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Monte Carlo simulations of lattice models with finite subgroups of SU(3j as gauge groups
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A Monte Carlo study of four-dimensional gauge theory on five crystal-like subgroups of SU(3) is carried out using
the Wilson action. All these models are found to have a first-order freezing (order-disorder) phase transition due to
the discrete nature of the groups. This transition occurs before the continuum, scaling limit is approached. Hence, it
is not possible to use any of these groups to approximate the continuum limit of the SU(3) gauge theory with the
Wilson action.

Lattice gauge theories provide a very convenient
regularization of the corresponding continuum
theories and are also interesting in their own

right. On a lattice the gauge group does not have
to be continuous, but may just as well be finite.

Monte Carlo simulations of systems having the
Z„ finite subgroups of U(1) as gauge groups' '.as
well as models with finite non-Abelian subgroups
of SU(2) as gauge groups' ' have been studied in
the literature. In either case, the dynamics of
the system with continuous gauge groups was well
approximated with a finite group for all physically
interesting values of the coupling constant. The
advantages of using the finite groups in a Monte,
Carlo computation are then quite relevant. With
finite groups it is possible to multiply group ele-
ments by a composition table rather than by arith-
metic operations, pack more than one lattice vari-
able in a single computer word, and process sev-
eral variables simultaneously. This allows a
considerable reduction in computer time, permit-
ting simulations on larger lattices with good stat-
istics.

SU(3) is the relevant gauge group for the strong
interactions. However, direct SU(3) computer
simulations are rather slow because of the ex-
cessive algebra needed for the group multiplica-
tion. The possibility of improving the speed of
computations by using finite subgroups of SU(3) as
gauge groups is therefore quite intriguing.

For this reason we have performed a Monte
Carlo investigation of the properties of a variety
of models, having finite subgroups of SU(3) as
gauge groups. We recall from studies 6 of the
subgroups of U(1) and SU(2} that systems with a
finite gauge group undergo a transition to an or-
dered, broken-symmetry phase at some critical
value P, of the parameter which controls the
strength of the self-interaction. For values of P
smaller than P, the finite-group model generally

simulates the corresponding continuous-group
system quite well. The relevant question is
whether the domain of interesting physical effects
corresponds to P lower than P, or not. For the
SU(2) gauge theory the relevant dynamical effects
occur near P = 2 (Ref. 10) and the 120-element
icosahedral subgroup with P, -6 (Refs. 5 and 6)
can represent the physics of SU(2) rather well.

In the SU(3) gauge theory the transition to the
scaling behavior and other physically interesting
effects occur at P = 6 (with the normalization we
shall use}."'" However, our analysis shows that
the model with the largest finite subgroup of SU(3)
exhibits a transition at P, =3.6.

Hence, the continuum limit of the SU(3) theory
cannot be approximated with any of these groups,
at least with the Wilson action.

We now describe our analysis in detail.
The finite, non-Abelian subgroups of SU(3) are

of two kinds. ' '" There are crystal-like groups,
which can be considered a generalization to SU(3)
of the polyhedral subgroups of the rotation groups,
and there are the analogs of the dihedral groups. "
We have studied systems having crystal-like
groups of 60, 108, 216, 648, and 1080 elements as
gauge groups. The last four groups contain the
center of SU(3); the 60-element subgroup is ex-
pressed in terms of real matrices and does not
contain Z, . We shall denote these groups by S(60),
S(108), S(216), S(648), andS(1080). The correspond-
ing notation in Ref. 13 is Z(60), Z(36$), Z(72$),
Z (216'), and Z(360$), where P equals 3 or 1 de-
pending on whether or not the center of SU(3) is
contained in the group.

The gauge theory is formulated in the manner of
Wilson. " The link variables U,.~ are 3&3 matrices
and the action is

S =P Q [1--', tr(Uo +Uo)],
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where U~ represents the oriented product of the
four U, ,- on the boundary of an elementary square
(plaquette). By Monte Carlo simulations we have
measured

Z (P }=(1 —)8 tr (Uo + U )) .
We use a generalized "Metropolis" algorithm"

to equilibrate the lattice. Thermal (hysteresis}
cycles and iterations starting from mixed config-
urations (half-ordered, half-disordered) are used
to pinpoint the critical value of P.' ' We also use
multiple storage, masking operations, and parallel
processing of variables to speed up the computa-
tions. '

When the group is too large, it is not practical to
store a multiplication table in the memory of the
computer. We have implemented the group opera-
tion for S(648) and S(1080) in the following way:
First, all group elements are written as products
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FIG. 2. Thermal cycle for the S(648) model. on a 43& 8

lattice.

where A. belongs to an Abelian subgroup of the
group and the 8's are fixed representatives of the
cofactor sets. Then, the result of a group multi-
plication is reconstructed in terms of three tables
of lower size, which encode the following mapp-
ings:

(A, B}-(A', B'), with A'B'= BA,

(B,B')-(A, B"), with BB'=AB",

(A, A')-(A"), with A"=AA'.

(4)

(6)

(6)

A generic product ABA. 'B' can then be reexpres-
sed in the form A "B"by the sequence of opera-
tions

A(BA /)B/ AA //(B//B/) (AA //A ///)B/// A ////B///

which are all. defined by the mappings of
Eqs. (4)-(6).

Our results are illustrated in Figs. 1-4 and sum-
marized in Tables I and H. Figures 1-3 reproduce
the values found for E(p) in the simulation of ther-
mal cycles for the groups S(60), S(648), and
S(1080). All the cycles display wide hysteresis
loops, which signal a phase transition. The solid
lines represent strong-coupling expansions appro-
priate for the group under consideration, whereas
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FIG. 1. Thermal cycle for the S(60) model on a 43x 8
lattice.

FIG. 3. Thermal cycle for the S(1080) model on a 44

lattice.
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I I I I I I I I I I TABLE II. O(P ) strong-coupling expansion for E(P)
for the groups studied and for SU(3).
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FIG. 4. Mixed phase runs for S (648) and S (1080).

"SABLE I. Some parameters of the various groups
studied.

Subgroup

R(60)-

S(108)

S(216)

S(648)

= 0.4607
6

1 g -2m
1 — cos + cos

3 9 9

12 6 2.7 + 0.2

18 9 2.5 + 0.2
54 20 3.2 + 0.1

—0.4314

S(1080) - —0.4607
6

24 12 3.43 + 0.02

72 20 3.58+ 0.02

the broken line gives the analogous expansion for
the SU(3) system. In Fig. 1 the disagreement be-
tween the two expansions even to order P is due
to the real nature of the group. In Fig. 3 only the
results of the strong-coupling expansion for the
S(1080) model are shown, because this curve is

indistinguishable from the one for the SU(3) sys-
tem within the range of the plot.

In Fig. 4 we illustrate the results of mixed
phase runs for the S(648) and S(1080) systems.
Mixed phase runs of this type were performed for
all the models considered, to determine the nature
and location of the phase transition.

In Table I we present some relevant information
about the subgroups of SU(3) as well as the values
we find for P, . The phase transitions appear to
be of the first order for all the models, with the
possible exception of the S(60) model, where the
results of the mixed phase runs give only a mar-
ginal indication of a discontinuous change in E(P).
The second column in Table I gives the value E;.
of 1-& tr(Uo +U&) for the neighbors of the identity.
N is the number of these neighbors, n the number
of upgrades done for each U,.&

variable before pro-
ceeding to the next link in a Monte Carlo iteration,
and P, is the critical coupling.

In Table II, we reproduce the strong-coupling
expansions for E(P) to order P' for the models
with finite gauge groups and the SU(3) system.

From our results it is clear that even the model
with the largest subgroup of SU(3) is not adequate
to simulate the SU(3) system in the interesting
physical region.

The reason why P, remains relatively small al-
though the highest subgroups of SU(3) have a very
large number of elements can be traced to the fact
that the action gap, i.e., the value of 1 —6~ Tr(U~
+ Uo) for the neighbors of the identity, never be-
comes sufficiently small. This parameter sets the
scale for the critical temperature T, =1/P, where
the transition occurs. Although entropy effects
due to the large number of neighbors of the identity
tend to reduce T„none of the subgroups have a
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small enough action gap to make P, exceed the
value P = 6, where the strong coupling-weak coup-
ling crossover takes place.

Recently it has been found in the SU(2) case that
the position of this crossover depends markedly on

the specific form of the action. ' If a different
choice of action for the SU(3) model could lower
the crossover value of P then systems with finite
subgroups of SU(3) as gauge groups might be use-
ful for physically relevant computations.

*On. leave from Brookhaven National Laboratory, Upton,
N.Y. 11973.
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