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In this paper we give an algorithm to compute the asymptotic behavior of the on-shell quark form factor in the

limit of large momentum transfer (Sudakov form factor) in Abelian and non-Abelian gauge theories. We ignore

terms which are suppressed by a power of momentum transfer, but keep all nonleading logarithms of the momentum

transfer and all powers of the coupling constant.

I. INTRODUCTION

In this paper we shall give a systematic proce-
dure for computing the asymptotic behavior of the
on-shell quark electromagnetic form factor in
non-Abelian gauge theories. In our calculation we
sum up all the terms in perturbation series of
order (g')"[ln(q'/m')]" (v (2n) but ignore terms of
order m/(q')' ', where q', m, and g are the four-
momentum squared of the external photon, mass
of the quark, and the coupling constant, respec-
tively. Calculation of asymptotic form factors in

gauge theories began with the pioneering work of
Sudakov' who calculated the asymptotic fermion
form factor in QED by summing up the leading-
logarithmic terms. Since such form factors are
infrared divergent, Sudakov regulated the diver-
gence by keeping the external particles off shell
by a fixed amount. In his calculation Sudakov
found that the form factor exponentiates in a form
exp[- (g'/8m') ln(

I

q'
I
/m. ') 'n(

I

q'
I
/m~')] m. ' and

m, ' being the invariant mass squared of the exter-
nal fermions. Jackiw' and Fishbane and Sullivan'
repeated his calculation but this time regulating
the infrared divergence by giving the photon a
small mass m,„, the external fermions being
put on shell. They calculated the amplitude in
leading-logarithmic approximation and found that
the form factor exponentiates- in the form

The functional forms given above are rapidly
decaying functions of q' in the limit Iq'I -~ and
hence one may expect that the nonleading log-
arithms or even the terms which are suppressed
by a power of Iq'

I
may add up to give a contribu-

tion which completely upsets the leading-loga-
rithmic result. Progress has been made in order
to sum up such terms. It has been shown by Muel-
ler' and by Collins' that in @ED the nonleading
logarithms also sum up to give a decreasing ex-
ponential and hence do not upset the leading-loga-
rithmic result. In their analysis they have in-

eluded all terms of order (g')"[ln(q'/m')]" but ig-
nored terms which are suppressed by a power of
Iq'I order by order in perturbation theory.

Attempts have also been made to calculate the
electromagnetic form factor of quarks in non-
Abelian gauge theories. It was shown by Cornwall.
and Tiktopoulos' that both the Sudakov as well as
the on-shell quark form factors exponentiate up to
three-loop order in the l.eading-logarithmic ap-
proximation. This has been verified up to all
orders in leading-logarithmic approximation by
Dalman and Steiner' and by Belokurov and Ussyu-
kina. ' Attempts have been made to extend this
proof for nonleading logarithms as well' without
complete success.

In this paper we shall give an algorithm to com-
pute the on-shell singlet quark form factor in non-
Abelian gauge theories which includes leading as
well as nonleading logarithms using a somewhat
similar approach as Ref. 5. - It is found that the
nonleading logarithms also add up to give a de-
creasing exponential and hence do not upset the
leading-logarithmic result. In order to control
the infrared divergence we may either give the
gluons a small mass m and consistently ignore
all terms of order m that appear in perturbation
theory calculation (in order to maintain gauge in-
variance) or we may use the technique of dimen-
sional regularization to control the infrared diver-
gences of the theory. In whatever way the infra-

, red divergences are regulated, we cal) the infra-
red regulator v'. The v'- 0 limit corresponds to
the infrared-divergent point. The external quarks
are put on shell. Thus the limit we are consider-
ing is identical to the limit considered by Jackiw
and Fishbane and Sullivan' rather than the one
used by Sudakov. ' We shall, however, still refer
to the form factor as the Sudakov form factor in

later sections.
The form factor is infrared divergent, as are

all on-shell QCD amplitudes. But we are inter-
ested in the asymptotic behavior of the form fac-
tor and we shall study this by giving the infrared
regulator v' a small but fixed value. If we sum
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over soft-gluon emission then the infrared diver-
gence will cancel" and presumably the asymptotic
behavior of the form factor will still. be given by
the expression derived in this paper, with 7 re-
placed by the energy resolution a of the detector.

For removing the ultraviolet divergence we may
use the mini, mal-subtraction scheme in dimen-
sional renormalization. " However, for reasons
to become clear later it will be more convenient
to choose the renormalized mass m„of the quark
to be equal to its physical mass m. %e shall keep our
discussion general by denoting the renormabzed and
physical masses of the quark by different sym-
bols. In Sec. IV we shall. find the simplification
that occurs by taking m~ to be equal to m. 'The

other counterterms are fixed by the usual mini-
mal-subtraction scheme.

We choose to work in the axial gauge where we
can use the power-counting techniques and re-
sults of Sterman' to identify the regions in loop
momentum space which may contribute to the form
factor in leading power in ~q'~. For definiteness
we shall consider the case where a timelike pho-
ton with large invariant mass decays into a quark-
antiquark pair moving in the + and —z direction,
respectively, with momentum P and P'. The analy-
sis however remains true for the scattering of a
quark by a spacelike photon with large negative
momentum squared. An internal line carrying
momentum k may belong to any of the following
categories: (I) Contracted: if k

~
&,(q')' ' for

every V, (2) collins» top: I

' -p' l~ I-~P'
-X'~'p' with A. -O, (3) collinear toP'. (k-( P -, )0'(
-zp', (k, (

- y' 'P' with X-O, or (4) soft: [&" [

-X(q')' ' for every p, with X-O.
Any region in momentum space which contributes

to the Sudakov form factor in leading power in q'
will correspond to the fo1lowing picture according
to Ref. 13. The incoming photon will break up
into a qq pair through a (contracted) three-point
vertex moving parallel to P and P', respectively.
This quark (antiquark) may decay into other parti-
cles moving parallel to it thus producing a jet of
particles moving parallel to P (P'). The lines in a
jet may interact with each other or with lines in

the other jet through soft-gluon exchange. Finally
all the lines in the jet moving parallel to p (p')
must combine to produce the external quark (anti-
quark). The following rules must be satisfied.
(a) A soft gluon may interact with a jet only
through a (contracted) three-point vertex. (b) Jet
lines be1onging to the same jet may interact with
each other through (contracted) three- or four-
point vertices.

Note that there may be other regions in momen-
tum space which may give a logarithmically diver-
gent contribution by naive power counting but the

contours of integration are not pinched. " For ex-
ample, if a soft gluon of momentum k is exchanged
between the two jets, we may get a logarithmically
divergent contribution from the region where k'
or k or both are small compared to k; however,
such regions are not pinched. We do not have to
analyze the contribution from such regions, since
although the integrand may show singularities,
the integral will not receive any singular contri-
bution from such regions.

We start with simple ladder diagrams since
they do not have any collinear divergences as-
sociated with them. In Sec. III we show how the
contribution from such diagrams may be brought
into a simple exponential form. This is done by
considering the effect of the operation of &/& In(q')' '
on a Feynman diagram, which helps us in forming
a differential equation involving the total contri-
bution from the ladder diagrams. This technique
however cannot be applied to a general Feynman
diagram which involves collinear as well as soft
divergences. In Sec. IV using the Grammer-
Yennie decomposition technique" we show how

to bring the total contribution from all Feynman
diagrams into a form where the only lines parallel
to P are those in the self-energy insertion on the
external quark line. The rest of the diagram does
not contain any line parallel to P and may be ana-
lyzed by the technique of Sec. III. The double-
logarithmic contributions however rema. in in the
self-energy insertions on external lines. We show
in Sec. V that the constraint that the final result
must be Lorentz covariant and the results of Sec.
IV are sufficient to show that the contributions
from the self-energy graphs also exponentiate. We
couM have stopped at this stage but in Sec. VI we
give a more direct analysis of self-energy graphs
in which we study the change in the self-energy
graphs under an infinitesimal boost in the s direc-
t&on. 'This helps in forming a differential equa-
tion involving wave-function renormalization con-
stants, the solution to which gives the required
exponential form of the fermion self-energy. Our
final result is given in Eq. (6.33) and the asympto-
tic behavior of the form factor in the limit q'- ~
is given in Eq. (6.42). Appendix A describes vari-
ous special vertices that we shall use in the text.
Appendix 8 deals with a problem discussed in the
text which appears due to the presence of special
composite three-point vertices. Appendix C
describes a special gluon propagator discussed in
the text.

The analysis of form factor given in this paper
may be applied to QED also. In this case the
factorization of the soft divergences from the co1-
linear divergences is much simpler (see Ref. 5).
As a result the analysis of Sec. IV will be much
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simpler. The rest of the analysis may be carried
out in the same way. This is a considerable sim-
plification of the treatment of QED form factor in
Ref. 5.

Some of the techniques used in this paper (par-
ticularly those used in Sec. VI) were found inde-
pendently by Collins and Soper" in their analysis
of back-to-back jets in QCD.

II. KINEMATICS AND SOME CONVENTIONS

For definiteness we shall consider the amplitude where an incoming timelike photon with large invariant
mass decays into a quark-antiquark pair. %e shall work in a frame where the momentum of the incoming
photon, momentum of the outgoing quark, and that of the outgoing antiquark have, respectively, the form

q =(qcoshP, O, O, q sinhP),

p =~ —coshp+ ——m' sinhp, 0, 0, ~

——m~ coshp+ —sinhp ~,I 2 j '

fq q &~' q' &&2 qp' =~ —coshp — ——m' sinhp 0 0 — ——m' coshp+ —sinhp
~

(2.1)

where P is a finite number. In most of our calculations we shall take P to be zero except in Sec. V where
we take p and p' to be independent variables. Here m is the physical mass of the quark. I et us denote the
renormalized mass of the quark by m~ and the renormalization mass by p. .

%e choose to work in the axial gauge where the gluon propagator has the form

( i) N—"~"(k)/(k +if) = 0 „[(-i)/(k +it)1[g""—(k "n"+k"n")P (1/k' n) +k"k"P(1/k ' n) n ] (2.2)

k'=k'+k', k, =kr= (O, k„k2, 0) . (2.4)

For later convenience we shall fix up some con-
ventions. Whenever we draw a Feynman diagram
we shall draw the incoming particles to the left
and the outgoing particles to the right and refer to
left and right side of the diagram according to this
convention. In any Feynman diagram contributing
to the Sudakov form factor we may identify the
fermion line which is contracted with the quark
and the antiquark wave function at its two extreme
ends. The part of this line lying between the ex-
ternal quark and the point where the incoming pho-
ton meets this line will be referred to as the out-
going quark line; the other part will be referred to
as the outgoing antiquark line. If the incoming pho-
ton breaks up into a number of gluons through
fermion loops before meeting this line (as in Fig.
1), then we choose right-most points (P and P')
where these gluons meet the fermion line and the
parts of the fermion line lying. to the right of these

where

P(1/k'n) =lim[1/(k'n+ie)' I+/(k' n ia) ]/2

(2.&)

and n is a spacelike vector. In Eq. (2.2) p, v are
the Lorentz indices and a, b are the group indices.
For reasons that will become clear later we choose
n, to be proportional to &, the polarization of the
external photon. Other components of n are arbi-
trary (n, & 0).

For any four-vector k we define the light-cone
coordinates as

'
I

points will be called outgoing quark and antiquark
lines, respectively.

In. order to calculate the Sudakov form factor we
shall evaluate the sum of all Feynman diagrams
including self-energy insertions on external lines.
If we call the sum of all such diagrams G(P,P'),
then the Sudakov form factor is given by

where [Z,(P)]'~' and [Z,(P')]'~' are the external
wave-function renormalization factors (finite).

In any figure a four-gluon vertex will be indi-
cated by a dot in order to distinguish it from a
figure with two gluon lines crossing each other.

III, EXPONENTIATION OF LADDER DIAGRAMS

%e shall first explain the exponentiation. tech-
nique with the help of ladder diagrams. These dia-

FIG. l. A typical diagram contributing to the Sudakov
form factor.
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grams are easy to analyze since they do not have
any collinear divergence. A typical ladder dia-
gram is shown in Fig. 2. Let F(k, k') be the quark-
antiquark- quark-antiquark Green's function with
the incoming quark (antiquark) carrying momen-
tum p + k (p' —k) and the outgoing quark (antiquark}
carrying momentum p+k' (p' —k'), respectively.
F includes two-particle reducible as well as two-
particle irreducible Green's functions containing
ladder diagrams only. It includes the propagators
of the incoming lines but not those of the outgoing
lines. Color and Dirac indices of I" are under-
stood. Then, if we denote by I' the contribution to
the Sudakov form factor from ladder diagrams
only, we may write

FIG. 3. Graphical representation of the right-hand
side of Eq. (3.1).

d'k
I'(p, p') = 4 e yE(k, 0), (3.1)

ej. ar er
8 lnQ 8 lnp' 8 lnp' (3 3)

z being the polarization vector carried by the ex-
ternal photon. We shall deal with the case where
& corresponds to transverse polarization, since
the form factor for a longitudinally polarized in-
coming photon is suppressed' [by a power of
(q')'~ ]. The right-hand side of Eq. (3.1) has been
explained in Fig. 3.

Let us denote by K(k, k') the two-particle irre-
ducible connected Green's function for qq- qq,
which again includes the propagators correspond-
ing to the incoming lines but not those correspond-
ing to the outgoing lines. Then we may write

Z(k, k') = (2~)'«'&(k -k')
d'u"

+ K k, k" I" A", k' (3.2)

This equation is shown in Fig. 4.
Let us now consider the effect of applying the

8/81nQ operator on I' where Q= (q')' '. I' is ex-
pressed as a Feynman integral where the momenta
of the internal gluons are treated as independent
loop momenta. As a result the only dependence of
I' on Q comes from the dependence of the momenta
of the internal fermion lines on p and p', which
may be written as p+K or p' -K', K (K'} being
some linear combination of the internal gluon mo-
menta. Then we may write

+ Jj Q (k)E (ky 0)
eI' I ~ d k (3.5)

where P (k) is a vertex function carrying such a
cross on the p line that all its internal lines are
constrained to be contracted. Typical contribu-
tions to p(k) have been shown in Fig. 5. Note that
in Fig. 5(c) the crossed line constrains both the
gluons S, and S, to be contracted (a result of power

where in 8I'/81np' the derivative operator acts on
lines carrying momenta p+K and in 81/81np' the
derivative operator- acts on lines carrying momen-
ta p' -K'. Equation (3.3) was based on the fact that

8lnp'/81nQ =1=81np' /81nQ. (3.4)

Let us denote the derivative operation by putting
a cross on the fermion line. Thus the right-hand
side of Eq. (3.3) is given by the sum of all Feyn-
man diagrams one of whose internal fermion line
is crossed.

Now if the momentum K is soft then the contri-
bution from the line carrying momentum p+K must
go as p'y-/[(p+K)' m'+i~] =p'y-/(p'K-+fg) = y-/
(K +i@) and hence is independent of p'. Thus if
such a line is crossed we shall get zero contribu-
tion from it. In other words a crossed line cannot
carry soft momentum from the internal gluons.
The only other alternative is that the crossed line
must be contracted (since for ladder diagrams K
cannot be parallel to p}.

Thus we may express 8I'/8 lnp' as

p'-k

p+k

F

Ip-k
Ip-k-

(p+k) (p+k ) (p+k )

K F

( lk)~ g~
(p-k ) (p-k)

FIG. 2. A typical ladder diagram. FIG. 4. Diagrammatic representation of Eq. (8.2).
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l
p+k

(a} (c)

FIG. 5. Typical contributions to Q(4).

counting). Now if we consider the region of inte-
gration where the momentum k in the right-hand
side of (3.5) is soft then the part of P (k) that con-
tributes to the integral in leading power in p' must
be-proportional to a transverse y matrix since if it
is proportional to y we cannot have p'y on the
quark line numerator external to P, while if it is
proportional to y' we cannot have p' y' on the anti-
quark line external to p. By rotational invariance
this must be proportional to a ' y or n, ' y (and n,
has been chosen proportional to e). It will also be
independent of k in the limit ~k "~ «(q'P»' since all
the internal lines of (f) carry off-shell momenta
-(q')'»'. Let us call it a yX,. X, is a function of
(q')'»', renormalization mass p, and the coupling
constant g. Thus we may write (3.5) as

PIG. 6. The right-hand side of Eq. (3.8).

ar
8 1nP

.= (x,+x, + "~ )I'-=xr.

Nmilarly we may get

(s.9)

-(q')'»'. As a result we may again decompose
(t), (k') into X,e y and (t), (k') —X,c y, such that

P, (k') —X,e' y does not contribute to the right-hand
side of (3.7) for ~k'"~ «(q')'»'. Like X„X,is a
function of (q')'» ', p, , and g. We may continue this
indefinitely to get an equation, for equation of the
form

d4kIr/I)n) =/X.I I) (a, O)
2]]j'

dk
+ k -XOE'y& k0-2 4

d'k
=Xor+ k —Xoa' y E k, 0 —

4 .

=(x', +x', +... )I'=-x'r.
elnp-

Thus from (3.3)

I @
= (X + X' )I',er

s in@

the solution to which is

(s.10)

(s.11)

(3.6)

Note that since (t) (k) is a color singlet, X, is a
number. Now, the contribution to the second term
on the right-hand side of (3.6) comes only from the
region I

k"
~

& (q2)'»' since in the limit I
k"

(

«(q')' ', p(k)-X,& y tends to zero. Thus if for
F (k, 0) in this term we substitute the right-hand
side of Eq. (3.2), the 5 (k) term will not contribute
and it may be written as

k /pe y E k, k' E k', 0

x
k' E k', 0 — 4, 3.7

where

I'=A, (m, ]u, g, v.)

(q2)1/ 2 dx
xexp X s P,g +& && P&g

(3.12)
Note that since X, and g' pre obtained as sums of

diagrams all of whose internal lines carry large
off-shell momentum, they are functions of (q')'»'
and p, but not of the quark mass or the infrared
regulator v. Also since r is multiplicatively re-
normalized, Eq. (3.11) shows that X+X' is free of
ultraviolet divergence. Hence it satisfies the re-
normalization-group equation

I

y+P(g) ,
—(x'+x—){g,(q')"'/p)=0, (s.ls)

8p, eg

d'k(,(a')= f III(a)-X„I I]~(a, )') (3.8)
the solution to which is

(x'+ x){g, (q')" '/p) = (x'+ x)(g((q')"'), 1),
The right-hand side of Eq. (3.8) is shown in Fig.

6. Since the contribution to this term comes only
from the region

~

k"
~

- (q')'» ', all the internal lines
in Fig. 6 must carry large off-shell momentum

(s.14)

where g is the running coupling constant satisfying
the equation
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= P(f(v'))
dp (3.15)

IV. ANALYSIS OF GENERAL GRAPHS

A general graph contributing to the quark form
factor in QCD cannot be directly treated by the
method of Sec. III since they involve collinear
divergences; i.e. , these graphs receive contribu-
tions from the regions where one or more gluon
lines are parallel to the outgoing quark or anti-
quark line. Hence when the 8/9 lnp' operator acts
on an internal quark line it can give nonzero con-
tribution if the quark line carries momentum from
a gluon collinear to p. However, as we shall
show, we may rearrange the graphs in such a way
that none of the lines carry any momentum col-
linear to p except for self-energy insertion on ex-
ternal lines (a different rearrangement wiLl bring
them in a form where none of the momenta can
be parallel to P'). Then the operation of &/& InP'
on such a graph may be treated in the same way
as in Sec. III.

Thus the main task now is 'o show how to rear-
range the graphs in the way mentioned above. To
do this we use the Grammer- Yennie technique"
for factoring out the soft divergences. For fac-
toring out soft divergences from lines collinear
to p the Grammer-Yennie decomposition of a ver-
tex v of a gluon propagator iN""(k')/(k'—+if) is
obtained as

Since QCD is asymptotically free, g'(p, ') goes
down as C/Inp, ' as p,

' - ~. Since g'+X is propor-
tional to g in lowest order ing, it will go down as
I/In(q')'~' as (q')'~ '- ~. The integral in the ex-
ponential of (3.12) then goes as

1
, 2 d in@"-lnlnq (s.l6)lnq'

Just for ladder diagrams, however, there are no
self-energy or vertex insertions, hence the effec-
tive P function is zero. Thus g=g and the term in
the exponential goes as In(Q/p).

attached to a fermion or gluon l.ine parallel to P,
it gives a contribution which is suppressed by a
power of q' (Ref. 14). The K term on the other
hand gives us a simple answer if we sum over all
possible insertions of the E gluon in a given
Green's function. This is done with the help of
Ward identities. The relevant Ward identities in
the axial gauge are shown in Figs. 7(a) and 7(b).
The arrow on the left-hand side of Fig. 7(a) repre-
sents a gluon, carrying polarization vector pro-
portional to the gluon momentum k. a, b, and c
are the group indices, while p. , v, v', and 0 are
the I orentz indices. On the right-hand side, the
circled vertices are proportional to g~f ' ~ and
g"'f"' for the first and the second figure, res-
pectively. In Fig. 7(b) the arrow on the left-hand
side again denotes a gluon with polarization vec-
tor proportional to k". i,j are the group indices
in quark representation while c is the group index
in the gluon representation. Both the circled ver-
tices on the right-hand side are proportional to
(T,),J. Some useful relations involving the circled
vertices are shown in Figs. 7(c) and 7(d). These
relations and the Ward identities may be derived
by knowing the form of the QCD vertices and pro-
pagators in axial gauge. The precise expressions
for the circled vertices are given in Appendix A.

We now give the algorithm for rearranging the
graphs in a manner so that there cannot be any

p- (p-k)- p~ (p-k)-
pa ga g b y b pa Ta yb ~a ob yb

+

(a)

(p-k)-
l l

C It

N""(k) =N,"(k)[G""(k)+ff "(k)],

where

G'" =g'" —&o'k"/(u& k+ic),
IP"= &o'k"/(u& ~ k+ ie),
(o = (I, 0, 0, 1),

(4.1)

(4.2)

(4.s)

(c)

p pkki p pkk

kI

P

k, ,

(p-k-k )
O

)I

,
, ~k

and k is the momentum flowing from the v ver-
tex to the p, vertex. 'The G term has the property .

that if the momentum k is soft and if the v end is FIG. 7. Sgme useful Ward identities.
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line collinear to P except in self-energy insertion
on external lines. Let us start with a general
graph of the form shown in Fig. 8. In all the fol-
lowing figures we shall denote the G vertex by a
cross (this must be distinguished from the crossed
fermion line of Sec. III).

SteP I. We first identify the lines which can be
collinear to p. In Fig. 8 all the gluons except S„
S„S„S„andS4 can be collinear to p. We also
identify the gluons which are not potentially col-
linear to P but are attached to potentially collinear
gluons. S„S2 S3 and S, are such gluohs in Fig.
8. Let us call the latter set N.

Step II. We identify the gluon which is a member
of N and attached to the left-most point of the p'
line (S, in Fig. 8) and locate the vertex where it is
attached to a line potentially collinear to P. We
decompose this end of the gluon (S,) into the G and
K parts and sum over all insertions of the K part
on gluon lines and internal fermion loops which
are potentially parallel to P, but we do not decom-
pose (or sum over) the insertions of this gluon
(S,) on the outgoing quark line (defined in Sec. II).
The result will be three types of graphs shown in
Fig. 9. In any of these graphs we attribute a
serial number of 1 to the S, gluon indicating that
this is the first gluon to be decomposed into G

and K gluons,
Step II1. For graphs of type 9(b) or 9(c) we go

to step V. For graphs of the type shown in Fig.
9(a}, the presence of the G vertex reduces the
number of gluons in the graph which can be paral-
lel toP. For example the gluon lines S„S6, and
S, in Fig. 9(a} can no longer be collinear to P, be-
cause if S, is soft and S, and S, parallel toP then
there is a suppression due to the G vertex on S,.
One may wonder whether the presence of the G

vertex may change some of the power-counting
rules used in Ref. 13 but it is easy to check that
it does not do so by investigating the behavior of
the G vertex in different regions in momentum
space.

FIG. 8. A typical diagram contributing to the quark
form factor.

(c)

FIG. 9. Some typical diagrams obtained after com-
pleting step I of the algorithm for the diagram shown in

Fig. 8.

We now identify the gluons which were poten-
tially parallel to the P line before the S, gluon was
decomposed but are no longer so and are attached
to lines potentially parallel to P. S, and S, are
such gluons in Fig. 9(a). We now keep all but one
of these gluons fixed in position, decompose the
remaining gluon into G and E.gluons, and sum
over all its insertions on gluon lines and fermion
loops potentially parallel to P. Choosing S, in

Fig. 9(a), the result will again be three types of
diagrams shown in Fig. 10. [Diagrams 10(b) and

10(d) belong to the same type. ] In all these graphs
we attribute to the S, gluon the serial number 2

indicating that this is the second gluon which is
being decomposed into G and E gluons. Next, in

each of these graphs we break up the remaining
gluons (S,) one by one into G and K gluons and sum
over all insertions of the S, gluon on gluon lines
and fermion loops potentially parallel to p. How-

ever, if the line to which the S,. gluon is attached
ceases to be potentially parallel to P then we do
not decompose the S, gluon [e.g. , in Fig. 10(a)].
Also if S, has any other gluon attached to it through
a circled vertex [as S, in Fig. 10(b)], then in the
Grammer- Yennie decomposition of the vertex we

use the combined momentum of S, and S, for k in

Eq. (4.2). This allows us to apply the Ward identity
in its usual form for the K vertex. In order to
preserve the symmetry between the S, and the S',

gluons we consider another series of graphs where
the S, gluon is decomposed into G and E gluons
before the S, gluon, and we sum over all insertions
of the S, gluon first; then we decompose the S,
gluon. This calls for a factor of 1/2.' multiplying
eacb graph since we are counting each graph
twice. (In the general case we have a factor of
I/n! where n is the number of soft gluons to be
decomposed. )



$288 ASHOKK SEN

e

(c) (4)

FIG. 10. Typical diagrams obtained after decomposing
the &5 gluon into G and K gluon and summing over all
insertions of the K part on gluon lines and fermion
loops potentially parallel to p in Fig. 9(a).

Step IV. We consider every graph obtained
after the completion of step III and identify the
gluons prevented from being parallel to P due to
the Grammer- Yennie decomposition of S, and S7
gluons. S„S„andS» are such lines in Fig.
10(a). We repeat the procedure given in step Ill
with these gluons. This process is continued until
we can prevent as many gluon lines and fermion
loops as possible from being potentially parallel
to p. For example, in Fig. 10(a) we cannot de-
compose S, or S„gluons (remember that G-K
decomposition is forbidden when the gluon lines
are attached to the outgoing quark line). Thus
we stop here and to to step V. Figure 11 is
another example where we should move to step V.

Step V. This step deals with diagrams of the

type shown in Figs. 9(b) and 9(c) obtained after
step I and also diagrams of the type shown in Figs.
10(a) and 11 obtained after step IV. We take the
next member of the set N (S,) attached to the next

innermost point of the p' line and check whether
it is attached to a gluon line or fermion loop po-
tentially parallel to p. If it is, then we decompose
this into G and K gluons and repeat steps II, III,
and IV with this gluon. Otherwise we move to the
next innermost gluon of set N attached to the p'
line. In Figs. 9(b) and 9(c), S, is indeed attached
to a line potentially parallel to p. However, in
Figs. 10(a) and 11 it is not; hence we must move
to the S, gluon for the latter figures. This pro-
cess is continued until we exhaust all the gluons
of set¹

Some typical graphs obtained at the end of step
V have. been shown. in Fig. 12. Note that in any of
these graphs a gluon line not potentially parallel
to p may meet a gluon line potentially parallel to p
only through a circled vertex at the point where the
latter meets the outgoing quark line. For example,
let us take the diagram shown in Fig. 12(a). The
gluon S, cannot be parallel to p since it is attached
to the p' line; however, it may either be parallel
to p' or be contracted or be soft. In the first two
cases the line S, cannot be parallel to p by power
counting, while in the third case if S, is parallel
to p, we shall have a soft gluon attached to a line
parallel to p through a G vertex and this contribu-
tion is also suppressed. Using this type of argu-
ment we can analyze the other parts of the graph
also and see that the only line in this graph poten-
tially parallel to P is the S„gluon shown in the
figure in thick lines. In all the graphs in this fig-
ure the gluon lines and fermion loops potentially
parallel to p are shown by thick lines.

There is one possible place where the type of
argument given above may break down, namely,
when the vertex is a part of a contracted three-
point vertex. Consider the diagram shown in Fig.
13, which is a possible subdiagram of a graph after
we complete step V of our algorithm. Suppose the

(a)

FIG. 11. A typical diagram obtained from Fig. 10(c)
after summing over all insertions of the & part of the
S& gluon on gluon lines and fermion loops which are
potentially parallel to p.

(c) (4)

FIG. 12. Typical diagrams obtained after completion
of step V of the algorithm.
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FIG. 13. A potentially dangerous subdiagram.

gluon S, is soft. Then by the previous argument
S, and S, are constrained not to be parallel to p.
If S, is soft then again by the same argument S4,
S» and S, are constrained not to be parallel to p.
However, if S» S„and S, are contracted then S,
and S, may be parallel to p since attachment of
soft lines to jet lines through contracted three-
point vertices is not suppressed by power counting.
In Appendix B we show how such contributions are
suppressed.

Step Vl. Now decompose the gluons, which are
not potentially parallel to p and are attached to the
outgoing quark line, into C and E gluons and sum'

over all insertions. During this process we follow
the same serial order of decomposition as was
followed during the decomposition of the gluons
attached to gluon lines and fermion loops poten-
tially parallel to p. For example, in Fig. 12(a)
the gluon S, is decomposed before the gluon S7.
Hence with this we first add the diagrams where
the S,gluon is attached to the outgoing quark line, de-
composed into G and E gluons and summed over
all K-gluon insertions. The diagram of Fig. 12,(a)
will then cancel the diagrams shown in Fig. 14.
In the diagrams with & vertices on the outgoing quark
line, a certain subset of lines including the part of
the quark line to the left of the vertex are
constrained to be contracted, these lines being
separated from the rest of the diagram by a two-
particle qq intermediate state. For example, in
Fig. 15 all lines inside the dashed box are con-
strained to be contracted. Again there is an ap-
parent problem if the G vertex is a part of a con-
tracted three-point vertex, and this is taken care
of in Appendix B.

During the decomposition, whenever we run into
a G vertex on the outgoing quark line we identify the

FIG. 15. A typical diagram obtained when we start
decomposing the gluons attached to the outgoing quark
line into G and& gluons.

part of the diagram constrained to be contracted
by the presence of this vertex and do not further
decompose any of the lines inside this blob. For
the lines outside the contracted blob we carry on
the decomposition procedure in the usual way. As
a result, at the end of the decomposition procedure
all the gluon. lines, potentially parallel to P, are
completely decoupled from the rest of the diagram
and we obtain diagrams whose sum may be repre-
sented in the abstract form shown in Fig. 16 (ignor-
ing terms which do not have poles in p). Here 1 „v
includes diagrams all lines of which are con-
strained to be contracted due to the presence of ~
vertices on the outgoing quark line. Typical con-
tributions to I"U& have been shown in Fig. 17. The
blob E is one-particle irreducible (1PI) in the exter-
nalq line and con.tain. s internal gluon lines ferm-
ion loops all of which are constrained to be non-
parallel to p due to the presence of vertices.
The crossed circled vertex on the P line contains
various combinations of circled vertices. Typical
contributions involving E have been shown in Fig.
18. Note that in order to draw diagrams which
contribute to E or I'U& we must obey the rules
which govern the order in which different gluons
are decomposed. Figure 19 shows an example of
a diagram that is not present in I'«, Fig. 20
shows an example of a diagram that is not present
in E—although at the first sight they seem to be

(a)

FIG. 14. Diagrams that cancel Fig. 12(a).
FIG. 16. Rearranged form of the form factor after

completion of step VI of the algorithm.
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(b) (c)

(e)

FIG. 18. Typical contributions coming from &'.

FIG. 17. Typical contributions to I ~.

so. Figure 19 may be obtained only if the gluon S,
is decomposed before S„' however, our rule for
decomposition says that S, always has to be decom-
posed before S, since it is attached to the inner-
most point of the p' line. The same is the case
with Fig. 20. Also our decomposition rule avoids
diagrams like the one shown in Fig. 21. Note that
this diagram cannot be brought into the form shown
in Fig. 16 since in this the gluon S, may be soft al-

though S, is contracted, because if k be the mo-
mentum carried by the S2 gluon then in the limit
k/(q')'~ '- 0 we get four powers of k in the denomi-
nator [two powers from the $2 propagator, one
power from the circled vertex (~l/k ), and one
power from the outer part of the p' line]. The white
blobs on the external lines in Fig. 16 represent
full self-energy insertions on external lines.
Hence if we call the combined contribution of E
and 1» to be I', the Sudakov form factor may be
written as

1u(p)(P-m)
[ ( )

F(p, p') is diagrammatically represented as in

Fig. 22. Thus we have achieved the goal of de-
coupling the potentially parallel to P lines from the
rest of the diagram. We now study the behavior of
I'(p, p'). The behavior of Z, (p) will be analyzed
in the next section. Note that the form of I'(p, p')
given in Fig. 22 is not suitable for applying the
technique of Sec. IQ. To tackle this problem we
use a trick developed by Collins and Sterman"
which involves the observation that if we consider
the contribution to the form factor obtained after
step V of our algorithm (typical members of which
are shown in Fig. 12), keep only those diagrams
which do not have gluon lines potentially parallel
to p [e.g., Fig. 12(c)], and decompose and sum
over the gluons attached to the outgoing quark line
according to the algorithm of step VI, then the K-
gluon part will give a contribution which exactly

z I

)„,~' &(p,p')~, ' [z (p, )]„,(P'- ) (p')= (p)[z,(p)]' 'r(p, p')[z, (p')]'~' (p').
(4.4)

I

looks like the E part of Fig. 22. To formulate this
more precisely let us first define a vertex function
I"'„v(k) which is constructed by summing over a
subset of diagrams contributing to I'„v(k) (the ar-
gument k denotes that the momentum of the out-
going quark line is p+k and that of the outgoing
antiquark line is p' —k). In contructing I"„v we
exclude those diagrams from I'„v in which if in the
outermost two-particle-irreducible part we re-
place all the 6 vertices on the quark line by ordi-
nary vertices we do not get any gluon line potenti-
ally parallel to p [e.g., Figs. 17(a), 1V(d), and
11(e)]. This is done to avoid double counting as we
see below. I'„v includes the bare vertex propor-
tional to e y [Fig. 17(c)]. We define E'(k, k') to be
the sum of qq-qq graphs with the incoming parti-
cles' carrying momenta p+k' and p' —k', respec-
tively. The internal vertices of I"' however are

FIG. 19. A diagram which is not present in I'Uv. FIG. 20. A diagram which is not present in E.
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Ip-k
I

p-k
I I I

p-k p-k p-k p-k
Ip-k

p+k p+k

(a)

Ip+k- p+k-

(b)

Ip+k- p+k-

(c)

Ip+k- p+ k—

FIG. 23. Typical contributions to E (k, A,').

FIG. 21. A diagram which is not present in the rear-
ranged form of the form factor after completion of step
VI of the algorithm.

I'U~ k E k, O d k 2m (4.5)

not the ordinary vertices. Bather we construct E'
by starting with an ordinary qq-qq graph, follow-
ing the decomposition procedure of steps I to V of
our algorithm, and ignoring all diagrams obtained
at the end of step V which contain gluon lines po-
tentially parallel to p. Also as a convention we in-
clude the self-energy insertions on the incoming
antiquark line (p' -k') but truncate the propagator
of the outgoing antiquark line. Note that by defini-
tion of E' self-energy insertions on querk lines. are
eliminated since they include lines potentially
parallel to p. We include the propagator i/(P -|II
—ms) of the incoming quark line in F' but not the
propagator i/(P-k' —mg of the outgoing quark
line. Typical contributions to E have been shown
in Fig. 23. Note that E' also includes the trivial
term (2II) &'(k -k') [Fig. 23(a)].

Let us now consider the amplitude

ing always decoupled from the rest of the diagram
after completion of step VI of the algorithm). Also
terms in I „v that are missing in X'oUv are obtained
back when we consider the contribution to Fig. 24
with some of the gluons inE'attached to the outgoing
quark line through a ~ vertex. This is why those
terms were left out in the definition of l"'„v. How-
ever, this time we also have diagrams where some
gluons are attached to the extreme right end of a
quark line through circled vertices (e.g. , graphs
shown in Fig. 25). They are proportional to P —ms
which when multiplied by u(p) gives m —mz. But
since in our renormalization scheme we choose no~

to be equal to m such terms vanish. Expression
(4.5) is then equal to I'(P, p'). Any other choice of
m„will unnecessarily complicate. the proof.

Let us define K (k, k') to be the sum of all two-
particle-irreducible qq —qq graphs constructed us-
ing the same rules as +'(k, k'). Again by conven-
tion we include the propagator of the incoming lines
in A but not those of the outgoing lines. In this
sense E' is not strictly two-particle irreducible.
Typical contributions to E' are shown in Fig. 26.
We now follow the trick of Sec. III to write expres-
sion (4.5) as

which can be diagrammatically represented as in
Fig. 24. If we now reduce this diagram using step
VI of our algorithm and if for the time being we
ignore the terms with circled vertices attached to
the extreme right end of the quark line we shall
get back Fig. 22. This is because the & part that
we shall get from Fig. 24 does not depend on
whether there are gluon lines, potentially collinear
to p, present in the diagram or not (the latter be-

+ [I'„,(k) —X,~ y]Z'(k, 0) d'k/(2~)',

(4.5)

where A.,c y is the part of I"„v(k) which contributes
in the limit I

k'
(
«(q')'»' [just as X,e ' y was an

approximation for P(k) for (
k" («(q')'»' in Sec.

III]. Now Ii' satisfies the integral equation

FIG. 22. Graphical representation of I'(P,P' ). FIG. 24. Graphical representation of Eq. (4.5).
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ar
8 lnp'

Thus ~

(4.12)

(4.18)

FIG. 25. Typical diagrams with circled vertices on

the rightmost end of the quark line, obtained after the

decomposition of Fig. 24.

the solution to which is

I"=A(y, , m, r, g)
(02)1/ 2

(x+x')( p, (q")"',g)

X d(qr 2)1/ 2/(qr 2)1/ 2 (4.14)

+ &' k, k" I"' k",'k' d k" 2m '. 4.V

8 lnp' (+O+ O+"O=) f & rr (oo)o o/(or),
(4.8)

where g„(„.. . are functions of (q')'/', p, , andg
only. Thus,

8 I'
, =XX', (4.10)

where

x=(g, +g, + ~ )/(&, +&, + ~ ~ ~ ). (4.11)

Note that although 1" may contain lines potentially
collinear to p', X contains only contracted lines.
In a similar manner we can decompose the form
factor in such a way that all lines potentially par-
allel to p' go into the self-energy part and hence
show that

With the help of this equation we may proceed as
in Sec. III and get

r (OO')= (r.,+r+r + ~ ~ .) f e r»(oo)d o/(or)'
(4.8)

X's being functions of (q')'/', p, , andg only.
Now we let the derivative operator &/s lnp' act

on I". Since I' does not have any line potentially
collinear to p we can carry out the analysis of
Sec. III and show that

Ip-k-
I I

P-k+k2 p-k-
al '~

S2 2

& being an unknown function. For QQD X+X' goes
as 1/»(q")' '. Hence the term in the exponential
xs

l (q2)1/ 2

(X +X )(p (qr 2)1/ 2~g)d(qr 2)1/ 2/(qr 2)1/2

- ln ln(q2)'/ . (4.15)

Note that one of the crucial conditions to be sat-
isfied by K'()t, /'2') is that if the incoming momen-
tum k is constrained to be of order (q')'/' in all
components, all the lines inside E must also be
constrained to carry momentum (q2)'/' by power
counting, otherwise the X's and the g's will contain
infrared logarithms. The fact that this is true is
apparent from the rules of construction of K .
Figure 2V shows an example of a diagram which,
if included in E, would not have satisfied this con-
dition, since even if the momentum k is of order
(q2)'/2, the gluon line S2 may carry soft momen-
tum if k' i:s small. This is because the propagator
of S2 carries two powers of its momentum in the
denominator, the circled vertex carries one power
of k2 in the denominator, and the line p' —k'+k2
carries one more. Thus the integral over k2 may
give logarithms of (q')'/'/!k'"!. However, this is
not an allowed diagram in K', because this will
appear only if S, is decomposed before S„' how-
ever, since S, is attached to the left gf S, on the
antiquark line it has to be decomposed first.

Also note that if the &/& 1nP' operator acts on a
part of the fermion line, which is a part of an in-
ternal composite three-point gluon-fermion vertex

(c) p+k Ip+k-
FIG. 26. Typical contributions to K . FIG. 27. A contribution not to be included in K .
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f

(as shown in Fig. 28), then we may get a contribu-
tion from a region in momentum space where all
the lines inside this composite vertex are con-
tracted but the gluon (S) attached to this composite
vertex is still soft. If such regions are really
present they would upset our analysis; however,
we have shown in Appendix B that contributions
from such regions are suppressed.

V. ANALYSIS OF Z2(p) USING THE CONSTRAINT
OF LORENTZ INVARIANCE

OF THE FORM FACTOR

Equation (4.4) gives the expression for the Suda-
kov form factor. We have found the asymptotic
behavior of I'(P, P&) in the last section. In order
to find the full Sudakov form factor we must
evaluate the functions Z, (P) and Z,(P'). In this
section we shall show that the constraint of Lor-
entz invariance for expression (4.4) is sufficient
to give us the form of the functions Z,(p) and
Z,(P '). Such techniques have been used in the
past by Frenkel and Taylor" and by Mason. "

To see this let us note that Z2'~2(p) and Z2'~2(p~)
are pure numbers in the limit P'-~ and P)--~,

respectively, as shown in Appendix B. Also the
part of 1"(p,pi) which contributes to the amplitude
in leading power in q2 must be proportional to
c y; let us call this V(p;p')e .y. Then the quan-
tity

Z. "(P)V(P,P') Z.'"(P') (5.1)

Here we have explicitly exhibited the dependence
of the functions on the coupling constant g and P'
and P)- but suppressed their dependence on m, p,
and 7. It should be kept in mind that all the func-
tions that appear in the discussion from now on
are functions of m, p., and ~ unless otherwise
stated. Differentiating both sides of Eq. (5.2) with
respect to p', we get

must be a function of P P' only but not of n P and
P' ~ n if we want to satisfy the condition of Lorentz
invariance of the final amplitude. Let us call it
I" (p ~ p'). Now in the kinematic configuration de-
scribed in Sec. II, P and P) are completely speci-
fied if we specify P' and P'-, respectively. Hence
we may write

Z,' "(P',g) V(p', P'-, g) Z, '"(P'-,g) =&(P'P', g) ~

(5.2)

V(p', p'-, g) Z.'"(p'-, g)+Z.'"(P',g) ', ' Z, '"(P',g) =O' I"(P'P'; g), (5.2)

where

&'(x )ig) =
s ~

»(x,g) (5.4)

Similarly, differentiating Eq. (5.2) with respect to p - we get

Z.'"(P',g) V(p', P'-, g) ', ,
' +Z2"'(P', g) ", ', ' Z2'"(P'-, g) =P'I" '(P'P'-, g) .

Eliminating I' from (5.3) and (5.5) we get
BZ ~&2(p, g) BV(p', pl ,g-

Z."'(P',g)P' ' »,
' +-V'(P', P' ,g')P'-

(5.5)

8g &/2( 8V~ ~

Z -1/2(pp g )pl 2 (P yg) + V-l(p+ pi )pp (P yiP tg), (5 5)2 ) 8P) ) 0 8P]

Now V 'p'(SV/»') and V 'p'-(BV/»'-) are nothing
but the functions y and y' defined in Egs. (4.10)
and (4.12), respectively. As found in Sec. IV, the
functions X and X' are free of ultraviolet diver-
gences and also independent of m and the infrared
regulator v. Hence they satisfy the renormaliza-
tion- group equation.

I,„+@g), x(p', P—,g, ~) =0,8 8

+P(g) I
x'(P', P',—g, u) =0.8 8't

Bp Bgj

(5.V)
FIG. 28. A potentia1ly dangerous diagram by naive

power. counting.
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Here we have explicitly exhibited the dependence
of X and XI on p, . Also note that, unlike in the
previous sections, here we are treating P' and P&-

as independent variables; hence X and X' are re-
garded as functions of P as well as P'- instead of
a single variable q'.

Solutions of (5.7) are

x(p', p ,g-, ~) =x(p'/&, P' /&, g(»» »
x'(P' P' g &) =x'(P'/~»' // g(»» »

where X is an arbitrary number. Let us define

sZ 1/2 p+
&(P',g) =Z. "'(P,g)P'

,BA(p', g)
( )

BA(p', g)
( )P ~@+

— s ~
= gk p

p-""', g} t-(g)"(P' "=C, (g).BP' Bg

(5.17)

The solutions to Eqs. (5.17) are,

&(p', g) =&(p,g(p')) + J' C,(g(x)) —,
(5.18)

pg ~

B(p s)'=,a(M, E(p'))+ f c,Q(&)) —.
Using Eqs. (5.9) and (5.18), we get

sZ 1/2( )- )&(P',g) =Z. "'(P',g}P'

Equation (5.6} may then be written as

&(P',g) &(P' ,g—}=x "(-P',P' ,g, 4), -

where

x'(p', p ,g, i ) =x'-(p', p'-, g, 1 )

-x(p', P', gu).

(5.9)

(5.10)

(5.11}

p+ P g

&,"'((,(;)=e~ ", ) C,4(x)) —'
all

+&(u, g(x)) Z,."'(i(,g),
(5.19)

&~' dx' "~ — dxZ,'/'(p', g) =exp, C,(g(x))—
jp x gy . x

+B(i/, g(x)j Z, ' '(p, ,g)

(5.20)
Using Eqs. (5.8), (5.10), and (5.11) we get

&(P,g) -&(P -,g) =&V'i~, g(~i ))

—&(P'-/~, g(~( P))

where

Z„' '(i/, ,g) =Z,' '(p'= i/, ,g),
Z ' '(i/, g)=Z2' '(p' = p, g).

(5.31)

&(P',g) -&(p'/&, g(&V)) = C(&,g),
B(p) ,g) —B(p-)-/~), g(~) 4))=C(z, g) .

(5.14)

Let us take X =1+&. Equations (5.14) show that
C(l, g) =0 since the left-hand side vanishes at X

=1. Thus if we define

&(P' g) -&(P"h g(&V)) =&(P'- g) &(P' /& g(&-v))

(5.13)

Now the left-hand side of the above equation is
a function of p', X, and g while the right-hand
side is a function of p', X, and g (of course
both sides are also functions of m, ~, and p).
Thus in order that Eq. (5.13) is satisfied for
arbitrary values of P' and p&-, both sides of the
equation must be independent of P' as well as P' .
Let us denote this by C(a,g}. Equation (5.13) then
gives

Note that Eqs. (5.17) are valid only for p', p'
» m, hence the solutions (5.18) are not exact if we
choose p, -m, since these assume the differential
Eqs. (5.17) to be valid even for P'- i(, . This prob-
lem may be remedied by taking p/m to be a large
but fixed number so that we can ignore terms of
order m/i/, and then the Eqs. (5.17) are valid up to
order (m/p, ). The same remark holds for the
quantities Z„'/'(p, , g) and Z, '/'(i(, ,g}.

Also note that the constants &(y, ,g(x)),
&(p, g(x)}, Z„' '(i/, g), Z '/'(i), ,g), and C, (g) are
in general functions of p, , m, and 7 and may also
diverge in the limit v 0. Equations (5.19}and
(5.20) give the behavior of Z,'/'(p', g) and
Z,'/'(p', g) as functions of p' and p', respective-
ly, at,fixed m, p, , and 7. In lowest-order perturb-
ation theory C, (g) goes as g' [as can be seen from
Eqs. (5.17)]. Thus using asymptotic freedom of
QCD we may write

C( ,g)'
ez

Eq. (5.14) in the limit & -0 becomes

(5.15)
C,(g(x))-1/lnx as x- ~, (5.32)

gt

C, (g(x))—- ln(p'/p)(ln lnp'/p) .
(S.33)

&(P',g) -&(P —~P', g (W+ p )) = c C, (g) (5.16}

and a similar equation for B. Then, using Eq.
(3.15) we get

Thus we see that the leading term in the exponen-
tial for Z,'/'(p) goes as lnln(p'/p) x ln(p'/p). The
coefficient of this term may be calculated either by
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evaluating C, (g) in lowest-order perturbation the-
ory or by comparing the result with one-loop cal-
culation of form factor. This will be illustrated in
Sec. VI. But here we can make the comment that
the coefficient of this leading term in the exponen-
tial will be independent of m and 7'. This is be-
cause X" in Eq. (5.10) is independent of m and 1;
hence any m and 7 dependence of A and B must be
of the form of an additive constant independent of
p' and p'. This implies that the coefficients of
the leading term (lnp'. ) (ln lnp') in Z, ' (p) and
(lnp' )(lnlnp' ) in Z, '/'(p') are independent of m
and v. '

s, (p)=[z, (p)]"' ' [z,(p)]"' (6.1)

near the mass shell. Here [Z, (p)]'/' and [Z,(p)]'/'
are finite wave-function renormalization factors
which are in general y matrix functions of p. , m~,
v, p, and n. They are related to each other by

VI. A MORE DIRECT EVALUATION OF Z2 {p )

In this section we give a method for more direct
evaluation of Z, (p). The renormalized quark pro-
pagator in the axial gauge goes as

(6.2)[Z (P)]1/' 2 y0[Z (P)t]l/ 2 y0

As shown in Appendix B, in the limit ~p~- ~,
[Z,(P)]'/' reduces to an identity matrix in Dirac
space; i.e., it is a simple c-number function of
p~ n~ JLL~ PB» and T.

We shall study the change of S~(p) under an in-
finitesimal boost P along the g axis which changes
a four-vector 0 to 0' by

k"= yk'(1 +J3),

k'"=yk' (1 f))-,

k"=k' (i=i, 2).
Let us write these transformations as

(6.3)

(6,4)

Sk yS-'=0'y.

Then, near p' =p"= m',

(6.5)

Also we shall define p' =~p and the reader should
not confuse this with the momentum of the outgoing
antiquark. Let 8 be the Lorentz-transformation
operator in Dirac space corresponding to the above
boost such that

s (p') -$$ (p) s '=([z2(p')]"'- [z (p)]"') ' [Z2(p)]"'+lz2(p')l"' &[z (p')]"'- [Z2(p)]"')

(6.6)

(6.8)

where the primed momentum variables are related to the unprimed ones by Eq. (6.3) and

Although [Z,(p')]'/'= [Z,(p')]'/', we prefer to distinguish between the two for reasons which will become
clear soon. Now the contribution to $~(p) from Feynman diagrams may be written as

fl

(6.7)

where Z~ denotes the sum over all Feynman diagrams, f„.. . , l„are the r independent loop momenta,
E'„'""'„"'„'"" „(p,l,.) is a Lorentz-covariant y matrix function of the external momentum p, and the indepen-
dent loop momenta E, , which includes contributions from fermion propagators and all the vertices and
N" /"/(q/), j=1, . . . , n are the gluon propagators of n internal gluons present in the diagram. The q, 's are
thus linear combinations of the loop momenta.

Using the Lorentz covariance of I" and Lorentz invariance of d'l„we may write

4)
ss (p)s-'= Fnli''' ~ nnnli ''' ~ 0n (pl 1 ') ~t 0/v/( )F ~ (2g)4 nl, ...~ nnvl, ...,v„s 1 ... ~ n/0/F -. i~1 j~l

X,';"(q) = A",,A"„,X;,'"'(q) .
Equation (6.8) follows from the simple observation

li ''' ~ il li "'~ n (* ) )$-1 ~n/vj ( ) Fnli
''' ~ nn li '''i ii (*i 1

~

)1" ~ n"1 " "~ ' i ~ "' a)~) ~ f'1 ~ ~ ~" n"1 ~ ~ ~ ~ "njsl

Sz(p'), on the other hand, is given by

(*')= 1 F 1'""'n 1'"" n (*~ f~) ~"1 /(F P
jn:1

8

x."g"/(q, ) . -

(6.9)

(6.10)

(6 ll)
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Thus ~

(6.12)
8 fI

( I) $$ ( )$ g Q I
j F+1 '"~ +g~l» ' ~ ~g (Pl II) +~/ J( I) +P~f+~( )

j~l

Note that if we had used a covariant gauge then &,'","(q) =&,","(q') and the right-hand side of (6.12) would
have vanished. This states the simple fact that in a covariant gauge Sz(p') is identical to $$„(P)$

We have considered an infinitesimal boost along the Z direction and want to keep only first-order terms
in P. Since N""(q') and &'""(q) differ from each other by order P we may define

~ "(q') ~'""(q) SS""-(q')+o(S')

and write the right-hand side of (6.12) as
4~ tl

'~ &'„';,"""(O' I')Q, ].&, 'g'(q', ) S, ' '(q')+o(P') ~

P ~ ~ jn].
1' ''" a

(6.12)

(6.14)

The above expression has a nice physical inter-
pretation. Let us define by S gluon a gluon with
propagator S,"„"(q)/(q'+ ie). Then expression (6.14)
is the sum of all Feynman diagrams where one of
the gluons is an S gluon, while all others are the
usual axial gauge gluon. The expression for S,"~"

has been derived in Appendix C and is of the form

S,"~"(k) = &„[S"(k) k" + S"(k) k "], (6.16)

2 (n k)' (C6)

Thisshowsthatinthelimit lk'I ~~ lk I
and lkil~

$ is of the order (n, ' k,)/(k' n)'. However, power
counting shows that if the S gluon has to be the part
of a jet then it must go as 1/(n k), i.e., it should

S~(k) being a vector whose various components are
given in Appendix C. Since S~"(k) is a sum of
terms proportional to k' or k" we may use Ward
identities and relations shown in Fig. 7 to sum
over all S gluon insertions. The result of the sum-
mation has been shown in Fig. 29. The gluons
marked $ have propagators S"(k)/(k~+ i@), p, being
the Lorentz index of the uncircled end of the gluon.
The rules for the circled vertices are the same as
that for the K gluons given in Appendix A; how-
ever, the factor &u~/(~ k+ic) is absent. In order
to distinguish these vertices from the E-gluon ver-
tices we shall always mark the S-gluon propagator
by S near the circled vertex.

From Eg. (C6) we get

S (k)= n J-I +--( 1 n n k'-n'k
)n k 2 n-'k'

I
not have any numerator suppression factor. This
is illustrated by the simple example shown in Fig.
30. jf the S gluon is jetlike then in the notation of
Ref. 13 each of the lines carrying momenta k and
p-0 contribute a factor of A, in the denominator.
The jet-loop integration gives two powers of X in
the numerator. Hence in order that the integral be
logarithmically divergent in the ~ = 0 region we
should not have any numerator suppression factor.
This means that we must have an S y' term at the
gluon-fermion vertex. But Eq. (C6) shows that S
has a k~ in the numerator which goes as X' ' and
destroys the logarithmic divergence at X = 0. The
same argument may be extended to diagrams in-
volving more loops to show that the S gluon can
never be collinear to the jet. Hence it must be
either contracted or soft.

Now if we compare the right-hand side of Eq.
(6.6) with Fig. 29, we immediately see that Fig.
29(a) corresponds to the first term on the right-
hand side of (6.6), while Fig. 29(b) corresponds to
the second term. From now on we shall deal with
the first term only. To analyze Fig. 29(a) we first
investigate the behavior of S" in various regions in
momentum space. As shown above, the contribu-
tion from a region where the S gluon is collinear to
p is suppressed by a power of (q')'~'. Hence, we
need to consider only those regions where the S
gluon is either soft or contracted. We now decom-
pose the uncircled end of the S gluon into & and E
terms using Eg. (4.2) with the i@ term replaced by
-i&. This is because if we consider a typical dia-
gram contributing to Fig. 29(a) as shown in Fig.
30, the fermion denominator carrying the S-gluon
momentum k goes as 1/[(p -k)' —m'+i&]= -1/

{a)

FIG. 29. Sum of all Feynman diagrams in expression
(6.14).

(p-k)—
FIG. 30. A typical diagram contributing for Fig. 29(a).
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([z (p')]»2 [z (p)]»2] [z (p')]»2

=(6y(p) [Z, (p)]'/' [z,(p')]"'+o(p') .
(6.16)

Now [Z,(p)]'/' and f(p) depend on p n which is
again a function of p'. Since p"=p'(1+0), we may
write the left-hand side of the above equation as

slZ +&i»2
p' ' ' .", [z,(p")]"'+o(p').sp' i)(' -m

(6.17)

Comparing first-order terms in J8 from both
sides of (6.16) we get

(2p k —k -ie). Hence in order that the momen-
tum k is not pinched between the Grammer- Yennie
denominator and the jet denominators, we must
choose the sign of iz in this particular way. We
now sum over all insertions of the E gluon includ-
ing insertions on the fermion line; as a re-
sult we obtain a diagram of the form shown in Fig.
31 (ignoring the diagram which does not have a,

pole at p'=m'). The G term prevents some more
lines from being parallel to p (e.g. , in Fig. 32 the
gluons S, and S, are prevented from being parallel
to p). We now decompose one of these gluons into
~ and E vertices and sum over all insertions.
This process is continued exactly according to the
steps I to V of the algorithm, the only difference
being that we now sum over insertions on the ferm-
ion line also. We stop the process if (1) we get a
gluon coupled to the quark line through a ~
vertex (Fig. 33) or (2) the gluons connected to the
S gluon completely decouple from the fermion line
and are attached to the rightmost end of the ferm-
ion line through circled vertices (Fig. 34).

Let us denote by f(p) the sum of all the diagrams
obtained it the end of the decomposition procedure
with the self-energy part truncated. Typical con--
tributions to f(p) have been shown in Fig. 35. We

may then write

FIG. 32. A typical diagram containing the G, part of the
& gluon.

( 2)]./I' 2

[z,(p)]'/' =B(m„, i(, , ~,g) exp f(x)—

(6.19)

In those diagrams in f(P) which contain a crossed
vertex on the fermion line, all lines must carry
momentum -(q')» ' in all components. Diagrams
which do not have crossed vertices on the fermion
line [e.g., Fig. 35(a)] may have soft divergences;
the scale of all the momenta of all the lines is
however set by the scale of the momentum of the
S gluon. In other words, if in f(p) we integrate
over all momenta except for the transverse mo-
mentum kT of the S gluon and call this result
4 (p', g, m„, 7, kr, g), then this has a finite p'- ~,
m~- 0, and w- 0 limit for fixed kT, since for fixed
kT all the momenta flowing through the diagram are
of the order of ~kr I. We may write

/lp', p, m„, v;g)=fd a e(p ''u, „m„, v'', ,k,g).
(6.20)

Note that if me replace 4 by its limit as P'-~ in
(6.20), then the kr integral will diverge at ~,
while if we replace 4 by its limit as m~, v -0
and replace d by 4 in (6.20), the kr integral will
diverge at zero. Let us break up (6.20) (following
Ref. 5)

f(p', tu, m, r, g) =f (p', p, ,g)

+f.P', (u, mg, ~,g), (6.21)
where

S[Z + ]»2
p+ [ 2 p ] y(p+)[z (p+)]» 2

The solution to this equation is

(6.16)

and

x 4( pp, „m=0, ~ = kO, r) g(6.22)

(a)

FIG. 31. Sum of all insertions of the X part of the ~
gluon.

FIG. 33. Typical diagrams obtained at the end of the
decomposition procedure with & vertices on the fermion
line. -
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kf (p', ll, ln„r, «) = r8 k„@(p',ll, m„, r, )!„,g) —„-,",«(p', ll, m„= or =D, k„,))z» 2' k 2+ ~2 (6.23)

The integral in (622) is now convergent at kr =0
due to the extra factor of k~' in the numerator.
This integral receives contribution from the re-
gion p2 ~ kr2 ~ q . The integral in (6.23) receives
contribution from k~' s p, ', m z' since for k&2» p, ',
m„' we can replace 4(p', p, , m~, r, /2r, g) by
4(p', i1 0, 0, kr, g) and kr /( kz + i1 ) in the second
term by unity so that the two terms cancel. Thus
if we take p'-m~', we may replace p' by ~ in
(6.23) up to order m„/P' and hence f, ceases to
be a function of p'.

Also note that although f(P) is superficially
ultraviolet divergent by power counting, these
divergences must cancel when we sum over all
the diagrams contributing to f(P). This is ap-
parent from Eq. (6.18). Hence f, is ultraviolet
convergent (f2 is of course ultraviolet conver-
gent). f, on the other hand is infrared divergent
and blows up in the limit v -0.

Since f, is ultraviolet convergent, it satisfi. es
the r enormalization-group equation

I,~ —,„+P(z)—, f(P'/I, g)=y, (z)
( s s

with

2k~'p, '
x,(z)=- fd'& (2' '-).2+p2

(6.26)

x e(p'= ~, )2, m„= 0, r = 0, kr, g) . (6.27)

The solution to Eq, (6.26) is
-(a') ~2 d rf1((q')"/u, r) = — „, y, (g(~'))

P+ 2k 2p 2

jkz+P,

x C(p', p, ms=0, 7 =O, kr, g) .
(6.25)

The integral in (6.25) receives contribution only
from the region kr2-p2, hence up to order i1/p',
we may replace 4 (P', . . . ) by its limit as P'- ~ in
the integrand. The Eq. (6.24) then stands as

where

,„+P(g), If,—(P'/~,g)—=y,(g,P'/I ), (6 24) +f,(1,g((q') ~')), (6.26)

where g(p, ') is the running coupling constant de-
fined in Eq. (3.15). Equation (6.19) then gives

(()2)1/2 d( «2)1/2. ( ()" ) /2d(q'2)1/2
(g (p))' '=&(m, p, , r, g) exp, „„,/2 I(- / 2)1/2 y(g((q")'"»

yQ'

+f (1 g «q'")"»+f. (".~ m/2 7' g) I
~ (6.29)

ln lowest-order perturbation expansiony, —g . This implies that as q"-~ y, (g (q"))-1/ln(q")' '. Thus,

r
( () 2}1/2d( «2)1/2 ( ()' ' 2) 1/2

d( I2) 1/2 ( 2 )1/2 d( «2) 1/2

«2~1/2 ( )2i1/2 y1( g((q' ) ) I «2)1/2 [ln ln(q" ) + O(1) j
(g

Also

—[ln((q')'/')in ln((q') /')]+0[la((q2)1/2)] . (6.30)

(6.31)

and

FIG. 34. Typical diagrams obtained at the end of the
decomposition procedure with no C vertex on the fermion
line.

(c}

FIG. 35. Typical contributions tof~g).
I
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r (q )1/2
d( «2)1/2

f,(,p, mme eg), „„,/, -f2( e p, m, T, g) ln(q } (6.32)

Note that f, is infrared divergent, i.e. , it blows up in the limit 2- 0. This point has been discussed in
the Introduction.

Using Eqs. (4.4), (4.14), and (6.29) we may finally write the Sudakov form factor as

( (q ) d( «2)1/2 (q" ) d( e2)1/2
, „},/, y, (g((q")'/2)}+ 2f,(l, g((q"')'/'})

J~

Asymptotic behavior of various terms in the exponential has been given in Eqs. (4.16) and (6.30)-(6.32).
From the above discussion it is clear that if we mant the coefficient of the leading term in the exponen-

tial, we must evaluate y, (g) up to lowest order in perturbation theory Th. is can be done by evaluating the
integral on the right-hand side of Eq. (6.2l). However there is another way of evaluating this coefficient.
Let y (g)=a,g +0(g ). Then, noting that in lowest order in g (the fixed coupling constant) g=g, we get

y, ( g) = a, g'+ 0(g')
Hence

f (q2) 1 /2 d/ «2 pl /2 (q «2) 1 /2 d/ /2 pl /2'
2 }1/2 yl(g((q")")}= alg'2»'[(q')" /P]

()

+ o(g')+ o(g'»((q')" '/)1)),

where 0(g') terms include terms of order g' or more multiplied by powers of ln[(q')'/2/p] and
O[g2ln((q2)'/2/p)]includetermsof orderg'lnq . Thus (6.33) shows thatinlowestordering', theform
factor may. be written as

2(( p) c y(/(p')C(m„, p. , 2, g)/1 —a, g' ln'[(q')'/'/)1]+ 0(g') + O(g' in((q')'/'/)1))j.

Explicit one-loop calculation shows that the form factor is given by

2 1/2 ( 21/2
u(p)e. yv()))') 1 —C), 21n' +0(g')+0 g'ln

(6.34)

(6.36)

(6.36)

(6.3'I)

Comparing (6.36) with (6.37) we get

a, = C2/4v2, (6.38)

C~ being the eigenvalue of the Casimir operator in fermion representation. Now for an SU(N) gauge theory
with f flavors and fermions in its fundamental representation we have

2 2 I //2g (q ) —
P 1 ( 2/A2) )

mhere A is the strong interaction mass scale and

P

llew(

2f

C), = (N' —1)/2A'.

Hence, in the limit (q')'/'- ~, the form factor behaves as

(q ) /
d( «2)1/2 (q" ) /

d( e2)l/2 8+2
q(p)e ee((")C(m, V. , e, q) ezpI-q, „„,«, „„«e,„„„),q /

(+O((e(e*)'«)I

(6.39)

(6.40)

(6.41)

16~2a (q2)1/2 (q2)1/2 (q2)1/2
-u())))e ~ yl)(p')C(ms, y. , 7, g)exp — 'ln lnln +0 ln . (6.42)

Pp

Since al and pp are both positive numbers, the above equation shows that the form factor decreases to
zero in the limit q'- ~.
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VII. CONCLUSION

In this article we have found a systematic way
to study the behavior of the fermion form factor
in non-Abelian gauge theories in the limit of very
large momentum transfer and the fermion lines
on shell. Ne have summed all terms of order
(g')"[in((q')'~ '/m)]"' but ignored terms which ar e
suppressed by a power of m/(q')'~'. The form
factor cal.cul.ated this way decreases as

in the limit (q')'~' —~.
The full result is given in Eq. (6.33).
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elementary (bare) three-point vertex. Here by
"composite" three-point vertex we mean vertices
that may appear as subdiagrams in graphs con-
tributing to the constants 1„y„.. . , and (t„p„.. . ,
in Sec. IV. This result is needed in, order to show
that for the graphs contributing to the 1's and ~p's,

all the internal lines are really constrained to
carry UV momenta, so that (q')'~' and p, are the
only mass parameters on which these quantities
may depend. Examples of such composite three-
point vertices have been shown in Fig. 36. The
incoming and outgoing jet lines are shown by
thick lines in these figures.

First we shall show that all lines inside a com-
posite three-point vertex carry ultraviolet mo-
mentum. We shall prove this for an (%+1)-loop
composite vertex assuming that an N-loop com-
posite three-point G vertex gives the same sup-
pression factor as a bare G vertex. Then in an
(%+ 1)-loop diagram all internal composite three-
point G vertices have less than (%+1) loops and

hence give the same suppression factor as a bare
three-point vertex. But as we have seen in Sec.
IV the Grammer- Yennie decomposition is carried
out in such a way that none of the internal lines
inside a composite vertex can be soft or collinear
unless the presence of composite three-point 6
vertices upsets the power counting. Thus in an
(%+1)-loop composite vertex all internal lines
carry ultraviolet momenta. This may be illustra-
ted by considering Fig. 36(c). Let us consider a
region where S„S„S„andS, are soft while S,
and S4 are contracted. Naive power counting indi-
cates a logarithmic divergence from such a re-
gion. However, the composite three-point vertex
through which the gluon S, is attached to the jet
line gives an extra suppression factor according
to our assumption. Hence contribution from such
a region is suppressed. The only region which
contributes to this graph in leading power in q2

is where all internal gluon lines carry large off-
shell momenta. This implies that the vertex func-
tion is independent of the external soft momentum
and also the minus and trasverse components of
momenta of the external jet lines.

APPENDIX B: "COMPOSITE"
THREE-POINT VERTICES

(a) (b) (c)

In this appendix we shall show that if we have a
soft G gluon attached to a jet line through a "com-
posite" three-point vertex then we shall get the
same suppression factor as we would if the G

gluon had been attached to the jet line through an

FIG. 36. Examples of composite three-point vertices
@which appear in the graphs contributing to the P's and
~' s in Eq. (4.18) of the text.
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%e shall now show that a composite soft G gluon-
jet fermion vertex gives the same suppression fac-
tor as the bare vertex. Let e be the polarization
vector of the external gluon, K be its momentum,
and P and P+Kbe the momenta of the external jet
lines. Let us define the vector R as —', (P', 0, 0, P').
Then in the leading power approximation the ver-
tex function is a function of ~, e, ~, and R. This
is true even if we have a crossed fermion line
since the 8/8 lnp' operation is equivalent to an
R y vertex insertion on the fermion line. The
function must be invariant under scaling of n and

Then since the external gluon couples to the
graph through a G vertex, we have e ~ =e R =0
and the only possible structure of the vertex which
does not give the extra suppression factor is of the
form

&&logs of (P'/p, ) . (Bl)

Now, any diagram contributing to the vertex will
have a string of y matrices on the fermion line and
this is multiplied bya function of +, n, R, ands. Let
usdenotethistermbyy„y, A."'"""(&u, ne, R).
Now suppose the rightmost vertex on the fermion
line (the vertex which produces y») is a G vertex
[e.g. , Fig. 36(b)]. As seen from Eq. (4.2), G'"&„
=0. Hence if we contract A'i'" with ~, we
must get zero. Now ~ ~ ~, ~ e, and ~ R are all
zero but ~ ~ is not zero. Hence A"" must be
proportional to some linear combination of ~",
e~', and R ' but not to n ' or g '"' ('=2, . . . , n).
If it is proportional to some linear combination of

, R then y A "y~ - ~ ~ y~„will be equal to
zero since & - y and R ~ y are both proportional to
y, this is incompatible with the form given in Eq,
(Bl). Thus the only possible form of the vertex
which may be reduced to the form given in Eq.
(Bl) is the one where A""'" is proportional to
e"'. Now since the vertex function is independent
of m in leading power in (q')'~', we may set m to
be zero. Then we shall get a y matrix from each
fermion numerator and each gluon fermion vertex.
As a result we must have an odd number of y ma-
trices on the fermion line, i.e. , x must be odd.
y is contracted with e"~. A'&~2 '"""y&1 ~2 tr
contains a product of even number of y matrices.
After reducing the product using y matrix anticom-
mutation relations and using the fact that R y
= (P'/2)m .y, we may bring the product in the
form e '(a+ bn ym y), where a and b are two
scalar functions. Thus the vertex has the form

E. y(a + bn yrd ~ y),
which carries the same suppression factor as we
mould have obtained if the external G gluon had
been attached to the jet through a simple e y ver-

tex. This is because the second term satisfies
the condition 6 ' yÃ ' y yy = 0, so that we cannot
get a P'y factor from the jet numerator sitting
next to the vertex.

The same argument holds if the leftmost vertex
on the fermion line is a G vertex rather than the
rightmost one. If neither the leftmost nor the
rightmost vertex is a crossed vertex [e.g. , Figs.
36(c) and 36(d) J, then we proceed in the following
way. We identify the gluon lines attached to the
fermion line to the. right of the rightmost G vertex
or the crossed fermion line, as the case may be.
We break up these gluons one by one into G and K
gluons and sum over all insertions of the K gluons
on the fermion line to the right of the G vertex (or
the crossed fermion line). As a result we get var-
ious types of diagrams. In one class of diagrams
we shall have one or more gluons attached to the
rightmost end of the fermion line through circled
vertices; such diagrams are suppressed by a
power of P since they remove an external jet line
from the diagram. We also have diagrams where
all gluons to the right of the rightmost crossed
vertex (or the R ~

y vertex generated by p'3/Bp' op-
eration) are attached just to the right of this ver-
tex through circled vertices (as shown in Fig. 37).
In these the rightmost vertex on the fermion line
is again a crossed vertex or a vertex proportional
to R y (circled vertices do not have any Dirac
structure), and we may show in the same way as
before that this carries the same suppression fac-
tor as the case when the external G gluon is di-
rectly attached to the jet line through an elemen-
tary three-point vertex proportional. to e y. There
are also diagrams involving G gluons; these give
rise to new crossed vertices on the fermion line.
The process of decomposition into G and K gluons
is continued until the rightmost vertex on the fer-
mion line is a crossed vertex. This way we can
show that we always get the required suppression
factor from a composite three-point jet fermion-
soft G-gluon vertex.

Let us now turn to the three-gluon vertex where
two of the gluons carry jetlike momenta and one
ofthemcarriessoftmomentum. Let&, e» and&, be
the polar ization vectors of the soft gluon and the two

FIG. 37. A typical diagram obtained during the decom-
position of a composite three-point jet fermion-soft~-
gluon vertex according to the procedure mentioned in
the text.
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jet gluons, respectively, andK, P, and P+Kbe the
momenta carried by the soft gluon and the two jet glu-
ons, respectively. As before the vertex function will
be independent of P„P, and K in leading power
approximation. The possible structure of the ver-
tex which does not give the required G-gluon sup-
pression factor is of the form

FIG. 39. Abstract representation of the sum of all
diagrams of the form Fig. 38(c).

e, (e nn ~ P/n')&&logs of P /p. (B3)
the Lorentz index of the soft gluon, we may write

To show that such terms cannot be present in the
actual vertex function, let us first note that in any
graph contributing to the vertex function all the
internal lines are constrained to carry momentum
of order P', hence the vertex is free of infrared
divergences. Later me shall express the vertex
function as a sum of terms each of which is IR
divergent. Such divergences may be regulated by
dimensional regularization and must cancel in the
sum over all graphs. With this in mind we start
undoing the Grammer- Yennie decomposition for
the internal vertices in an order exactly opposite
to the one in which they were decomposed. At the
end of this procedure we shall get three types of
diagrams: (1) where all the internal vertices are
ordinary vertices [e.g. , Fig. 38(a)], (2) where
some of the gluon lines are attached to the right-
most or the leftmost points of the jet gluon line
through circled vertices [e.g. , Fig. 38(b)] and (3)
where all the gluon lines attached to the jet gluon
are attached to a single point [Fig. 38(c)]. Con-
tributions from class 2 diagrams from the region
in momentum-space integration where all the in-
ternal momenta are off shell (-P') are suppressed
since we l.ose an external jet denominator in such
a diagram. Note that such diagrams may give
nonsuppressed contribution from the region where
the internal momenta are soft but such contribu-
tions must vanish in the sum over all graphs.
Contributions from class 3 diagrams, apparently,
are not suppressed. The total contribution from such
diagrams may be abstractly represented as in
Fig. 39, where B is some blob containing crossed
as well as ordinary internal vertices. As we
shall see, the precise form for B is not required
for our purpose. Class 1 diagrams give the same
suppression factors as that of soft G gluon attached
directly to the jet line. To see this let us note
that if I",„,be the three-gluon vertex, with p being

r,„,(n, P)=,g,„(n,P),a
(B4)

where g „ is the two-point one-particle-irreduci-
ble gluon-gluon Green's function. For convenience
we have omitted the color indices. In order to get
a form (B3) of the vertex function from (B4), we
need a ter'm in g„„of the form

g,„(n P)'&& logs of (n. P/p). , (B5)

Absence of such terms in Z may be shomn by the
method of induction. We shall assume that the re-
sult is true for z-loop diagrams and then show that
it is also true for (x+1)-loop diagrams. Let P'
be related to P by an infinitesimal Lorentz boost
P along Z direction [Eq. (6.3)] and let us denote
by 5Z „ the difference Z „(P') —Z,'„(P) where
Z' „(P) and Z „(P) are related to each other by the
infinitesimal Lorentz transformation considered in
Sec. VI. Following the same procedure as in Sec.
VI, we may express 6p as a sum of diagrams with
one internal S gluon and all other ordinary gluons.
Remembering that g is a sum over all one-par-
ticle-irreducible diagrams only, the term [-iN/
( P' +ic) ]&5[-i N/( P' +is)] may be expressed as a
sum of diagrams shown in Fig. 40. [Here N rep-
resents the matrix N'"(P)]. Since g„„ is an in-
variant, tensor, Z, „(P') —g', (P) according to the
expression (B5) for g, should go as g„,(P')' &&logs

of (P'/p). Hence (-iN/P')5g(-iN/P') should go
as (P )'(P2) 2NN. This has two jet denominators
and no numerator suppression factor. On the
other hand, if we look at Figs. 40, the first two
have only one jet denominator each. Figures 40(c)
and 40(d) apparently have two jet denominators
each. But the g's involved in these graphs have
less loops than the original graph and hence by
assumption cannot contain a term of the form given
in expression (B5). Any other form for Z would
necessarily give an extra suppression factor. n
contracted with N mill give zero, while P contrac-

(a)

FIG. 38. Typical diagrams obtained as we undo the
Grammer-Yennie decomposition for a composite three-
point jet gluon-sof't~ -gluon vertex.

r + r — r x — x

FIG. 40. Diagrammatic expression for P ~ {—g&/~2)
x ~z(-N/z').
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ted with N will kill the P' pole in the denominator
and hence give a suppression. Thus terms of the
form n"g", Pt'P", N"P', or N"P" in gt'" will give
a suppressed contribution. A term of the form
gi""P will kill the P' pole in the denominator of
N/P'. Thus the form of g, „given in expression
(B5) in (r + 1)-loop order is inconsistent with the
absence of such terms in g „ in x-loop order.
Since p „ is zero at the tree level, we see by in-
duction that a term of the form (B5) is absent in

p „ in all orders in perturbation theory.
Thus it now remains to be seen that the contri-

bution from diagrams shown in Fig. 39 is sup-
pressed. This will be shown by comparing the
three-gluon vertex with the soft-gluon-jet fermion
vertex which has air eady been analyzed. The latter
vertex may also be analyzed as the three-gluon
vertex. Diagrams of the type shown in Fig. 38
will be present, with the jet gluon line replaced
by the jet fermion line. Diagrams of the type
Fig. 38(b) may be thrown away by the same rea-
soning as for the jet gluon line. The sum of dia-
grams of the form Fig. 38(c) may again be repre-
sented in the abstract form shown in Fig. 39. The
sum of the diagrams of the type shown in Fig.
38(a) with the jet gluon replaced by the jet fermion
line may be expressed as

r, =&,Z(P),
3

(B6)

where I' is the gluon-fermion vertex and g is the
P

sum of all one-particle-irreducible fermion self-
energy graphs. In order ty get a contribution to
I', of the form given in Eq. (Bl), g(P) must have
a term of the form

(n yn P/n') xlogs of (P n/iJ. ) . (B7)

Absence of such terms in g(P) may be shown by
considering the difference g(P') —Sg(P)s ', where
P' and P are related by Eq. (6.3) and S is defined
by Eq. (6.5). If we call this difference 5Z then
according to (B7), 5g will contain a term propor-
tional to y P'x logs of (P ~ n/p). Thus if we con-
sider the expression [i/(P —m)]5K[i/(P —m)] it
should go as P'y-P'y'P'y /(P' —m')' - y y'y (P')'-
x(P' —m') '. Thus this contains two jet denomina-
tors and no numerator suppression factor. On
the other hand, [i/(g —m)]5K[i/(P —m)] may be
expressed as the sum of diagrams of the form
shown in Fig. 40, with the jet gluon replaced by
jet fermion, T' „replaced by I' and Z „replaced
by p. The same type of analysis shows that none
of these figures can produce two jet denominators
without any numerator suppression factor, if we
assume that terms of the form given in expression
(87) are absent from g in lower loop orders. This
shows by induction that up to all orders of pertur-

APPENDIX C: THE S GLUON

As defined in the text [Eq. (6.13)]

ps:,"(q ) =iv:,"(q ) -iv.;"(q), (cl)

where q' and q are related by Eq. (6.3) of the text.
Using Eq. (2.2), we get

S:,"(k ) =5.,(S k "+S"k"),
where

(c2)

n" n 0 1Ps'(k') = P —P, +—k"P
0 ~ n A" n 2 A"v

(c3)

If we denote by 6n and 5k the vectors n' —e and
A' —k and if we keep only up to first-order terms
in P, the above equation may be written as.

PS~ = 5n'P(1/k n)

+~VP, yg+2P (c4)

Using Eqs. (6.3) we may evaluate various com-
ponents of S. They are

bation theory terms of the form given in expres-
sion (B7) are absent from g since they are absent
from g at the tree level.

[The above result has one important conse-
quence. In the limit n ~ P»m, the only other
possible term in g is of the form Pxlogs of
(P'/iJ). Thus in this limit the full fermion propa-
gator behaves as (i//)x logs of (P'/lJ). This
shows that the fermion wave-function renormali-
zation constant reduces to identity matrix in Dirac
space in the limit n .p» m as assumed in the text. ]

Thus for both the three-gluon and the gluon-
fermion vertex, we are left with the diagrams of
the type shown in Fig. 39. However, we have
already seen that the total contribution from a
fermion-soft-G-gluon vertex is suppressed. Thus
the blob B in Fig. 39 must carry a suppression
factor when the external jet is a fermion line, but
since the blob B is independent of whether we have
fermion or gluon lines in the external jet, the
same suppression factor must be present for jet
gluon lines as well. Hence contributions from all
the diagrams shown in Fig. 3.8 are suppressed.

We have thus proved that if a soft G gluon is
attached to a jet fermion or a jet gluon line through
a composite three-point vertex we get the same
suppression factor as the case when the composite
vertex is replaced by the elementary vertex.



3804 AS HOKE SKN

+k -nk
2 (u n)' (c6)

(c5)
2 ( (k n)'

a', nu
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