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The cosmological consequences of a simple scalar field model for the generation of Newton's
constant through the spontaneous breaking of scale invariance in a curved space are presented
and discussed.

Considerable interest has been dedicated recently
to the derivation of Einstein gravity as a symmetry-
breaking effect. In particular, so as to maintain re-
normalizability, the introduction of masses and
dimensional parameters in the Lagrangian density is
avoided and they are expected to arise through the
spontaneous breaking of scale invariance introduced
by scalar" or gauge fields. "

The purpose of this note is to examine the cosmo-
logical consequences of the following globally scale-
invariant Lagrangian density for a scalar field o- in a
curved space-time':

in our case, has a mass of the order of the Planck
mass (-10' GeV).

%e therefore expect that the approach suggested
by the Lagrangian density Eq. (1) will lead to cosmo-
logical predictions differing from Einstein gravity less
than the Brans-Dicke theory (because of the stabiliz-
ing potential term) but more than other approaches
involving massive scalar fields (or very deep potential
wells) and the purpose of this note is to exhibit the
results obtained.

Let us consider a Robertson-Walker universe with
line element given by

L, =——g&"Q o.l) o ——o +~a R +L~, (1)V 4

where y and A. are dimensionless positive constants,
R is the curvature scalar, and L is the matter
Lagrangian density which we assume does not con-
tain o-. In flat space the above Lagrangian density
has been shown to allow for spontaneous symmetry
breaking, ' therefore let us consider the vacuum a

condensate of scalar particles and treat the presence
of matter as a perturbation about a suitable ground-
state (vacuum) solution to Eq. (1). Such an ap-

proach has been shown to lead, in the weak-field

limit, to essentially the same equations (up to a rede-
finition of the fields) as are obtained from the
Brans-Dicke theory. In contrast to that case, howev-

er, here one has a background solution (prior
geometry) associated with a small, but nonzero, posi-
tive cosmological constant. This work further differs
from other approaches for the generation of Einstein
gravity through the use of scalar fields and spontane-
ous symmetry breaking, ' in that in the latter ap-

proach the scalar field rather than being massless, as

tts~= ttt'+g (t)— , +r'ttt)' +r' i st ytg(2)df
1 —kr

t

p = 3 (p+p)——S
S

'2 ~ 2S k p 1 o. S a- l+ = + -2——+ Xrr, (5)S S 3yg 6y p- So- 12'

( ~~g3) P P S3
dt 6y+1 (6)

where the dot denotes differentiation with respect to
the time t.

In the absence of matter (p =p =0) we have the

and matter behaving like an isentropic perfect fiuid
having energy-momentum tensor

T s=pg a+(p+p)u ua,

where p(t), p(t), and u are the energy density,
pressure, and velocity four-vector, respectively. The
Einstein equations obtained from Eq. (I) will become
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"vacuum" solution given by

&/2

yRp(7=Op= (7a)

case a power in tsolution for Sand cr is not possible.
We shall then treat the introduction of matter as a
small perturbation and write

where Rp is a constant and corresponds to a space of
constant curvature Rp/12,

4rp[I+X(t)],

S =Sp(t) +s(t),
(9a)

(9b)

S = So(t) =S (0) exp(Hot)
~ i/2

2Hp = (rp
'y

(7b)

(7c)

(7d)

Further, from the weak-field limit Newton's cou-
pling constant 6 is given by

1 26y+1 (8)

leading to a vacuum expectation value harp of the or-
der of the Planck mass for 0- and we note the above
solution corresponds to a de Sitter universe.

On examining Eqs. (4)—(6) in the presence of
matter, it is straightforward to see that because of the
potential term (X %0) in contrast to the Brans-Dicke

p =up(t)

where 0. is a positive or zero constant.
To lowest order Eqs. (4)-(6) will become

(10)

+=—3(u+1)—=—3(u+1)HS
P S

2Hp (s Hps) =
3

—2HpX+2Hp X, (12)P 2

Sp 3yOp

x+3xH =X+3XHp =
6y+1 gp2

and the solutions are

where X and s are assumed small. We further take
k =0 (zero-curvature three-space) and assume the
following equation of state:

X= 1

6y+1

3(1 +a)Hpl

(

(1 —3n) p(0) e
Qp 9Hp 0! 1 +0'

Hp' + n+1

(14a)

(14b)

(I —3n) p(0) Sp( t) —3Hpt(1+a) (4 +3n) 4 3Kpt u—Hpt

6y+I 9g H &u 3(I +a)& n+I

p(0) Sp( t) -3Hpi()+a)

187 (I +a)Hpiap3

where we have imposed the boundary conditions

x(o) =x(o) =s(o) =o .

(14c)

We immediately observe that as a consequence of the above, the gravitational constant G acquires a time
dependence given by

G ('I —3n) 2p( t) +3aHpt)

G 67 +I 3Hpuap
from which

(16)

G(t) = Gpexp —,3( I —3a) 2p( t) 1

6y+1 9Hp Qgp 1+u

+3(& +a) Hp~
+3aHpt—e +

1

P

=GpexP — P
3

for Hpt small,
I —3npot'
(67 +1)o.p3

(17)

and we immediately see that for t large (with respect
to Hp ) the gravitational constant is time indepen-
dent whereas for t small it decreases or increases with
time according to whether n & —, or )—,. The form-
er case is associated with a matter-dominated
universe (a =0) and corresponds to the present situ-

I

ation. As one goes back in time one first expects
0. = —, corresponding to a radiation-dominated
universe ( G =0) and possibly a = 1 at very high den-
sities arising from fermions (quarks) interacting via
vector-meson (gauge) fields. p p In particular, this last
case could occur for energies in the vicinity of the
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Ho '= . =0.7 &&10' sec
S(tp)
S(tp)

G ( tp) =6.7 && 10 ' cm'/g sec',

to 3 x 10"sec

we see that for o. =0

(19)

and

6 &-&0

=—10' — ~ sec '

ST+1
(20)

where in the above for Gp we have taken G(tp) since
we have

G ( rp) = Gp exp — Gp
107'

8q+1

the exponent being negligible for y small and

Go & 10 '. It is worth observing that the smaller y
is, the closer the results are to those of Einstein grav-

ity. Let us further observe that in the above ap-
proach one has a nonzero positive cosmological con-

grand unification scale (10'5—10"GeV). 'p
.

In our approach we have considered matter as giv-
ing rise to a perturbation about the vacuum, or a
ground-state solution, thus we expect all quantities
not to be too different from their unperturbed values.
Let us check the consistency of such an approach. If
we take

p ( rp) = 10 "g/cm',

stant A given by

A= —A. o.o =3HO =10 cm2 2 —56 —2

4&
(22)

and we have taken Ho to be approximately the same
as the present value since one can verify by using Eq.
(14c) that S(rp)/S(rp) and Hp agree very closely.
Similar considerations also hold for the deceleration
parameter which differs little from its initial value —1.

As one can then see, our approach, whereby the
presence of matter introduces a small perturbation on
an initial or vacuum universe of the de Sitter type,
appears to be consistent. %e further observe that
our approach does not lead to difficulties such as the
horizon problem since besides the fact that we are
never far away from a de Sitter universe, the gravita-
tional constant can actually decrease with time in an
early universe when the equation of state can be ex-
pected to be p=p.

Let us observe that all the above considerations
have been done for a zero-temperature field theory
and the inclusion of finite-temperature effects will in-
troduce a temperature dependence in 0.0 and corre-
sponding changes in other parameters such as Ho and
Go. Moreover, as we have mentioned, the relevant
equation of state is also expected to be temperature
dependent and o. will vary from 1 to 0 as the
Universe expands and cools. However, such effects
have only been calculated for flat spaces" or in
theories with local scale invariance and conformally
flat metrics. Further, as one approaches extremely
high temperatures and densities (of the order of the
Planck mass), not only will finite-temperature effects
introduce dramatic changes, but it may also be that
other curved-space vacuum solutions become more
significant. 6
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