of
instantaneous reduction in his own frame, all will
nonetheless derive identical (i.e., covariant)
experimental predictions for local observables.

It remains, then, only to account for the co-
variance of the probabilities of nonlocal observ-
ables. Let us recall precisely how these observ-
ables are measured: The physical system is
allowed to interact with the measuring apparatus in
such a way that the various nonlocal properties of
the system become correlated to purely local

W X=X=0 P light cone of (x,,0)

AN
N yd
RN L t=0
/*\\ %
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x=x,= 0

(b)

FIG. 7. (a) The system is prepared at { = —« in the
state [a)_, and at £ =0 0%1 is measured to be + 1. Any
measurement of ag‘z) at A or B (i.e., whether before or
after ¢ =0) will with certainty find that c®2’= ~1, ()

The system is prepared at ¢t = —« in the state | @)_, and
at t =0 o1’ is measured to be + ., A measurement of
o2 at A will with certainty find that o{*2’ = — %, whether
the collapse is taken to occur along ¢ =0 or ¢’ =0,

properties of the apparatus (in the experiment
described by Egs. (11)-(14), for example, the
nonlocal observable J, of the two-particle system
becomes correlated to IT, and IT, [or, more par-
ticularly, II,-II,), which are purely local variables
of the apparatus]. The results of these experi-
ments, then, may be characterized in terms of
purely local observables of the apparatus; that is,
our nonlocal measurements on, say, the two-
particle system, consist of purely local measure-
ments on the larger system of the measuring ap-
paratus plus the two particles, and so for this
larger system we may invoke the above conclusions
about local observables.

It is a requirement of relativistic causality, then,
that although we may measure nonlocal properties
of various systems, we must always carry out
such measurements by means of local observa-
tions on the measuring apparatus; all measure-
ments must ultimately (in the sense we have just
described) be local ones.

APPENDIX B: ON THE CALCULATION
OF THE PROBABILITY FUNCTIONS
OF SEC. III
In this appendix we shall derive the various
P& of Egs. (20), (21), (25), and (26) of Sec. IIL
We will begin with a particular illustrative ex-
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ample, and afterwards proceed to the more gen-
eral case.

Suppose, then that in scenario (1) (of Sec. III)
the observable 0, has four eigenstates of the form??

0 A

cos 1 ~ si
¢ E'B)cpy ﬁ" mne E‘l>9
sing@ cos @
0 T
- -7
1 |[-sin 0| _
75 1 =lm), = In),
cos ¢ 0
-T A

where 0¢|B)e=v|[B)o, 0yln)=v|n), 04|1)=1|1),
and Oy |m)=m |m). Since 0, is to be an observable
of the type My, we require that y# ! and y #n.

Now, if, as in scenario 1, the system is initially
prepared in the state |a)., the probability that a
measurement of 0¢ will find that 04 ="y will be
| La|B)el?+ | (a|n)|?=(1-2sin@cos@)+0.
Similarly, the probability, in this scenario, that
0¢=1 plus the probability that 0= will be 1
+2sin@cos¢. If the result is 0=y (in which case
the state of the system after the measurement will

24

be |B)y, since (n|a).=0) then the probability of
finding 02’ =+ % at t, + € will be cos?yp; if the re-
sult is either 04,=1 or Oy=m, then the probability
that of*2)=+ % at ¢, + € will be sin®¢ + A% The total
probability, therefore, that of2’=+% at ¢, + € will
be

1[(1 - 2 sin ¢ cos @)cos?¢
+(1+2sin ¢ cos@)(sin?@+2?)]

and the calculation of the various other P{1)(+ %)
will proceed in a similar manner.

Now consider the more general case. Whatever
the Eulerian angles of 0 ¢ (i.e., whatever its
eigenstates), so long as it is an observable of the
type M,, the probability (in scenario 1) that O,=7y,
where 0¢[8)y=7|B)», Will be (1~-2sin®cos®),
and the probability of finding any other result will
be (1+2sin¢ cos¢). Furthermore, in the event
that Oy=7y, then the probability that 02)=+ % at
t,+ € will be cos®>®, and the probability that o1
=+ 3 will be sin?¢; in the event that 04+, the
probability that 6%2)=+ 3 will be sin?¢ +7 (where
1 depends upon the Eulerian angles of 0,), and
the probability that o1’ =+ 3 will be cos? @ +7
(where 7 will be the same as above, and the same
for all scenarios).
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a1+ g2 =0,
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