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Magnetic-moment operator of the relativistic electron
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We consider for the Dirac electron the operator i' = (1/2jeXXR in the Heisenberg representation, and prove, by
separating the center-of-mass coordinate R„and the relative coordinate g' of the charge with respect to the center of
mass (i.e., Zitterbeivegung j, that the orbital angular momentum of the Zitterbemegung is equal to the spin with the
correct g factor 2. The odd and even parts of i' and the correct identification of the L and S operators are discussed,

One of the remarkable properties of the Dirac
e1ectron is that the magnetic moment m is not pro-
portiorial to the total angular momentum J= L+ S,
rather it is proportional to a different quantity
L+ 28. Furthermore, if one uses Foldy-Wouthuy-
sen (FW) operators, instead of the Dirac opera
tors, the expectation value of J does not change,
but that of m does, hence the question of the cor-
rect identification of orbital and spin operators
arises. We shall come back to this point.

Many physicists have also wondered about the
origin of the spin and the origin of the g factor 2.
In particular, Huang, ' following the notion of
"Zitterbeuegmng"' of Schrodinger, ' has shown, by
taking special wave packets, that spin may be con-
sidered as an orbital angular momentum of the
charge performing a Zi tterbeu egung. Another
qualitative picture has been suggested' for g & 1,
namejy that for a spinning charged spherical shell
the electromagnetic field might influence the trans-
lational inertia (hence cyclotron frequency v, ) dif-
ferently then the rotational inertia (hence the pre-
cession. frequency v~).

In previous work, ' ' we have given a detailed and
precise formulation of the notion of Zitterbeseegung
and its implication for the internal group structure
and geometry of the electron. We have also found
exact solutions of Heisenberg equations of the com-
plete dynamics of the electron including the case
of external magnetic fields. The main character-
istics of the dynamics of the relativistic electron
underlying the present problem are the following.

(i) The electron has three sets of independent
dynamical variables: position, velocity, and mo-
mentum (and not just two) This m. anifests itself
in an internal degree of freedom, namely the spin.
The same is true also, although perhaps not gen-
erally recognized, for the classical Lorentz-
Dirac equation with the radiation reaction term
proportional to x', the third derivative of the posi-
tion. '

(ii) The much discussed and disputed problem of
what is the correct position operator for the rela-
tivistic electron finds a solution by the fact that

x= a+H 'pt+ ~gH '(-=X„+ t'), (3)

where a+H 'pt is even, ~~ALII
' is odd, a is a Con-

stant operator, X„is the center-of-mass motion,
g is the "relative" motion, and

g= e""'[a(0)—H 'p],
where a(0) is the initial value of the operator
a(t).

We have also for the velocity x

x -=a = H '
p + q(= X„+$) .

Inserting (3) and (5) into (I) we obtain

rn= &8[(a+ H pt) xH p+ Mz gH xg'
+ (w~qH 'xH 'p)+(a+H 'pt)xp],

(5)

(6)

there are indeed Aeo distinct position operators,
the Dirac operator x denoting the position of the
charge, and the center-of-mass operator X„which
moves according to the laws of relativistic dy-
namics with a velocity p/H. "

Using these ideas and methods we discuss here
the magnetic-moment operator

m = —,'exxx, (I)

where x is the Dirac position'operator of the
charge in the Heisenberg representation. Because
x and p are independent, x&x is different from
x&p. We shall prove algebraically that the eben
Part of m is given by

m,„,„=2e(L~+ 2S~)H '.
We shall also give the odd part of m which is time
dependent and contributes in higher-order pro-
cesses. This result makes the notion that the spin
is the orbital angular momentum of the charge
around the center of mass more precise, and de-
rives the g factor in the Heisenberg representa-
tion, independent of wave packets or expectation
values.

The proof of Eq. (2) follows from the even and
odd parts of x and x. We know that4 (in units c
= h'=1)
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where the first line on the right-hand side is even
and the second is odd. Thus

m~= —,'eIaxpH ' —w(qxq)H ']
= 2e(Ls+2S~)H ',

where Ls and Ss are the even (and constant) parts
of L=xxp and S, where

The spin therefore arises from the product of
two odd terms which gives an even operator. Note
furthermore that although m~ is a constant opera-
tor, this is not true of the odd part m„hence m
itself is not a constant of the motion for a free
electron. The time dependence of iiK, is quite
complicated but can in principle be written down
since we know the time dependence of x and e. We
also know the time dependence of these quantities
in the presence of an external magnetic field, so
that one can examine m~ and m, in this case.
Equation (6) implies that if g(x, t) is any positive-
(or negative-) energy solution of the Dirac equa-
tion then for the magnetic-moment density M(x, f}
we have

M(x, t} = —,'x x j (x, t) =—x x g~(x, f) u. g(x, t) = pm/,
(9)

giving for the total magnetic moment

M= Mx, t d'~= *x,tm x, t d'x= m

earlier. ' Equation (10}identifies L and S with
orbital angular momentum and spin, and shows
at the same time in a forceful way that the g factor
is 2 and the spin magnetic moment for a moving
electron is

p. =eSII '.
Finally we remark that if one looks at the ex-

pectation value of the total angular momentum
alone

J= L+ S= L~+ Sz= LFw+ SFw &

then one cannot discriminate between the identifi-
cation of L (or Ls) and L„~ with orbital, and S
(or Ss) and S» with spin. However, if we also
look at the expectation value of m, then because

(P((L+2S)H '
(P}&(P((L„~+2S„w)H '(P),

we seem to come down in favor of the Dirac (or
Schrodinger) operators.

In view of the recent extreme accuracy of the
experimental determination of the g factor of the
electron, ' it would be interesting to extend the cal-
culations to the case of external magnetic field
using the results of Ref. 5 and also to take into
account the self-energy effects to encompass the
anomalous magnetic moment.

In an arbitrary external vector potential A with
H= a 77+mP, F=p —eA, one can prove from (1)
that

= 2e(g I (Ls+ 2Ss)H '
( P) = 2e(P ((L+ 2S)H '

) P) .

(10)

Here we used the fact that m, does not have any
matrix elements between positive- (or negative-)
energy states, and the last identity was shown

Hm+mH=e(xx w+ 2S),

so that in an energy eigenstate
~ p) we have

M=—(yj(xx~+2S) ~p),

which generalizes Eq. (10).

(12)
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