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Limitations on quantum measurements. I.Determination of the minimal amount of nonideality
and identification of the optimal measuring apparatuses
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The problem of determining the minimal deviation from the ideal scheme in a measurement, compatible with the
existence of additive conserved quantities, is reconsidered. In the case of the measurement of a spin component of a
spin-1/2 particle, we rederive in a simple and rigorous way the bound previously obtained by Yanase. The procedure
allows the derivation of definite equations characterizing an optimal measuring apparatus. A detailed discussion of
the possible malfunctioning of the apparatuses is also given.

I. INTRODUCTION

In nature there are invariance principles which
are thought to be valid for any type of phenomena:
In particular they must then govern also the inter-
action between the quantum systems and the mea-
suring apparatuses. Associated with invariance
there are conservation laws and, from the point of
view of the quantum theory. of measurement, an
important role is played by the additive conserved
quantities. In fact, as is well known, ' ' the ex-
istence of additive conserved quantities puts se-
vere limitations on the quantum measurement
processes. In particular, any quantum-mechan-
ical observable which does not commute with the
operator representing an additive conserved quan-
tity (at least when this operator is bounded, see,
e.g. , Ref. 3) can be measured only in an "approx-
imate" way. The argument leading to this conclu-
sion, in the case in which the measured operator
M constitutes by itself a complete set of commu-
ting observables, can be sketched as follows ~

I et

MIm) =mIm)

be the eigenvalue equation for M, (I m)) being a,

complete orthonormal set in the Hilbert space $C

of the measured system. The ideal measurement
scheme' assumes then the existence of a normal-
ized state IA,) in the Hilbert space X" of the ap-
paratus and of a unitary operator U of 3C"(I+,
representing the effect of the system-apparatus
interaction, such that

vI~,m& = I~.m&, (1.2)

where IA ) are the final states of the apparatus
and are assumed to be eigenstates of an observ-
able whose further detection yields the desired
information about the result of the measurement.
It is now easy to prove, by taking into account the
orthogonality of the states IA. ) corresponding to
different results of the measurement, that the ex-
istence of an additive conserved quantity

r" +I'=-I =Utr U

of the system plus apparatus contradicts Eq. (1.2),
unless M commutes with I' (and therefore with
1 ). In fact

&m
I [~,M]Im& =&m ~, I [~,M]I~.m&

=(m -m )&m ~, II" I~.m&

=(m-m )&m ~., II I~.m&

=&m -m )(&m Im&&~, Ii "I~.&
+&~. I~.&&m I~'Im»=0,

(1.4)

[I',M] =0.
If (1.5) is not true, M cannot be measured ac-
cording to the ideal scheme (1.2). We must then
resort to a more general measurement scheme.

The above remarks are relevant from a con-
ceptual point of view and show, for instance, that
one cannot have an ideal measurement process for
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the spin components of a quantum system. To re-
sort to a nonideal measurement scheme means to
introduce finite probabilities of getting a wrong or
ambiguous answer, or else of altering the state of
the system even when it is initially in an eigen-
state of the measured quantity. One is then faced
with the problem of investigating how small these
probabilities can be made.

It has been pointed out that the malfunctioning
probability can be made very small provided iA, )
contains a large amount of the conserved quanti-
ty.' ' ' In particular, Yanase' has dealt with the
problem of determining, in the case of the mea-
surement of a spin component of a spin- —,

' par-
ticle, the minimum probability for the malfunc-
tioning of the apparatus consistent with a given
mean value of the squared conserved quantity, ob-
taining the result that such a minimum probability
is inversely proportional to this mean value. The
derivation of Ref. 7, however, requires a very
cumbersome playing with the angular momentum
components of the apparatus states. Moreover,
the derivation involves a treatment of the values
of the angular momentum components as contin-
uous variables, an assumption whose implications
are not clear, since for physical reasons low an-
gular momentum states must be present in the ap-
paratus.

In this paper we reconsider this problem. In

Sec. II we discuss, making reference to the case
of a spin-~ particle, the physical meaning of the
various terms appearing in a nonideal measure-
ment scheme. The main part of the paper is Sec.
III, where, using symmetry considerations, we
rederive ihe Yanase bound in a simple and rigor-
ous way. The method allows us to obtain the equa-
tions characterizing an optimal measuring appar-
atus. This is done in Sec. IV.

II. NONIDEAL MEASUREMENT SCHEMES

Let us focus our attention on the case of the
measurement of the third component of the spin S
of a spin-~ particle. The eigenvalues and eigen-
vectors of S, satisfy the equation

S, i u& =+~ni u& . (2. I)

This can be seen most directly by noting that,
since S, +L, is conserved, one must have

Let I be the angular momentum of the measuring
apparatus. Since S, +Ly and S, +L, are conserved
and S, does not commute with S, and S„ it follows
that S3 cannot be measured according to the ideal
scheme

(2.2)

&A.u i(S, +L,)iA.u,) =&A,u
i
&'(S, +f.,)&IA,u, ) .

in, &
= iA, &+ iq, &.

In order that (2.4) be an acceptable basis for the
description of a measurement, we must assume
that the norms of iq, ) and ie,) are much smaller
than the norms of iA, ). We rewrite (2.4) by iso-
lating for each state appearing in it the compon-
ents on iA,), iA), and the orthogonal ones. We
have

(2. 6)

&iA, &u= iA, u,&+ in. u.&+ it).'u. &

+ F~Q + 6+0 + E+S

UiA, u) = IA u) + In'u) + I7)-u-)

+ 6 Q+ + 6„Q+ + & Zt+

(2. 6a)

(2. 6b)

where the upper indices plus, minus, and prime of
)rt) and le) refer to the components on iA,), iA ),
and on the manifold orthogonal to both of them,
respectively. As already stated all terms except
iA, u, ) and iA u ) in Eqs. (2. 6) are assumed to
have a small norm. Since the right-hand sides of
Eqs. (2. 6) have unit norms, the apparatus vectors
iA, ) also have unit norms up to terms of the or-
der of the squared norms of the e and q vectors.
The ideal measurement scheme, which is for-
bidden by angular momentum conservation, cor-
responds to setting equal to zero all terms at the
right-hand sides of (2. 6) except the terms con-
taining iA.) and iA ). We note that while in the
ideal scheme the state of the system, when it is
in an eigenstate of the measured quantity, is not

(2.2)
But the left-hand side of Eq. (2.3) is equal to h/2
while the right-hand side, using Eq. (2. 2), turns
out to be zero. A similar contradiction is obtained
using S, +L, in place of S, +L, .

Quite in general we can write, in place of (2. 2),

ViA, u, ) = in, u, ) + is,u, ), (2. 4)

with
i a, ) and is, ) properly defin'ed states of the

apparatus. Obviously, since at the right-hand
side of (2.4) the most general state of R~ X"
appears, Eq. (2.4) is certainly compatible with
the existence of additive conserved quantities,
However, if we want that the evolution given by
(2.4) corresponds to a reasonable description of
a measurement, we have to make specific assump-
tions on the states in, ) and ie, ) appearing in it.
To this purpose we assume that the two states
in, ) differ very little from two states iA, ) and

~A ) of the apparatus which are eigenstates belong-
ing to different eigenvalues of an apparatus ob-
servable 8, so that (A, iA,) =0. Isolating the
parts of in,', ) orthogonal to iA.,), respectively,
we can write
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modified by the measurement process; in (2. 6)
there are terms which correspond both to a final
state of the system which is the same as the initial
one, and terms in which the state of the system
is changed. With reference to this fact we say
that the measurement process is distorting when-
ever the final state of the measured system can
be different from the initial one. Thus the e terms
are associated with distortions, while the q terms
do not introduce distortions.

As we have recalled previously, the information
on the system is obtained by measuring, after
the interaction causing the time evolution de-
scribed by U, the apparatus observable 8. The
result of the measurement is "the third spin
component +h/2" whenever the apparatus is found

in the state ~A,); it is "the third spin component
-h/2" whenever the apparatus is found in the
state ~A). It is seen that, according to the
scheme (2. 6), the e and g terms which have differ-
ent upper and lower signs give rise to a nonzero
probability of getting a wrong result. Further-
more, due to the primed terms, there is a non-
zero probability that the apparatus is found in an
eigenstate of 8 different both from ~A,) and from
~A ). In this case the experimenter gets no an-
swer from the measurement. Summarizing, the
terms in (2. 6) responsible for the various possi-
bilities are

correct answer: ~A, u,), )A u), ~e,'u), ~e u),
wrong answer:

[ q,u,), [
q'u ), ) e.u ), [

e'u.),
no answer: primed e and g terms.

We note that the presence of distortion and the
possibility of a wrong, answer or of no answer are
quite independent.

The above discussion about the possible mal(unc-
tioning of the apparatus refers to the case in which
the apparatus is used only to obtain information
about the states of the system before the mea-
surement process. However, in quantum mech-
anics, there is a second use of a measuring de-
vice which is of great importance, i.e. , the ap-
paratus is very often used to prepare a definite
quantum state for the measured system. If the
measurement takes place according to the ideal
scheme, the apparatus can be used both to mea-
sure and to prepare the system. As already dis-
cussed, when we use the apparatus simply to mea-
sure the third component of the spin, the states
with different upper and lower signs and the
primed terms are related to a malfunctioning of
the apparatus with respect to the use we are making
of it. On the contrary, when the apparatus is used to
prepare a state, the terms whichare responsible for
themalfunctioningare (e,'), (c ), (q+), (r)') and

III. LOWER BOUNDS FOR THE MALFUNCTIONING
OF THE APPARATUS

This section is devoted to the rederivation of the
Yanase bounds in a simple and rigorous way. We
make use of the general measurement scheme
(2.4). The problem to be faced is to make as
small as possible the amount of distortion

e' =(e.
~
e,) + (e

~
e ), (3.1)

compatible with the conservation law for the total
angular momentum S+I . Owing to the fact that
U is an operator of R SSC, its most general ex-
pression is

3

U=p B+ C]cr]
)=1

(3.2)

where o, are the Pauli matrices and Ji, C, (i = 1,
2, 3) are operators of X". Imposing rotational in-
variance, i.e. ,

[U, S(+I)]=0, i=1,2, 3 (3.3)

we obviously obtain that B is a scalar and the C& 's

[e+), ~e'), (q+), ~q'). Infactforthefirstfourwe
would get a wrong answer for the state of the system
after the measurement, awhile the remaining four
give, as previously, no answer.

For the previously discussed reasons it is ap-
propriate to consider as related to a malfunction-
ing of the apparatus all terms in Eqs. (2. 6) ex-
cept for the two terms ~A. U.) and ~A U) corres-
ponding to the ideal functioning. We will then de-
fine as a measure of the malfunctioning the total
amourit of nonideality e~ as given by the sum of the
squared norms of all terms in Eqs. (2. 6) except
those corresponding to the ideal scheme. It is
also useful to define the total amount of distortion
e' as the sum of the squared norms of all the e

terms in Eqs. (2. 6).
In the next section we will be interested in get-

ting a bound for the total amount of nonideality.
To derive the bound we will first derive a corres-
ponding bound for the total amount of distortion.

l

Before concluding this section we want to stress
that the presence of the distorting terms in (2.4)
is essential to overcome the contradiction with the
conservation law. In fact, if all the terms e are
zero, by inserting Eq. (2.4) into Eq. (2.3) we get

8/2 =(a i n,)fi/2 . (2. 7)

There follows (n
~
n+) =1, implying Io.') =

~
o.'+),

which is absurd if the apparatus has to allow the
identification of the different initial states of the
system. A similar argument cannot be developed
for the g terms, which could be dropped without
any apparent contradiction.
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transform like the components of a vector:

[B,L, J =o,

[C„L,]=ih.g e,.„c,.

(3.4a)

(s. 4b)

(s.sb)

The unitarity condition U'U=1 gives

BtB + Q C)C( ——4, (S.6a)

B C, +C B+i Q C„,C, C,. =0,

while UU~ =1 gives similar relations where the
dagger is attached to the second operator in each
term. We note that (3.5a) implies that the oper-
ators B and C, are bounded. Inserting the expres-
sion (3.2) into Eq. (2.4) we have

ln, &
= '(B+c )IA), (S.6a)

1~ & =,'(B - c,)
I Ag, (s. 6b)

1~,& = -,'(c, + ic,) IA,&, (3.6c)

le ) = -'(C„—iC ) IA ) . (3.6d)

Using the notation ) = IAO) the parameter e' can be
written

0 = —,'((c,'c,) +(c,'c,))

We can then write

+ (h/4)(c', c,)
+ (sn/4)&c', c,& . (s. io)

h(I -Re&~-
I
&.&) ~

I &e',BL,& I
+ 1&C,'C.L.&I

+ (@/4)&c', c,)

+ (sh/4)(etc, ) (s.11)

and, using the Schwarz inequality,

h(1 —Re(cy
I
o.,&) ~ II C,) II IIBL,& II + II C&& Ii II C,L,) II

Taking the real part of Eq. (3.8) and inserting the
expressions (3.6) we find

n(I —He&~-1~.&) =&~- IL, I ~,&
+ &~. I L.

I
~-& +&~- IL, I ~,&

+&a'. I L, I
& & + (@/2)&&

I
&.&

+ (n/2)&~. 1~ &

= He(CtL, B) —Im (C2~L, Cg

+ (n/4)(c', c,&
—(n/4)(c~c, & . (s. 8)

Use of the commutation relations (3.4) gives

h(l —Re&a.
I
o.,))=He(CtBL,) —Im(CtC, L,)

= -(II C ) II + II C ) II ) . (3.7) + (n/4)(c,'c,) + (sh/4)(e', c,& .

(s. 8)

In order to find a lower bound for e' we insert
Eq. (2.4) into (2.3). We have

n/2 = (n/»&~-
I
~.& +&~

I L, I
~.&

+&~ IL, I
~.& + «/2)&~ I ~,&

(s. i2)

Since for any given set of four positive numbers
a, b, c,d it is ab + cd ~ (a' + c )' ' (b' +d')' ', we
get

ti(I —Re(o
I
n, &) ~ ((C~c,& +(Ct2c2&)'~2 ((L BtBL ) +(L,C~SC~L~&)'~ + (h/4)(etc~& + (3h/4)(CmtC2) . (s. is)

+ (sn/4)(c', c,& .

From Eq. (3.7) we also get immediately

(3.14)

(s. is)(-,')(c', c,) + (')(e'.,c,) (-,')~'.
From Eq. (2.5), using (A IA, ) =0 and the Schwarz
inequality, we get

I
Re&~

I ~,& I

.2n+~'- (s. i6)

where

(3.i7)

Therefore, keeping only the leading terms in both
sides of (3.14) it follows that

P) jz /8(Lq). (s. is)

Adding & ,Lee~, L&+(L,CtC,L,) inthesecondsquare
root and using Eqs. (3.7) and (3.5a), we find

n(I -Re&a,
I n,&) ~ e(8 &L,'&)' ' + (n/4)&c, c,&

Similarly, starting from the conservation of
S2 + L2, we would obtain

p) @ /8(L2 & . (3.18)

e —~ +q (3.2o)

this quantity too is larger than h'/8(L, ') and h'/8
&L„'&.

Of course, in the case of full rotational invariance,
the more restrictive of conditions (3.18) and (3.19)
must be satisfied. The conservation of the third
component of the angular momentum does not give
any limitation since S, +L, commutes with the
measured quantity.

It is seen from Eqs. (3.14) and (3.16) that the
presence of the g terms does not change in an es-
sential way the lower bounds for the amount of
distortion. Obviously if we define the total amount
of nonideality
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The values of (3.18) and (3.19) are equal to
those obtained by Yanase in a completely different
way in the framework of a measurement scheme
without q terms. We note that in the previous
chain of inequalities we have repeatedly increased
the right-hand sides. To keep the distortion as
small as possible, compatibl. e with the value of
(L,') or (L,'), we must require that the equality
sign holds in al.l the equations. We will discuss
this point in the next section.

IV. OPTIMAL MEASURING APPARATUS

If we further require that

C,L, iA,) =O,

C,L, iA.,) =0,
recalling Eqs. (3.15) and (3.16), we find

@=~(8(L,'))'~2

(4. 3)

(4. 4)

up to higher-order infinitesimal quantities. But
the equations (4.1) and (4.3), as they stand, are
incompatible with the unitarity relations. In fact,
f rom (3.5b), we have

B~C, + C',B+sC',C, —gCtC, =0. (4.5)

Multiplying this equation by (Aol on the left and

L, iA,) on the right and using Eqs. (4. 1) and (4.3),
we get

(c',c,) +(c',c,) =o, (4. 6)

i.e., e =0, which is absurd, as we know. How-
ever, since in any case the result (4.4) should hold

We shall now investigate which conditions have
to be satisfied in order that the lower bounds for
the amount of distortion obtained in Sec. III be
actually attained. Of course, if the two bounds
are different, only the larger one can be reached.
Let us suppose that it is the bound (3.18). It is
easily seen that a necessary and sufficient condi-
tion, in order that the equality sign holds in Eqs.
(3.11), (3.12), and (3.13), is

c, iAg =(P'/n)aL, iA,),
(4. 1)

C, iAQ) = f(P'/e)C, Lyi Ao) i

where P' is a real positive number. If Eqs. (4. 1)
are satisfied, we get in place of (3.14) the equation

h(1 —Re(n in, ))
=c(8(L,') —2(L,C~C,L,) —2(L,,C,C,L,))' ~'

+ (h/4)(c,'C,) + (3h/4)(c,'C,) . (4. 2)

in the limit in which (L, ) becomes very large, it
is seen that we can drop the condition (4.3) sub-
stituting it with the weaker condition that the vec-
tors at the left-hand sides of Eqs. (4.3) remain
finite when (L,') —~. Then the square root in Eq.
(4.2) shall behave like (8(L,'))' ', so that again
Eq. (4.4) is valid up to higher-order infinitesimal
quantities.

The parameter P' appearing in Eqs. (4. 1) can-
not have an arbitrary value. In fact, substituting
Eqs. (4. 1) into Eq. (3.7) and using Eq. (3.5a) to-
gether with the result (4.4) one gets

P =5 /4(L, ) . (4.V)
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The equation (4.4) is deduced directly from the
real part of Eq. (3.8). We note that the equation
coming from the imaginary part of Eq. (3.8) is
verified to the same degree of accuracy as Eq.
(4.4). In fact, taking the imaginary part of (3.8)
and using (4.1), one gets

0 =@1m(n
i u, ) —(8/4)((ctc, ) +(C~c )) . (4. 8)

It is easily seen that the moduli of the two terms
at the right-hand side are smaller than h(2@ +q"')
and R', respectively. Terms of the same type
have been neglected in (4.4).

Summarizing, we have proved that, to make the
total amount of nonideality e' small, one has first
to choose an apparatus for which the q terms are
not present and the mean values (L,') and (L,') are
very large. Secondly, for given values of (L,') and

(L,'), supposing that (L,')&(L,'), the minimum
amount of distortion, which now coincides with the
minimum amount of nonideality, is obtained when
the operators B and C,-, which define through Eq.
(3.2) the evolution of the system and the apparatus
interacting together, satisfy (up to higher-order
terms) the relations

C, iAO) = (h/4(L, '))BL, iA,),
c

I A.) =g(k/4(L, ))C.L, I A.)

while the norms of C,L, iA,) and C,L, iAg remain
small with respect to ((L,'))'~'. The measurement
process gives then the minimum of nonideality
compatible with the conservation of angular mo-
mentum and with the given values of (L, ) and
(L 2)
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