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Quantization of gauge-invariant theories through the Dirac-bracket formalism
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A physical system possessing first-class constraints is quantized by using the Dirac-bracket formalism. The main

features of this quantization procedure are analyzed. The model enables us to present a situation where gauge-

dependent Dirac brackets give origin to gauge-independent equations of motion,

As is known, gauge theories fall into the class
of constrained systems. ' ' The proposal of Dirac'
for quantizing such systems consists of imposing
the first-class constraints as restrictions on the
Hilbert space of state vectors while the quantum-
mechanical commutators are directly read off from
the corresponding Poisson brackets.

On the other hand, it has been recognized that
the first-class constraints together with the sub-
sidiary (gauge) conditions form a set of second-
class constraints. ' An alternative scheme for
quantizing a gauge theory emerges from this ob-
servation. In fact, one can quantize the theory by
abstracting the quantum-mechanical commutators
from the corresponding Dirac brackets while con-
straints and subsidiary conditions translate into
strong operator identities. We shall refer to this
quantization procedure as to the Dirac-bracket
quantization procedure (DBQP).

Since the DBQP is not a widespread technique
among physicists we attempt to illustrate in this
paper its use and consequences. 4 This investiga-
tion will be carried out at the level of the operator
approach and in connection with a simple, but suf-
ficiently illuminating, nonrelativistic gauge-invar-
iant model put forward by Christ and Lee for
another purpose. '

Through this simple model we shall also .learn
about an interesting, and we believe new, situation
which can arise when a gauge-invariant theory is
quantized by using the DBQP. Indeed, what one
expects from general considerations is a set of
equations of motion and of Dirac brackets depend-
ing on the choice of gauge. ' However, in the
present case only the Dirac brackets turn out to
be gauge-dependent entities.

The classical dynamics of the model is de-
scribed by the Lagrangian

L = —,
' (x,'+x, ') —(x,x, —x~,)x,

+,' x,'(x, '+x, ') —V(x,'+x,'), (1)
where x„x„and x, are Cartesian coordinates and
the overdot indicates differentiation with respect
to time.

From the analysis of the matrix [[ O'L/Bx„&x~[(,

k,j=1,2, 3, one concludes that (1) is a singular
system. " It possesses a primary constraint

0'(x, p) = ps= 0,-
and a seconda, ry constraint

(2a)

g' and g' are first-class constraints. Further-
more, the total. Hamiltonian of the system is
found to read

Hr H~+ g,g'+ $,——g',

where

H„= —,
' p, '+ —,

' p, '+ V(x, '+x,'),

(3)

(4)

and M is a subspace of phase space in which all
constraints hold." The ('s are the so-far-un-
determined Lagrange multipl. iers.

To solve for the g's, and therefore for the class-
ical dynamics, one must specify a number of sub-
sidiary (gauge) conditions equal to the number of
first-class constraints. "' We choose

x2g'( px)=b —carctan —'= 0, (6a)

y'(x, p) -=x, =0,
where b and c are nonzero constants. As re-
quired '

detg QJf = c' &0,

(6b)

where ([Q() is a matrix whose elements are given
by

Q"=[g', P'], a, b =1,2, 3,4. (s)

y'(x, p) =xp, -x,p, = 0. (2b)

Here P»=—SL/Sx, denotes the momentum canonically
conjugate to x~. The sign of weak equality is being
used in the sense of Dirac. ' One can convince one-
self that there are no further constraints. This is
essentially due to the particular functional de-
pendence assumed for the potential V=V(x, '+x, ').

Since the Poisson brackets
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~.=-g ft.,[~',ff„]I.*=0, (9)

Clearly, det[[Q)[ is the square of the Faddeev-Pop-
ov determinant 2 One should notice that Eq. (6a)
defines different gauges for different values of the
constants b and c. Indeed, Eqs. (6) define a set of
gauges.

To complete the classical description of the sys-
tem one must find the equations governing the time
evolution of f, x, and p. By demanding persistence
in time of constraints and gauge conditions one
obtains

particle trajectory must be a straight line passing
through the origin of coordinates. The gauge con-
dition (6a) just specifies the slope of the trajec-
tory. Since the potential V only depends upon the
absolute distance (xl2+2;22) one cannot detect any
change in the slope of the trajectory by looking at
the structure of the equations of motion.

We shall turn next to the problem of quantizing the
system. According to the DBQP one is to ab-
stract the quantum-mechanical commutators from
the corresponding Dirac brackets, with the con-
straints and subsidiary conditions being under-
stood as strong equations. Then, in view of Eqs.
(2), (5), (6), (12), (13), and (14), we take (5=1)

where PR[[ is the inverse of ([Q[( and I'* is the
submanifold of M (I'*cM) in which all constraints
and subsidiary conditions hold.

The result (9) is, as we show next, at the root
of the above-mentioned peculiar situation.

At the classical level Eq. (9) tell us that the
Dirac brackets' "of any function f of x and p with

H~ reduces in I"* to its corresponding Poisson
brackets, i.e.,

4

[f «, 1 l '=llf « I- 2 lf O'I«. ,~4' «, I

as the Hamiltonian operator, and
A A A A A

0 -=2'IP2 —&2PI =o,

q —=x2 —ex~ =0

as strong operator equations. Furthermore,

[x„,~,]=[p„,p, ]=O, ~, s=1,2,
1 e

[+ItPll 2
1 P y [+IyP2]

(16)

(17)

(18)

=[f,a„] (lo)

2

[+2 tPI] I 1+ e2 s [+2 tP2] —2

(11a)

ev
N]DB (11b)

Then, within the set of gauges defined by Eqs. (6),
the equations of motion.,=[ „~.l..I,*=p„

From (16) and (18) it follows that $t = $. Obvious-
ly, i' =i-

It is now a simple exercise to verify that the
Heisenberg equations of motion

~„=i[if,x„], r=1,2,

r=1,2, turn out to be gauge independent. On the
other hand, the Dirac brackets

1 e
l&pl]DB ll'*

I + e2 s [+Isp2] DB lI' 1+s2

$,=2[&,P",],
together with Eqs. (16)-(18), lead one to

x„=P„, x =1)2,

1 2

(19)

(20a)

(2ob)
e e

[~2 pl]DBlr*=1+,2»~2, p2]DBlr*=„~

where

b
e =tan-

C

do depend upon the gauge. One also verifies that

[x„,2;, ]DB lr*=[p„,p, ]DB lr*=o, r, s=1,2.
(14)

From a physical point of view these results can
be easily interpreted. All one is doing is de-
scribing the two-dimensional motion (x, =0) of a
unit mass particle which is constrained to move
with zero angular momentum. Therefore, the X* =-[+ (1+e')If2] X, , (21)

This last set of equations is formally identical to
(11).

The consistency of the DBQP can be easily
checked by recalling that if one succeeds in finding
a formulation of the dynamics in terms of inde-
pendent (unconstrained) variables, such variables
must obey the standard canonical commutation
relation. ' In the present case it is very easy to
formulate the dynamics in terms of independent
variables because as a result of the constraints
and gauge conditions one is left with a one-dim-
ensional system. After defining the Cartesian
coordinate'
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and its corresponding momentum

it follows from (18) that, as required,

X+, + =i .

(22)

(22)

Furthermore, in terms of x~ and/* the Hamilton-
ian operator reduces to

p+2 y fT(/+2) (24)

as is also required. ' x* and p* are phase-space
coordinates spanning I'*.

We believe that our purpose of carrying out a
clear and complete application of the DBQP has

been achieved. As a by-product of our work we
have found that there exists a situation, which was
not previously contemplated in the literature, ' "
in which a continuous gauge symmetry gives origin
to a continuous infinite set of commutation rules
but produces no effect whatsoever on the equations
of motion. This effect is not to be confused with
the real ambiguities arising in the canonical Ham-
iltonian quantization procedure. '
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