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A simple special-relativistic derivation of the Sagnac effect, which reconciles the earlier general-relativistic and
nonrelativistic derivations, is given. A distinction is made between the ‘“classical Sagnac effect” and the “quantum
Sagnac effect.” A new group-theoretic derivation of these effects is also given. It is pointed out that there must exist
a phase shift due to the Thomas precession in the interference of particles with intrinsic spin. The group-theoretic
treatment also elucidates the connection between relativistic and nonrelativistic physics, on a classical and quantum
level, with and without gravity. A formulation of the principle of equivalence, which is related to the Sagnac effect,
is given in relativistic and nonrelativistic physics in terms of the respective invariance groups. New experiments are
proposed to test the Sagnac effect in superfluid helium. The possible use of the general-relativistic Sagnac effect to
measure the curvature tensor and in particular to detect gravitational waves is suggested.

I. INTRODUCTION

The phase shift in the interference of two co-
herent light beams due to the rotation of the ap-
paratus was first observed by Sagnac and Michel-
son.! The same effect in the interference of neu-
tron beams due to the Earth’s rotation has been
observed by Werner, Staudenmann, and Colella?
by means of an experiment proposed by the au-
thor.®* There have been two apparently unrelated
explanations for this effect. One is general rela-
tivistic®™® and the other is nonrelativistic.?"'8
Unfortunately, the relativistic treatments have
not made sufficiently explicit, in our view, the
essential physical and geometrical meaning of
this effect, which, as we shall see, is also nec-
essary to understand the precise connection be-
tween the relativistic and nonrelativistic treat-
ments, although the nonrelativistic result can,
of course, be obtained as a limiting case of the
relativistic result.?

In Sec. II of this paper, we therefore give a
clearer derivation of this effect, which has been
called the Sagnac effect, within the framework of
special relativity, in order to bring out its essen-
tial feature. This treatment will make it clear
why this effect depends only on the frequency of
the beams with respect to the rotating appara-
tus, and is independent of the mass and hence
the momenta of the particles relative to the appa-
ratus, when the apparatus is rotating rigidly with
constant angular velocity. It will also, of course,
refute the often-made assertion that special rela-
tivity cannot treat the Sagnac effect, presumably
because the rotating frame is an accelerated

frame.® We make a distinction between the “class-

ical Sagnac effect” and the “quantum Sagnac ef-
fect.” Even though these two effects are essen~
tially the same in relativistic physics, this dis-
tinction seems to be necessary because nonrela-

24

tivistically the former effect is zero while the
latter is nonzero.

In Sec. III, we examine the group-theoretical
meaning of the relativistic and nonrelativistic
Sagnac effects. This throws light on their rela-
tionship, both on classical and quantum-mecha-
nical levels. This consideration, in our view,
provides the deepest reason for the existence
of the Sagnac effect and also yields a phase shift
due to the Thomas precession in the interference
of particles with intrinsic spin. The Sagnac effect
is generalized to arbitrary space-time groups.

It then becomes clear that the reason why the non-
relativistic quantum Sagnac effect cannot be cb-
tained geometrically, unlike in the relativistic
case, is because the symmetry group of nonrela-
tivistic quantum mechanics is different from the
automorphism group of its geometry. In the pre-
sence of a gravitational field, this treatment will
still be valid because the symmetry groups are
valid locally. This enables us to forrhulate a
principle of equivalence, in relativistic and non-
relativistic physics, at the quantum-mechanical
and classical levels, in terms of the respective
symmetry groups, which is related to the Sag-
nac effect.

The Sagnac effect for quantum fluids is discussed
in Sec. IV. Two experiments are suggested to test
this effect in superfluid helium by means of Jo-
sephson interferometers. A general-relativistic
theory of the interaction of superfluid helium with
the gravitational field is outlined. It is pointed
out that the general-relativistic Sagnac effect
can, in principle, be used to measure the curva-
ture tensor and to detect gravitational waves.

II. GEOMETRICAL TREATMENT OF THE SAGNAC
EFFECT

The rotating body has had a fascination of its
own for the physicist. It has also been a source
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FIG. 1. A circle rotating about a fixed point in a fixed
plane in the space of an inertial frame is represented by
a cylinder o in space-time, The curve M on o is the
world line of a particle on the circle. The helical curve
acdb on ¢ consists of events that are locally simultan-
eous with respect to inertial frames attached to all the
points on the rotating circle, The “time lag” At in
synchronizing clocks around the circle is the proper
time along the segment ab of the curve M. The non-
vanishing of A¢ due to rotation leads to the relativistic
Sagnac effect.

of some misunderstanding. Einstein,!° for in-
stance, has argued that the ratio of the circum-
ference to the diameter of a rotating disk, as
measured by measuring rods at rest with respect
to the disk, is greater than m because of Lorentz
contraction. Many authors have concluded from
this that these rods determine a non-Euclidean
geometry, with respect to the disk. However,
the “circumference” measured by these rods is
really the length of a helical curve in space-time
consisting of events which are locally simultaneous
with respect to the instantaneous inertial frames
attached to the periphery of the disk (Fig. 1).
Thus there is no violation of Euclidean geometry
as a result of the rotation if the gravitational
field due to the disk is neglected. Hence Ein-
stein’s argument is at best a heuristic one which
enables him to guess correctly that the gravita-
tional field, which is analogous to the inertial
fields experienced by an observer on the disk,
must modify the geometry of space-time.!!

The time difference Af between the events at
the end points of the helical curve mentioned above
can be experimentally determined in the follow-
ing way: Consider a circular toroidal tube with
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perfectly smooth internal walls, which is rotating
about its axis with constant angular velocity.
Suppose from a point M inside the tube two parti-
cles are thrown tangentially with equal and oppo-
site velocities with respect to an inertial frame
which is instantaneously at rest relative to the
tube at this event. Then, clearly, as the parti-
cles travel along the tube, at each point, they will
have the same speed v with respect to the tube.
Let 7; and 7, be, respectively, the relativistic
and nonrelativistic time difference between their
arrivals at M after going once around the tube.
Then, clearly, 7,=0 whereas 7, =2Af. We shall
call 7 the classical Sagnac effect for reasons that
will become clear below. It may be noted that, in
both cases, 7 is independent of v.

Suppose now that a beam of identical particles
of fairly well-defined momentum is split into two
at M so that the two beams have equal and oppo-
site momenta, tangential to the tube, with respect
to the tube at M. We ask now what the phase dif-
ference A¢ between the associated de Broglie
waves will be when they return to M after travel-
ing once around the tube. This A¢ will be called
the quantum Sagnac effect. Relativistically, A¢
is given by

Adp=wT o= 2wAf, (1)

where w is the common frequency of the beams
at M with respect to the tube. The Newtonian
phase shift A¢,, however, is not w7 ,=0. This
is basically because the phase of the wave function is
not ascalar in nonrelativistic quantum mechanics,
whereas it is a scalar in relativistic quantum
mechanics. To calculate Af, it is convenient

to idealize the ring by a cylindrical submanifold
o in space-time (Fig. 1).!2 Let #* be the four-
velocity field, of the particles constituting the
tube, which is tangent to o at each point. Then

CAt=ftudx“ ,
a

where the integral is over the portion ab of the
world line of the mirror M along which interfer-
ence takes place. Now since #* is normal to the
curve acdb at each point we can write cAf

=$ spacal wdx*. We prove below that ¢, is curl free
in the submanifold o so that

cAt =f;tudx“ , (2)
r

where 7 is any curve around o.

Toprove that £, is curlfree in o, we note that there is
only one independent bivector on the two-dimension-
al submanifoldo. Hence V,¢,;=A¢,R,;, where Vde-
notes gradient in the submanifold o, A is a scalar

function on o, and R has been chosen to be the normal-
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ized vector field which is tangent to the circles of
simultaneous events in o in the inertial frame with re-
spect towhich the tube is rotating. ThenV,R, = 0.
Usingalso?,t* =1, we have 2/*RVV, t ;= t*R"V ;t,
=t*V,(R"t,) -t*¢,V ,R*=0, where the first term vani-
shes because of the constant angular velocity Q of the
tube, which makes R*¢,= (1 - Q2p*/c?)/2Qp/c con-
stantino, pbeingthe radius of the tube. Hence A=0.
It follows also that ¥, #'=0. Now, (2)canbe com-
puted by conveniently choosing ¥ to be an integral
curve of R* and (1) reads

szz) -1/2 QAW

£) =, 3

-

where A =7p? is the area enclosed by the tube.

The above treatment can easily be generalized
to curved space-time and to arbitrary geometries
of the apparatus, provided there is a Killing vec-
tor field £ in the submanifold o which is paral-
lel to #* at each point on o. (In the above flat-
space-time case, the condition that the apparatus
is rigidly rotating with constant angular velocity
guarantees the existence of such a Killing field.)
Then, (§,&" /2w is constant in o*'3 and it follows
that ¥V, wt,,=0. Hence,?

Ady =%§ wtdx* ()
14

where 7 is an arbitrary curve around . Now w
can vary along o, this variation being known as
the gravitational red-shift. In the more general
case when such a Killing field need not be present,
the interference fringes will in general fluctuate.
In this case A¢y at an arbitrary point p on the
mirror on which the interference takes place is
given by Adg =sﬁ,0 k,dx*, where k* is the wave
vector® and 7, consists of the classical trajector-
ies along o (geodesics on the submanifold ¢) which
join p to points g,» of mirror M and the segment
qr of the world line of M. The eikonal equation
k, k" =m?c?/i? may, in this case, be solved in the
neighborhood of the classical trajectories, but
cannot be solved on the entire submanifold ¢ in
general,® which prevents 7, in the last equation
for A¢, from being replaced by an arbitrary
curve around o if 2 is to satisfy the eikonal equa-
tion. We also note that, in the metric used in the
integral for A¢g, there would be a contribution
due to the Lense-Thirring field'* if a rotating
body is present near the interferometer.!®

Using now the Einstein-Planck law Zw=mc?/
(1 —=v2/c?)*/2 and taking the nonrelativistic limit
(w/c~0, Qp/c~0) of (3), we obtain

mQA

A¢'N=4—_ﬁ__‘ (5)

For the experiment of Werner et al.,? the beams

interfere halfway around the apparatus and so
the result is half its value in (5).!®* Equation (5)
can also be confirmed by (i) noting that the in-
terfering beams have different momenta and
hence different wave numbers with respect to

the nonrotating inertial frame”?® and (ii) deriving
the Sagnac effect as that phase shift, which is
necessary in a rotating frame, to give the Cori-
olis field in the classical limit.}”"*® So, in the
nonrelativistic case, there is no classical Sagnac
effect, whereas there is a quantum Sagnac effect,
which is unlike the relativistic case where the
two effects are essentially the same. This appa-
rent paradox is easily resolved as will be seen
in the next section.

III. GROUP-THEORETICAL TREATMENT
OF THE SAGNAC EFFECT

Since the geometry of special relativity is de-
termined by the ten-parameter Poincaré group,
clearly the geometrical derivation given in Sec.

II for the relativistic Sagnac effect must reflect
the structure of the Poincaré group. One way to
see this connection is to consider inertial frames
F, and F,, attached to a and b, which are related
by paralled transport along the world line through
a and b (Fig. 1). Then F, can be obtained from
F, by performing alternative infinitesimal Lorentz
boost and translations along the curve acdb, as well
as rotations to compensate for the Thomas pre-
cessions that arise. The product of all these
transformations will relate F, and F, by a trans-
lation along ab, which represents the Sagnac ef-
fect. More realistically, each beam goes around
as a result of a finite number of reflections.

The frame F, should be given an appropriate
Lorentz transformation at each reflection and

a translation in the direction of the reflected beam
in between two consecutive reflections in order
to obtain the “final” frame F,. It is in the limit
when the distances between reflections become
infinitesimal and the mirrors are situated around
a circle that the transformations are around the
helical curve acdb as mentioned above.

Alternatively, it is possible to obtain the Sagnac
effect, without any reference to space-time geo-
metry, purely by observing that the two beams
can be regarded as undergoing a series of alter-
native Lorentz transformations and translations
before they are superposed. As we shall soon
see, this not only provides a general derivation
of the relativistic and nonrelativistic Sagnac
effects, but also yields a phase shift due to the
Thomas precession.’® For simplicity, consider
the case when a given beam travels around a
rectangle of sides » and s in the x~y plane of a
Cartesian coordinate system. Let i and j be
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unit vectors in the x and y directions. Suppose
that the beam travels a distance s with velocity
v,1. Its evolution in the x direction is represented

by the transformation exp(sT,), where T, generates

translation in the x direction. The beam is then
reflected by a mirror so that it has velocity v,,f
relative to the laboratory frame. Then the re-
flected beam may be regarded as related to the
incident beam by a Lorentz boost, which is
exp(—v,K, +v,K,) to second order in the quantities v,

andv,, where K, and K, generate the Lorentz boosts in

the x and y directions. It should be noted that

this transformation is not exp(v/K,)exp(-v,K,)

as one might naively obtain by transforming

back to the laboratory frame and then to the frame
of the reflected beam. This is because the latter
transformation is equivalent to a boost and a ro-

J

g exp(, K, +v,K,)exp(-rT,) exp(v.K, —v,K,

x exp(rT,) exp(-v,K, +v,K,) exp(sT,)

=14 250, [T, , K, ]+ 2rv,[T, K] - 2v,0,[K,,

Equation (6) is generally true because no as-
sumption has been made about the Lie algebra
to obtain it. Consider now the following Poincaré
Lie-algebra relations:

1
[T;,T,]=0, [TivKJ]’:—giTOGU’ )
7

1
[KUKJ] 2 1.{th ’
where T, J; generate time translation and ro-
tations, respectively. Substituting (7) into (6),

g=1_2(s'c ””/T_z—u-J L@®

Similarly, the other beam which travels around
in the opposite sense to the first beam will be
related to the original beam by the group element

g,gl_z(scv ’V’IJ:)T vacvx J )

re

Here v, T and v, T are the velocities of the oppos-
ing beams along opposite sides of the rectangle
which is rotating with angular velocity fo} along
the z axis. Hence v, —v/ =&r. Similarly, v,
-v,=Rs. On defining A =7s, the phase shift is
determined by the transformation

QAT (v,v,,+ vl vl )
c2

dJ,

&

gg=1-4- (10)
which consists of a time translation and a rota-
tion. The time translation, represented by the
second term in (10), gives a phase shift between

tation whereas, relative to the rest frame of the
neutron just before reflection, assuming the neu-
tron experiences only an impulse and no torque
from the mirror during reflection, it must under-
go a Lorentz boost without rotation. Hence it fol-
lows that in the laboratory frame, the neutvon
would undevgo a Loventz boost and a precession
during reflection. Suppose now that the neutron
beam travels a distance s in the y direction and is
reflected by a second mirror so that it has velocity
—vx"f in the laboratory frame. It is then reflected
by the mirrors in the other two corners of the rec-
tangle so that it has, respectively, velocities —vy;;
and v, 1 after these reflectlons The final beam is
then related to the original beam by a transforma-
tion g, which, to the second order in v, and v,, is

)exp(-sT,)exp(~-v,K, —v,K,)

K,]-7s[T,,T,] - (6)

f
the interfering beams, which is the same as the
Sagnac effect (3) in the present approximation.
This is because we can substitute —~iw for T

in the WKB approximation. The last term in (10)
represents the Thomas precession.

This Thomas precession term will contribute
to a phase shift between the interfering beams
whether or not the apparatus is rotating. But
it will not contribute if the particle is spinless.
The precise shift in interference fringes due to
this term can be determined from the general
method for treating the interference of particles
with arbitrary spin, given elsewhere.” This shift,
however, is very small for thermal neutrons in
the experimental arrangement considered here.
But from a conceptual point of view the present
application of the Thomas precession is clearer
and simpler than the original application to an
atomic electron,!? firstly because an electron
cannot be visualized as traveling around the nu-
cleus since its wave function is spread out over
the entire region, unlike the wave function of the
neutron beam, and secondly the neutrons are not
interacting with any external field between re-
flections, which makes the purely kinematical
nature of this effect more transparent.

Returning now to (7), we note that P =T, and
P,=q /iT ; have the interpretation of energy and
momentum operators. Also P2 -c%,,P,P,=M?*
is a Casimir operator of the Poincaré group.
The nonrelativistic limit (¢ —«) of (7) is therefore

[P;,P,]=0, [P,,K,|=Mb,,, [KK,]=0. (11)
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So if P;, K, etc. are to generate a group, then

M, which commutes with all the generators, must
also be a generator of such a group. Now, define
B, to be the nonrelativistic limit of P,—Mc?, i.e.,
P,=5M"'2; ,P,P,. Then the nonrelativistic limit
of the commutators of P, with the other genera-
tors is obtained by replacing P, by P,. Thus we
end up with an eleven parameter “quantum-me-
chanical Galilei group.”?® P, now generates time
translations and the last relation gives Schrdéding-
er’s equation. Now, substituting (11) in (6) yields

g~ 1+i2(sv,+rvy)%4- (12)

and hence we obtain, instead of (10),

4QAM
7

glg~1+4 (13)
Actually we can write g’ g = exp(i4QAM /%) to all
orders. The phase shift is then clearly 4QAwm /7,
where m is the eigenvalue of M, which is in agree-
ment with (5). There is obviously no Thomas pre-
cession in the nonrelativistic case.

To obtain the ten-parameter classical Galilei
group from the quantum-mechanical Galilei group,
we may substitute B; =i%K, in (11) and take the
classical limit (Z ~ 0):

[Pi’P1]=O, [Pi’Bj]=0y [B,-,B,]=0, (14)

where B; correspond to the classical Galileiboosts.
Clearly (14) gives g=g’=1 so that there is neither
a classical Sagnac effect nor Thomas precession
in Newtonian physics.

This treatment makes it clear why it was not
possible to obtain the nonrelativistic quantum
Sagnac effect geometrically as was done in the
relativistic case. This is essentially because,
in the nonrelativistic case, the symmetry group
of qunatum physics is different from the symmetry
group of the geometry, whereas in the relativistic
case the former is the covering group of the lat-
ter. The latter difference is responsible for the
observed phase shift in neutron interference, when
the wave function of one of the beams is rotated
by 27 radians,? but it does not affect the Sagnac
effect. We have also generalized the Sagnac ef-
fect to an arbitrary space-time group, i.e., a
group that contains the space-time translations
T, and boosts K;, with [T,,T,]=0, but the other
commutation relations for the generators being
arbitrary. The Sagnac effect, in this general
case, for the gedanken experiment considered,
is 2QA([T,,K, ]+ [T,,K,]) to the lowest order.

The above treatment of the Sagnac effect was
relative to the inertial frame F with respect to
which the apparatus was rotating. We now con-

sider the Sagnac effect from the point of view of
observers situated on the rotating apparatus.
Consider first when the apparatus is at rest and
attach at each point of the apparatus a local iner-
tial frame (a tetrad of orthonomal vectors) such
that the corresponding axes at all points are paral-
lel. LetT,, u=0, 1, 2, 3, be the generators

of space~time translations which correspond to
these axes, i.e., the action of the group generated
by each T, is along the integral curves of the
vector field whose value at each event is the cor-
responding vector of the tetrad at that event. Now
suppose that the apparatus is given an angular
velocity. This gives a new field of instantaneous
local inertial frames attached to the rotating frame
such that the inertial frame, at each point of the
apparatus which has velocity ¥ relative to F, is
related to F by a Lorentz boost with velocity V.

If T} are the generators of translations correspon-
ding to the boosted frame, then

T;=exp(v'K;)T,exp(~v'K,) =T+ t'T, (15)
and
Ti=exp'K,)T; exp(-v'K;)
i
v .
=Ti+1?(t"—vj)T! +7}'tOT0, (16)

where t* = (1 —02/c?)/2(1,0%) is the four-velocity
field of the rotating apparatus and we have used
the Poincaré Lie algebra.

Let (x’*) be the coordinate system obtained by
meshing together the local inertial frames attached
to the rotating frame, i.e., its coordinate curves
are integral curves of the four-vector fields which
constitute the field of local inertial frames. Then,
for reasons mentioned at the beginning of Sec.

II, the time coordinate of this coordinate system
must be discontinuous at some point as we go
around the axis of rotation, this discontinuity
giving the Sagnac effect. The Sagnac phase shift
is determined, when the apparatus is rotating
rigidly with constant angular velocity, by the
element of the Poincaré group

Sp= exp(_[dx"‘TL) 1)

in the sense of Ref. 22, where 7 is a curve that
goes around the submanifold o, defined in Sec.
II, as many times as the sum of the number of
times the two beams travel around o before in-
terfering. The last statement can be verified by
transforming to each successive local Lorentz
frame along v by means of an infinitesimal Lor-
entz boost, disregarding the Thomas precession,
and performing an infinitesimal translation in
the new frame. It is possible to generalize (17)
to the case when the apparatus is nonrigid and/or
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the angular velocity is not constant by choosing

v to consist of the two classical trajectories on

o from the point of interference and the line seg-
ment along the world line of the beam splitter be-
tween the points where this world line is met

by the classical trajectories.

Now (17) is independent of the wave function
and so may be regarded as being due to an ex-
ternal field, namely the Coriolis field. It was
pointed out elsewhere?? that the phase shift due
to gravity and gauge fields can be determined,
respectively, by Poincaré or gauge group elements
associated with curves around which interference
takes place. The expression (17) may therefore
appear to suggest that the effect of rotation is
analogous to a gravitational field. But this is
true only locally. This is because, unlike the
path dependent, coordinate independent Poincaré
group elements associated with gravity, (17) de-
pends on a coordinate system (x’*) which has the
discontinuity mentioned above. Unlike the case
of gravity and gauge fields, there are no one-
form fields that can be defined on space-time
which would determine the group element sj.

The situation, however, is different in the non-
relativistic limit. In this limit there is an ab-
solute time and the discontinuity of the coordinate
system (x'*) disappears. Setting P;= (#/i)T; as
before and taking the nonrelativistic limit of (15)
and (16) yields

P6=§%Pipi+v"P,. (18)
and

Pi=P,+Mv'. (19)
Then

[P, Py]=~ M@ 0! =8 0. (20)

Taking now the nonrelativistic limit of (17) and
choosing ¥ to be the curve along a constant-time
hypersurface, we obtain

sN=exp<% fdxffpg>=exp<’—21 fdxﬁv‘). (21)
Y .

So the Sagnac phase shift Ay = (m/f)$,dx" v = (m/
#)$,dx'vi. Because lengths are absolute in New-
tonian physics, it does not matter whether this
integral is computed in the stationary frame F
(unprimed coordinates) or in the rotating frame
(primed coordinates). But it follows from (19)
that in the rotating frame this phase shift can be
thought of as arising from minimally coupling a
potential »* into the wave equation. So v? is simi-
lar to the electromagnetic potential and the mass
m plays a role analogous to the charge e. Noting
that the angular velocity § = £ Vx¥ and using Stokes’s

theorem, A¢,=(2m /) [ +dS, where S is a sur-
face spanned by ¥. Thus 28 is like the magnetic
field. But unlike the electromagnetic phase shift
which is associated with the compact U(1) group
(since charge is quantized), the nonrelativistic
Sagnac phase shift is associated with a noncom-
pact one-parameter group generated by M (since
mass is not quantized). In the classical limit,
both the relativistic and nonrelativistic Sagnac
effects give the corresponding Coriolis field.!”

The above treatment can also be generalized
to nonrigid rotation. An example of this is rota-
ting superfluid helium. In such a case a comoving
inertial frame can be set up at each point of the
rotating fluid and the above treatment will apply.
If the angular velocity changes with time, then
the commutator [P, P;] will have a nonzero com-
ponent in the bivector space of 0. The tangential
acceleration of the particles of the apparatus is
like a rotation in an appropriate timelike plane
and is therefore like an electric field if the ro-
tation in a spacelike plane is regarded as ana-
logous to a magnetic field. This is similar to how
in electromagnetism a change in magnetic flux
produces an electric field around it because of
Faraday’s law.

Even inthe presence of gravity, all the considera-
tions of the present section are valid locally because
of the principle of equivalence which is valid in rela-
tivistic and nonrelativistic physics. The weak and
strong principles of equivalence can be formulated in
relativistic and nonrelativistic physics, onthe clas-
sical and quantum levels, inaunified manner, by
stating that in the fivst-ovdev infinitesimal neighbor -
hood around each point the laws of physics are invari-
ant under the Poincavé gvoup, inthe case of general
velativity, and the inhomogeneous Galilei gvoup, in
the case of Newtonian gvavity. These locally acting
groups determine a preferred set of frames called
local inertial frames in the following manner: In
the case of general relativity, the vectors con-
stituting each local inertial frame are determined
by the action of generators T, (1=0,1,2,3) of
the translation such that #**T,T, is the Casimir
operator of the Poincaré group, where 7*" is the
Minkowski metric. Clearly, since the last ex-
pression is invariant under the action of a Lor-
entz group of transformations on the translational
Lie subalgebra of the Poincaré group, this Lor-
entz group also represents the freedom of choice
of local inertial frames at an event. In nonrela-
tivistic gravity, both in the classical and quan-
tum theories, the spatial axes of the local inertial
frame are determined by the generators P; of
spatial translations which are such that 6*/P,P,
is the Casimir operator of, respectively, the
classical and quantum-mechanical Galilei groups,
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while the time axis is only restricted by the con-
dition that it is not spacelike, i.e., it is associa-
ted with some time translation generator P,.
Clearly the freedom in choosing such a set of

P, and P, is represented by the six-parameter
homogeneous Galilei subgroup which leaves the
Casimir operator invariant. The treatment of
the quantum Sagnac effect in this section, of
course, shows then that this effect is zero, in
relativistic and nonrelativistic physics, if and
only if the apparatus is nonrotating relative to
such a local inertial frame. This provides the
group-theoretic meaning of the observation that
the Sagnac effect gives a local criterion for ro-
tation in general relativity.*® This observation,
as we have just seen, can also be extended to
Newtonian gravity which, like general relativity,
can be given a curved space-time description.?
Thus, even though it is commonly stated that in
general relativity there is only a Lorentz group
of symmetry at each event, it is actually the local
validity of the ten-parameter Poincaré group that
gives the principle of equivalence, a similar
statement being valid in Newtonian gravity. This
is beautifully illustrated by the Sagnac effect,
when interpreted in the above group-theoretic
manner.

It is pointed out elsewhere?* that Newtonian
gravity can be represented by elements of the
quantum-mechanical Galilei group associated
with closed curves in space-time. Since the non-
relativistic quantum Sagnac effect can also be
represented by elements of this group associated
with closed curves, as we saw earlier, this sug-
gests that the effect of rotation and gravity can
be treated as “gauge fields” corresponding to
this group. Thus even through Einstein’s con-

ception of rotation being like a gravitational field, -

which as mentioned in Sec. II, cannot be imple-
mented in general relativity, the effects of gravity
and rotation can be treated in a unified manner

in nonrelativistic quantum mechanics.

IV. SAGNAC EFFECT IN QUANTUM FLUIDS

The relevance of the Sagnac effect to superfluid
helium has been pointed out before.” This obser-
vation was motivated by the fact that the Sagnac
effect, in the nonrelativistic limit, is similar
to the electromagnetic phase shift in quantum in-
terference so that the quantization of vortices
in helium II can be treated in a manner analogous
to the quantization of magentic flux in a super-
conductor. But the quantization of magnetic flux
may be regarded as a special case of the Joseph-
son effect.?® This can be realized by considering
a superconducting ring, with a single Josephson

junction, which encloses a magnetic flux F. Then
F need not be quantized. However, it is known
that there is then a Josephson current across
the junction given by J,sinA¢ where the phase
difference A¢ across the junction is (¢F /%), ¢
being the charge of the Cooper pair. So there
is no Josephson current, when F=mn(/q) (n is
an integer), which corresponds to equilibrium.
But stable equilibrium is when # is even?® and
this corresponds to the quantization of magnetic
flux.

This argument suggests that it may similarly
be possible to generalize the quantization of vor-
tices to a Josephson effect in superfluid helium,
due to rotation, which plays the role analogous
to a magnetic field in superconductors. Many
authors have considered the A. C. Josehpson effect
in superfluid helium due to a pressure difference, 2’
but not the Josephson effect due to the Sagnac
phase shift that we shall consider now. If a cir-
cular toroidal tube containing helium II, with
a single Josephson junction, is rotated then there
is a phase difference

ap=24 - (22)

across the junction, where m is the mass of the
helium atom, A is the area enclosed by the tube,
and § is its angular velocity. We should there-
fore expect a Josephson current I, sin(2mQA /%)
through the junction.

Another well-known Josephson interferometer
consists of two superconductors separated by two
Josephson junctions.?® In this case it is possible
to apply an electrical potential difference V be-
tween the two superconductors as well as a mag-
netic flux F in the region enclosed by them. The
Josephson current through the two Josephson
junctions is then

e

J=dJ; sinh_

Vi+ stin(§Vt+§ ) , (23)
which is an alternating current with frequency
eV /. The superfluid analog of this experiment
will consist of two canals containing helium II
filled up to different heights and connected by two
Josephson junctions. Then the analogous current
that we may expect to flow through the junctions
is

n I I

where H is the differences in the heights of the
levels of Hell in the two regions, g the acceler-
ation due to gravity and 2 the component of the
angular velocity normal to the plane of the appa-
ratus.

I=1, sinm‘gHt+I2 sin(znﬂ—t+g~n£ﬂA) , (24)
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Clearly, the above arrangement can be used to
determine the local inertial frame in a gravita-
tional field. For, if it accelerates relative to the
local inertial frame, then there will be an A.C.
current, whereas if it rotates relative to the local
inertial frame, then there will be a D.C. current
given by (24). Indeed, a local inertial frame
can be defined as one in which there is no such
current I for any orientation of this apparatus
when it is at rest in this frame.

It seems particularly important to perform the
above experiments because there does not exist yet
a satisfactory microscopic theory for superfluid
helium, unlike the case of superconductors. Thus
the fact that the Sagnac effect has been detected
in superconductors® does not by itself imply that
such an effect must necessarily exist in super-
fluid helium. At present superfluid helium is
described by an order parameter ¥ (a complex
function on space-time) which may physically
be regarded as an effective wave function of the
superfluid. ¥ is assumed to satisfy the pheno-
menological time-dependent Gross-Pitaevskii
equation®: %89/t = - (%/2m)VZ)+g |¥|%. A gen-
eral relativistic generalization of this equation is

m?c? 2m
Ov+—y= -2 | 9], (25)

where O=g""v,V, , V, is the covariant derivative,
and gV is the inverse of the usual pseudo-Rieman-
nian metric on space-time. This can be realized
be noting that in the absence of gravity and in the
limit of low energy, (25) yields the Gross-Pita-
evskii equation after the rest mass energy is sub-
tracted away, and then using the principle of equiv-
alence in the presence of gravity.

Writing = ae’®, where a and ¢ are real, and
defining v, = —(%/mc)8, ¢, the real and imaginary
parts of (25) are

gup'v=1+f(@), (26)

where
h‘z
fla)= 2ot

In the WKB approximation, f(a)< 1. For super-
fluid helium contained in a toroidal tube with a
Josephson junction, the phase difference A¢ across
the junction is given by

ap=1E $o,ax @27)
14

where v is a curve that goes around the tube, be-
ginning and ending at the junction. Using (26) and
(27), A¢ and hence the Josephson current I,sinA¢
can be obtained for arbitrary gravitational and
inertial perturbations, if v* is given at the bound-
ary. Equation (27) is like the Aharonov-Bohm

a
Ha, 28
a mce

a? and V,(a%*)=0.

-effect,3! with the mass playing a role analogous

to the charge.

Suppose that there is interaction between the
superfluid and the container such that a compo-
nent of the superfluid is dragged with the appa-
ratus, i.e., if * is the four-velocity field of
the apparatus, then for this component v* = A"
on a two-dimensional submanifold ¢ obtained by
propagating a closed curve ¥y going around the
tube along the integral curves of v*. Also, assume
that the apparatus is quasirigid so that in a Fermi-
normal coordinate system chosen around the world
line of the center of mass of the apparatus
=200 /26" to a high degree of approximation. Then
neglecting second- and higher-order terms in
Ry, =8y, =My, (M,, is the Minkowski metric) and
f(a), using (26), and choosing ¥ in (27) to be a
curve at constant time, we obtain®?

A¢=l”}%-c— f hoidx’ (28)
14

in this coordinate system.

Suppose that the apparatus is rotating with angu-
lar velocity £ and spacetime curvature is negli-
gible. Then (28) reduces to (22), which is valid
even when € is changing with time, provided d2/
dt<<c%/A. On the other hand, if the apparatus
is not given a rotation, but is subject to a gravi-
tational field, then® iy =3R,,;x'x™+0(x®), where
R, ., are the components of the curvature tensor
and x* the spatial components in the chosen Fermi-
nomal coordinate system. It follows that the Sag-
nac effect, in principle, provides an operational
procedure for determining the curvature tensor
by measuring the Sagnac phase shift with the appa-
ratus in different orientations and in different
states of motion. In particular, a Lense-Thir-
ring field such as due to the earth would give a
nonzero contribution to (28), which can, in prin-
ciple, be detected by the Josephson current. Also
for a gravitational wave, the components R ;,,
are as strong as the components R, which cause
the tidal forces. This suggests the possibility
of detecting gravitational waves by means of the
Sagnac effect (28) instead of the tidal forces due
to them. The Sagnac effect in neutron interference
also, in principle, provides a method of detecting
gravitational waves.®** Specific Josephson inter-
ferometers that could act as gravitational wave
antennas will be considered elsewhere.®
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