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We report on recent progress in understanding the structure of charged particles in Einstein's theory of the

nonsymmetric field. If one makes reasonable assumptions concerning the asymptotic behavior of the field far from a
charged particle, assumptions which seem to be demanded by empirical evidence, one finds that the global

topologies of certain spatial regions which contain the charged particle must be non-Euclidean if the field over those

regions is to be nonsingular. One also finds under the same assumptions that the possibility that all charged particles

possess a-magnetic-monopole moment proportional to their charge cannot be ruled out. In an approximation which

should be valid over macroscopic interaction distances it is found that such particles interact among themselves as if
they had no magnetic-monopole moments. We do not yet know the effect of such magnetic moments on microscopic
interactions.

I. INTRODUCTION

In this paper we shall investigate certain prob-
lems in Einstein's unified field theory —the theory
of the nonsymmetric field —which have not been
adequately investigated in previous papers. '-'
They are (1) the question of the topology of a
spatial region which contains a charged particle
and (2) the question of whether in Einstein's theory
a charged particle can possess a significant mag-
netic-monopole moment in addition to an elec-
tric charge and still not be in disagreement with
experiment.

In the investigation we shall assume with Ein-
stein that only regular (nonsingular) solutions to
Einstein's field equations are realized in nature.
We shall also make certain additional assump-
tions suggested by empirical evidence. We shall
assume that in an appropriate coordinate system
the field associated with an isolated charged par-
ticle can be approximated with negligible error
sufficiently far from the particle by a time-in-
dependent spherically symmetric solution to
Einstein's field equations and that the symmetric
part of the field associated with such a solution
is flat at infinity. We are restricting our study to
stable particles. We shall also assume that
charged particles interact to a good approximation
with other charged particles over laboratory
distances through the conventional classical elec-
tromagnetic interaction. This is necessary if
Einstein's theory is to agree with observation.

Making the above assumptions, we show that
the global topology of any spatial region which
contains an isolated charged particle, and in which
the above-mentioned asymptotic conditions far
from the particle are satisfied, must be non-
Euclidean. The idea that particles are associated
with non-Euclidean spatial topologies is'not new.

Einstein and Rosen4 suggested it in 1936, and the
possibility has been extensively discussed by
Wheeler' and his associates. What we show in
this paper is that if the assumptions mentioned
above are satisfied, charged particles in Einstein's
theory must have non-Euclidean spatial topologies
associated with them.

With, respect to the question of whether a charged
particle can possess a significant magnetic-mono-
pole moment in addition to an electric charge and
still not be in disagreement with experiment, we
shall find that this possibility cannot be ruled out.
If the magnetic-monopole moment associated with
each particle is proportional to the particle's
charge, and only in this case, then in an approxi-
mation which should be valid over macroscopic
interaction distances (laboratory and astronomical
distances) the interaction among particles is
found to be independent of their magnetic-mono-
pole moments. ' In spite of the presence of mag-
netic-monopole moments on the charged particles,
the particles interact over macroscopic distances
as if they had no magnetic-monopole moments;
they interact through what we have called Ein-
stein electrodynamics. ' We do not yet know the
effect of such magnetic-monopole moments on
microscopic inter actions. '

The body of this paper begins in Sec. II with a
brief description of Einstein's unified field theory.
In Sec. III we discuss time-independent spher-
ically symmetric solutions to Einstein's field
equations and investigate the interaction over
macroscopic distances of charged particles. In
Sec. IV we describe the most general time-in-
dependent sphericially symmetric solution to
Einstein's field equations which can represent
the field of an isolated charged particle suffi-
ciently far from the particle. In Sec. V we dis-
cuss the topology of spatial regions which contain
a charged particle.
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II. SPACE-TIME MANIFOLD

A. Field equations

Further discussion of the above assumptions can
be found in the literature. '

In Einstein's theory of the nonsymmetric field,
the structure of the space-time manifold is des-
cribed through a second-rank tensor field g „.
The fundamental field g,„satisfies the general-
relativistic field equations'

(1a)

(»)
(1c)

where the affine connection I. ,'„and the contracted
curvature tensor R,„are defined through the equa-
tions

III. SOLUTIONS TO THE FIELD EQUATIONS

A. Time-independent spherically symmetric solutions

Assuming spherical symmetry about the origin
of coordinates, it can be shown that in polar co-
ordinates x'=y, x'= 9, and x'= cp the fundamental
field g „can be put into the form""

f sin8 0

0 -fsin8 -tl sin'8 0

0

gppp =&ppp &pv pp gpp pp

R „=I,„„—I'„p „—I' ~I' „+I'„„Fp

B. Particles and physical fields

where n, P, y, f, and m are functions of r and t.
The general time-independent spherically sym-

metric solution to Einstein's field equations was
first found by Bandyopadhyay" and later, inde-
pendently, by Vanstone. " Their results for e,
P, y, f, and zv can be put in the form'

A region of the space-time manifold is called
flat if a coordinate system can be found in the
region so that the fundamental tensor field is
equal to the Minkowski metric throughout the
region, that is

gt v=~~v .

Particles are limit'ed portions of the manifold—
limited at least in the spatial directions —which
have a very nonflat structure. Portions of the
manifold between the particles and possessing a
nearly flat structure are known as empty space
or vacuum. The slight deviations from flatness
in such portions of space-time indicate the pre-
sence of an electromagnetic fieM if g„„)4 0 and
the presence of a gravitational field if g&», &'g».
Nearer the particles, where the deviations from
flatness are larger, the field g,„may also be
associated with weak and strong interactions.

In this paper we assume with Einstein that only
regular (nonsingular) solutions to Einstein's field
equations are realized in nature. Empirical
evidence suggests that in an appropriate coordin-
ate system deviations from time independence and
spherical symmetry are negligible sufficiently
far from an isolated charged stable elementary
particle. Thus we assume that in an appropriate
coordinate system the field associated with an
isolated charged particle can be approximated
with negligible error sufficiently far from the
particle through a time-independent spherically
symmetric solution to Einstein's field equations.
We shall confine our study to stable particles.

(f2 +g2) gg 2

4,' d

m, '(1 + ih, )e5 sech'[ —,'(1 + ih, )'t '5 + a, ]
ci +s

1/2

f2+ p2 1

where the integration constants my cy ky and

k, in (6) are real, and the constant a, is complex.
The variable 5 is an arbitrary real function of x.

Since we are only interested in solutions re-
presenting particles, we restrict our study to
those Bandyopadhyay-Vanstone solutions for which
the field g&„„& is flat at infinity, i.e., can take its
Minkowski value p» at infinity. For such solu-
tions one can show

slnh gi = —1

so that f and P are given by

In investigating this solution we shall find it
convenient to work in "standard" coordinates.
Standard polar coordinates are defined as co-
ordinates in which g„„takes the form (5) with
P=H. Standard Cartesian coordinates are defined
in terms of standard polar coordinates through
the transformation
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x' = r sin 0 cosy,
x2=r sin0siny,
x'=r cos8 .

where the constants m, q, q„, and l are defined
in the following way:

In standard Cartesian coordinates the above solu-
tion takes the form

1 qc = — f.

xsxg xg„=—5„—(n —1), —e„,v —,
x' x'

where

3Eq 1 q''I( -'
~ ———1+-—

~m2 4 t2)

1 +4 2 ~qhg

and

m, '(1+h, ') e'
c,'+1 (cosh( —cosy)' dr

e-6 +
0'

f 2m, e' 1

c,' + 1 (cosh g
—

cosy�

)'

x [(c, +h, )(cosh(cosy —1)

—(1 —c,h, )s inh $ sing],

e-' dO'
$0= k'~'2m, dr, '

$= p6, @=vs,
P+ &(1 +/ 2)1/2]1/2

v g I2 + 2(1 + g ~)~/2]-~/2

(12)

and z can take the value 1 or —1. There is no loss
in generality in assuming E ~ 0. The form of n,
y, e, and w at large distances from a particle
suggests that we identify m with the mass of the
particle, q with the charge, and q„with the mag-
netic-monopole moment. " The form also suggests
that the length ) associated with each particle is
universal, that is, the same for each particle.
Finally, it suggests that the length E is an astro-
nomical length, for we know that over laboratory
distances the electric field produced by a charge
falls off with distance as r-'.

However, only by investigating the interaction
among particles represented by the above solu-
tions can we interpret the soluti. ons physically
and properly relate the arbitrary constants ap-
pearing in the solutions to the mass, charge, and

magnetic-monopole moment of a particle. When

this is done we will find that the above suggestions
are correct.

2m
y =1 ——+ O(~-'),r
v=l ——e — +O(r ')q 1 q

2 l

(14)

gp=E ~ +o(r '), -

The variable 6 in standard coordinates satisfies
the equation

rn 2 2e'

c,'+1 (cosh) —cosy)'

&& [(c,+ h, ) sinh$ sing

+ (1-c,h, )(cosh) cos'g -1)]=r'
(13)

At distances sufficiently far from the origin of
coordinates the functions o, y, ~, and w can be
expanded in a power series in r-'. We find in
standard coordinates

2' 4' 2 1 q2 1o=1+—+, +- . . . —+O(r-'),
2 1+ ,'(q'/P) 6-

B. Equations of motion

APProximation Procedure. In order to investi-
gate the interaction among particles in a nonlinear
field theory one must in general use an approxi-
mation procedure to solve the field equations ~

We shal. l use a fast-motion approximation pro-
cedure developed by the author in a previous
series of papers. ' The approximation procedure
is similar to the conventional slow-motion ap-
proximation procedure of Einstein, Infeld, and
Hoffmann (the EIH procedure) in that one expands
the field g,„ in a power series in a parameter
which parametrizes the quantities characterizing
the particles (in our case the parameter will
parametrize the mass m, charge q, and the mag-
netic-monopole moment q„), but the procedure
differs from the EIH procedure in that one does
not consider time variation to be necessarily
small and thus does not choose the parameter
to also order time variation. The procedure
leads to Lorentz-covariant equations of motion
at each order of approximation. For further
discussion see the papers of Ref . 1.
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In the following discussion of the approximation
procedure, unless otherwise stated, all indices
will be raised and lowered with the Minkowski
metric q „=q'". The subscript (k) to the left of
a field will indicate order. Vfe will be using the-

notation 'P = g""P~„.
If we assume the expansion

order of approximation in which we choose to
investigate the fields. Under these conditions
the use of harmonic coordinates does not restrict
the set of invariantly distinct solutions to the
field equations. " In harmonic coordinates the
field equations (17) take the form

(24a)

&wv=~~v ~ (~)g~v
0=1

(16)
Y[vv, XJ

(24b)

for the fundamental field g„„(gis the expansion
parameter) the field equations (1) can be put into
the form

2
Y (it v) tt v

Y(u v)

(24c)

(24d)

2 + v
t)t v)

&ac

Y[uv, x) (17)
ApPlicatiori of aPPxovimation procedure. To

lowest order (first order) we have from (19) and

(2o)
ep ape —t~ ~(.v) ~(g p), v

- ~(vp), u Dvv~(pe) trav s, =0, t,„=0 . (26)

where

pe
Yt v Iup~veg ~i v ~

~f pe)
Y[uv) 2 uvpe6

(pe)
Y(vv) ~p pave ~ ~ gv

(18)

Because we do not want gravitational interaction
to appear in the lowest-order interaction terms
(second order), we will choose mass'and there-
fore y „„& to be a second -order quantity. In this
way we avoid having to investigate gravitational
interaction in second order. Thus to lowest non-
trivial order (second order) we find from (19)
and (20)

pettX~N
lup '" [&X,el (19) s„=0, (26)

(2o) [pe) +,0,p p J,e
2Y[pe), y Y,v Yftt pJ Yfve) Y[tt p), Y[v

~vv ( g)1/2+us (21)

The field g'" is a contravariant tensor density
associated with the fundamental field g „. It is
defined through the equations

1 [pe), tt [pre J,e
uvY[po J,& Y ~~wv Y[pe), & Y

[pe) + fpe J

Yftte), vp Y Y[ve), u p

[pe)
u vY + Y [pe) (27)

where g"" is defined through

(22)

and g denotes the determinate of g „. The field
N

vo

R,„ is that part of the tensor R „which is non-
linear in y„„.

When investigating the physical consequences
of Eqs. (17) it will be understood that we are in-
vestigating the fields only at points which are
sufficiently far from the particles so that (16)
can be considered valid.

For convenience we will impose the coordinate
conditions

4m
Y(~&3 & Y( 43 Y(443

(28)

(29)

To investigate the electromagnetic interaction
among these particles one must choose as the
lowest-order solution to Eqs. (24)

In a harmonic coordinate system, and keeping
only terms linear in m, q, and q„, one finds from
solution (10)-(13), sufficiently far from an iso-
lated particle,

&v 0(u v) (23)

on the field at each order of approximation. Co-
ordinates for which (23) are valid are known as
harmonic coordinates. We do not impose (23) on
the exact solution, only on the solution up to the

+&kvvi & L'vvl + & ipv 1 &

@[pa]'Y [pp]
= 2 &pp pa 'Y =

Yp, p -'Y p, p ~

g Jg N [pa] Np~a
'YIJf p] z &pppa'Y —

&kappa'Y

Y(v 3

(30)



CHARGED PARTICLES, MAGN ETIC MON OPOLES, AND. . .

where

E hf
YI:pv] YIpv]+ Y[pv] ~

Zap & M
Y [pv] pvpar

'
~ r ~»] = 'Yp, v -rv, »

with

(p) + " (p) +N e«(p) WEext.
Y I.pv] Y [pv] Y(pv]

(p) +Eext (P) Eext Q) E ext
Y[pvl Yp v Yv p (37)

y' = Q S'l '" qu (» u(')-'+ - e —r1 q
p p p 2 ~2 p rot

Q (~)i(P)[q „(» ~P) ~]

We ax'e using the notation

(~)»v „~ (()~v (()u~ (~) ~~

d(&)»2 —
&

d(~) g( d(n) g~

(31)

(32)

(p) WWext (p) Next p, a
Y I.pv] ~pvpa Y

where

(n) s«~ g ((')l ((') q„(» u()- +
1 q

(38)

(()y&«& P 9')i0')[q u (» u() ~]-
P'&P

A superscript Q} to the left of an expression
means that the quantities in the expression which
are associated with a particle are associated with
the pth particle. A dot over a quantity associated
with the pth particle means the derivative of that
quantity with respect to (~)7. The subscript ret
means that in the expression in brackets those
quantities associated with the pth particle are
to be evaluated at the "retarded point":

(P)g (P)/p 0 /4~{)

The (~)
g will be regarded as the coordinates of

the pth particle. The quantities (~)q, (~)q~, and (~)
L,

are time independent. Let us investigate the in-
teraction among such particles.

To find the equations of motion to second order
satisfied by these particles one must study the
solutions to Eqs. (24) to second order The s.o-
lutions to Eqs. (24a) and (24b) to second order are
identical to the solutions to first order. No equa-
tions of motion are involved. In order to obtain
equations of motion we must investigate Eqs. (24c}
and (24d) to second order.

Placing the field (31) into (27) one can solve Eqs.
(24c) to second order. From (29) we see that
the solution will take the form

Q) ext 1 Q) +ext [ap]
Y [pv] 2 &pvpa (39}

The procedure used to find y(»)" is discussed in
previous papers. ' Since Eqs. (24d) must also be
satisfied we must have

»C„=0.
Particle motion is restricted by (40). The equa-
tions of motion satisfied by the particles to se-
cond order are

mup = g l q y(~„j u —46(q/1) y((L„j u

+ —', cq'(u„+ upuI'u„)+ —,
' l„q'y(„"„' uj". (41)

These equations follow from (36) and (40). We
find from (41) that the particles can interact to a
good approximation over laboratory distances
through the laws of classical electrodynamics if
and only if ~/ is a universal astronomical length,
~)qz is proportional to +) q, and +)e = 1." Under

these conditions one finds from (41) (Ref. 17)

%Flu =
2 (q/l)y(„~ju+ 3 q (u~+ upu~u~), (42)

where the effective external electromagnetic field
y('„"„'j appearing in (42) is given by

(P) ext (P) ext ( P)
Y[pv] Yp v ~ p

y(~„)= Q(~) [4mu„u„(»pu(') ']„,+y((„„),

where

(33) P

+)y'"' = l ~ qu (» u') '+ —q»
p P 4 ~2 p~ret

I

(43)

(34)

y(~)" = Z'"[C~«~u') ']-

where

(v~) w '

From (33), (34), (27), and (31}one finds for y(„„)"

We see that under these conditions, to second
order, the interaction among particles does not
depend on the particles' magnetic-monopole mo-
ments ~)q ."

If we introduce the mass M, charge e, and ef-
fective electromagnetic field F„„ in practical units,

0')' d(P)c (4~u ) lq
2 ~«tuv

p dg p pv]

+ e
l y [&„ju —r~ 6q (u& + u

&
u ~ u&)

l q+H Y Ipv] Q (36}

Pl
C

=(..;,)'"'
(8n e,G)'~'

Y[pv} ~ +pv ~
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Eqs. (42) take the form

Mu„= —I"„'"„'u" +
3 4, (u„+urdu'u„), (45)c "" 3 4m «,c'

where

9'& g ex~ —&) /ex' 0}')/ext
pv psv vp &

&P)A ex~— 1
p 4'Tll «0 pt~p iC V P xet

(46)

The particles interact to second order through
what we have called Einstein electrodynamics. A
discussion of this electrodynamics can be found in
the liter ature. '

If the +~q„are not excessive, and by this we mean
+~q&S+~q, the approximations used in ar-
riving at (45) and (46) should be valid over macro-
scopic interaction distances. The arguments for
why this is so are identical to those previously
discussed in the literature for the case of parti-
cles possessing no magnetic-monopole moments, "
and lead to the conclusion that as long as l is only
a moderate astronomical length Eqs. (45) and (46)
should be valid over both laboratory and astronomi-
cal distances. Reasons for believing that l sat-
isfies this criterion can be found in the literature.

From the above results we see that our tenta-
tive identifications of m, q, and q„ in Sec. III were
correct. The quantity m represents the mass of
a particle, q represents the charge, and thus q„
represents the magnetic-monopole moment. " We
also find that the length l associated with a particle
must be a universal (moderate) astronomical
length, and «must be equal to 1.

With respect to the question of whether a charged
particle can possess a significant magnetic-mono-
pole moment in addition to an electric charge and

still not be in disagreement with experiment, we
see that this possibility cannot be ruled out. If
the magnetic-monopole moment associated with
each particle is proportiona1. to the particle's
charge, and not excessive, then over macroscopic
interaction distances the interaction among such
particles is independent of their magnetic mo-
ments. In spite of the presence of magnetic-
monopole moments on the particles, the particles
interact over macroscopic distances as though
they possessed no magnetic-monopole moments.
We do not yet know the effect of such magnetic
moments on microscopic interactions.

IV. ISOLATED CHARGED PARTICLE

where, introducing the definition

r.= (Iql &)'"

and the universal constant k»

one can write

(48)

(49)

We have found that the most general time-inde-
pendent spherically symmetric solution to Ein-
stein s field equations which can, under the as-
sumptions mentioned in the Introduction, repre-
sent the field of an isolated charged particle
sufficiently far from the particle is characterized
by four parameters: a massm, a charge q, a
magnetic-monopole moment q~, and a universal
length /. The ratio of q~ to q is a universal con-
stant.

The solution is given in standard coordinates by

x'~t x'=-5t —(n —1) 2
——e ~vst st st

(47)
x' x'

g =-P g =-sv g =ZU

K+=8 + —~

q 6e 1 q' ' 1 q' rn
V = l + —, + — ~ — (l —cosh $ cos q)

~q~ (cosh& -cos7l)' 4r; 6 r, r,
q41} ' 1 ml+ ——,I —— — sinh $ sing4r, ]I 3 ~,

(50)

q, 1 1q'K= kg8 1+—
fq/

" 6 4r,' 'dr

with
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5 = (-,')'i'(1+ —,) ( ) z,

(51)

The parameter X in (51) is a function of r defined through the equation

6e~ ( lq4 ' 1 q' m1+ —
4 + —,- — sinh( sing

(1:Dsh( —fosn) I~i( 4 r 8 v

1 q' 1 q4 ' 1 m r '
1+—

4 —— — (cosh) cosy —1)
2 r, 4 r 4 3 r, (52)

If we understand the values of m and q appearing
in this solution to be those appropriate to an ele-
mentary particle, it is not difficult to show that
for q 40 the solution is singular only at the origin
of coordinates. For q =0, q„= 0, the solution re-
duces to the well-known Schwarzschild solution
to Einstein's gravitational equations.

In the special case where k~ = 0, the properties
of the above solution have been studied in a pre-
vious paper 3 Because e, v, and e ~ are inde-
pendent of k„, the properties of these functions are
discussed in that paper. We shall briefly discuss
some of the properties of y andes.

In the vicinity of the origin it is convenient to
expandy andw in a power series in'/ro One.
finds from (50)-(52), in the vicinity of the origin,

y = 1+&„'3~6(1+ cosh')'+ ~ ~ ~ +O~

q 1 2 '+ (1+ cosh')' r"
Iql 6 3 sinhm

+ 0
i (
—

) (53)

In (53) we have written out only the lowest-order
terms in the power-series expansion in m/r, and

q'/r, ' of the coefficients of (r/ro)" Note m va.n-
ishes at the origin of coordinates while y remains.
finite. The behavior of y and zo at large distances
from the origin has been discussed in Sec. III.
In (20) of Sec. III one should set e = 1.

V. CHARGED PARTICLES AND TOPOLOGY

In this section we shall show that the global to-
pology of any spatial region which contains an iso-
lated charged particle and in addition satisfies
sufficiently far from the particle certain asympto-

tic conditions suggested by empirical evidence
and discussed in the Introduction must be non-
Euclidean. We are assuming only regular (non-
singular) solutions to Einstein's field equations
are realized in nature.

We first note that from the generalized Stokes's
theorem" it follows for any antisymmetric tensor
field A&„„& satisfying the condition

Atpv &x]

that

(54)

)l A,„„„d"~=&f A,„„,d.",
Q3 Q2

(56)

where the integral on the left-hand side of (56)
extends over a three-dimensional spatial region
0, enclosed by a closed two-dimensional surface
0,. The integral on the right-hand side extends
over 0,. The quantities d7"'~ and d7"" are the ex-
tensions of an infinitesimal three-cell and two-
cell, respectively. They are completely antisym-
metric tensors (antisymmetric under the inter-
change of any two indices). The tensor A&„„& is

A,„,jd~&v= 0 (55)
Q2

if the integral extends over a closed two-dimen-
sional surface 0, enclosing a three-dimensional
spatial region having a Euclidean global topology.
We are assuming the field At„,~

is nonsingular
over the region. The d7 ('" in (55) is called the
extension of an infinitesimal two-cell. It is a
contravariant antisyosmetric second-rank tensor.
The concept of extension is discussed further in
Ref. 21.

That (55) follows from (54) is easy to see. From
the generalized Stokes's theorem we have"
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nonsingular over 0, and the global topology of
02 is Euclidean. It is clear from (56) that (55)
follows from (54).

We note that field equations (lb) are of the form
(54). From the field equations (1b) it then follows
that

1
+(st] 2 ~

st& &3 & (58)

thus

f d~"'= 4m-/
I.VIIj (59)

02

where the integral in (59) extends over a closed
two-dimensional spherical surface surrounding the
isolated charged particle but sufficiently far from
the particle so that with negligible error the field
over the surface can be approximated by (4V)-(52).
Comparing (59) with (57} we conclude that such
surfaces do not enclose a region of space having
a Euclidean global topology. This means that in
Einstein's theory, if assumptions (1)-(3) are valid,
assumptions suggested by empirical evidence&
charged particles must have non-Euclidean spatial
topologies associated with them.

APPENDIX A: fAND w

Restricting ourselves to fields of physical in-
terest (fields for which the determinate of g, „ is
negative except possibly at coordinate singu-
larities), we shall show that a spherically sym-

R t-„,jd7""= 0 (57)
02

if the integral extends over a closed two-dimen-
sional surface enclosing a spatial region having
a Euclidean global topology. We are assuming
that only regular (nonsingular) solutions to Ein-
stein's field equations are realized in nature.

We next make use of the assumption that in an
appropriate coordinate system and sufficiently
far from an isolated charged particle the field
g„„can be approximated with negligible error by
the solution (47)-(52). This is equivalent to the
assumption that (1}in an appropriate coordinate
system the field associated with an isolated
charged particle can be represented with negligible
error sufficiently far from the particle by a time-
independent spherically symmetric solution to
Einstein's field equations, (2) the symmetric part
of the field associated with such a charged particle
is flat at spatial infinity, and (3) charged particles
interact to a good approximation with other charged
particles over laboratory distances through the
conventional classical electromagnetic interaction.

From (4V)-(52) we find

metric field g„, for which fc 0 is invariantly
distinct from a spherically symmetric field for
which f= 0, and that a spherically symmetric field
for which zv & 0 is invariably distinct from a
spherically symmetric field for which zv = 0.

We first define the invariant I, and the oriented
invariant ~„

Egv] g Iyv] ~

( g)-1/ 2 e wvPag

where g~' is defined through

(A 1)

(A2)

(A3)

and g denotes the determinate of g„„. Since we
are only interested in fields of physical interest
we shall restrict ourselves except at coordinate
singularities to fields for which

g(0.
From (5) one finds

g = —(o.y —2U') (p2+f') sin'8,

(A4)

(A 5)

so that the above-mentioned restriction is equiv-
alent to

c/y —20' &0, p2+f 2 &0.

We also find from (5)

(A 6)

(A 7)

8)
2(p2 +f2)l/ 2(+y11/2)1/ 2 (A8)

APPENDIX 8: PHYSICAL MEANING OF
m, q, q~, AND I

In this appendix we shall investigate the physical
meaning of the parameters m, q, q„, and l
associated with particles in Einstein's unified
field theory.

The equations of motion satisfied by the par-
ticles we have been studying are given to second
order by (41). If we introduce the effective ex-
terna]. e].ectromagnetic fields '~'y '" and '~'y

trav] Eave ~

From (A6)-(A8) we see that if f= 0 and w =0, then
I, =0, I, =0; if f=0 and w c0, then I, &0, I, =0;
if fg0 and 2// =0, then I, &0, I, =0; and if f00 and
ze c0, then I, t0. This means that if we restrict
ourselves to fields of physical interest (fields for
which the determinate of g „is negative except
possibly at coordinate singularities), we find that
a, spherically symmetric field g„„for which f
& 0 is invariantly distinct from one for which f=0,
and that a spherically symmetric field for which
xv&0 is invariantly distinct from one for which
zv= 0.
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(p)-„, ext 1 (p)( gext ~l2 g2 gext)
[pv] 2 4 Ep, v] Epv]~ &

(P)+C ext —(p&( ~f2 2 +eext )Evv] [wv]

and define the fields 'p'y*'x' and 'p'y*
[u vl Ewvl

through

(Bl)

(B2)

where

e e~ ext +v+ ~ FgC ext +v
vv VQ

2

+ —
2 (u +u uup).

3 4m&0C
(B16)

(p) gext —j
&

(p) „-,ext [ap]
y[wv l 2 gvpa (B3) (P)~ext &P)gext &P)/iext +e &P)~ext P, a (B1'f)

Pv vt v Qvpa

(p)~ gC ext 1
~ (p)- C ext[ap]

[vv] 2 Wvpa

and make use of (89), equations of motion (41)
reduce to

(B4) (p)FgC ext ~ (p)~C exta, p
pv vvpa (B18)

yext +v+ ~ Af
y gC ext+v

[VP, ] ~ 2l Evil

+ 2 E(f (up+upu up) ~ (B5)

(P'&f f &P)g &P)f2
(p) ~ext . ..„~ ~ „...„,.)

From the definitions (Bl) and (B2), and from (37)
and (38), we have for the fields &P'y &„'„, and
(p)- C ext

y[pv] ~

(p&-ext '(p)~Eext (P)~ Eext +& (p&+Eextp, a (B6)yp Pv yvr& v, vpa

x —u (2",uP) '(p2)

- ret

(P)l (P)-
+ Q (P) e —

4fx z~, (B19)
4m&0 ~,p

'p'l c 4l'

(p)- C ext (p) -C ext (p)-C ext
[pv] p tv vtp

where

(Bv)
(pp )

' 'M;"'= "' Q &,) "[e„u„(2; ' j„„,
gp

(B20)

(P ) - (P) (P) 2
(p) - E ext (p)ly" l C 2 (p)l

1+ (~)~'y)l2

pter

(p)~ C ext 1 (P) (P)l (P')-
(&/ )g (P')$ C

&P P
—u (2 u')'

0 p. ~p ret

x &P'[qu„(p.,u') ']„.t

q
(p)l 4

~ l2 +p, ret &

pt

(B8)

"'l (p)(P)yE t (P)f Q +)[ q u (2 uP)-lj
p'~p

(B9)

(p) ~ (p)
f g & & & &f

[$u (tu) j'P

(B10)

(B21)

We see from (B16)-(B21)that the interaction
among the particles can approximate that of con-
ventional classical electrodynamics over laboratory
distances only if 'P'l is a universal. astronomical
length and if &P&c =1. We shall therefore restrict
our study to such particles. Under these con-
ditions we find as the equations of motion of the
particles to second order

Fext +v + M Fg C ext+ve e
c2 VP

If we introduce the mass M, charge e, mag-
netic-'monopole moment e~, and effective external

electromagnetic fields F'„"„'and F„„'"'in practical
units, where

2
+ —. , (u, +,u'uu),

4K&0C
(B22)

GM
SZ c (B11) &p)y ext &P&~ext (P)~ext + & (P&f&/Jext p, a (B23)Qv P el/ vtv fjvpa

(B12)
and

(p)FgC ext ~ (p)~C ext a, p
Qv pvpa (B24)

(B13)
(p) ~ext —u„(t', uP) '

47T&j pe p
C ret

y E ext —
(8&&p Q)l/2 Fextl

Ev] 0 QV

l
+ Cext (8ve G)l/2 y Cext

[ ] 0

(B14)

(B15)

e 1&
+

4 Q —,~2', (B25)
4m0 ~~p c 4l ]

equations of motion (B5) take the form (P)Mext i && &P')
[e u (& )-t]

7T pp p

(B26)
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1 (Pl ) ~

(p)~C ext u„(r, u') ' . (B27)
47T60 p' g

c - mt

The particles interact to second order through
what we shall call generalized Einstein electro-dynamicss.

"
If the '~'q„are not excessive, and by this we

mean '~'q„S ' 'q, the approximations used in
arriving at (B22)-(B27) should be valid over
macroscopic interaction distances. The arguments
for why this is so are identical to those previously
discussed in the literature for the case of charged
particles possessing no magnetic-monopol. e mo-
ments (q„=0),"and lead to the conclusion that as
long as / is a moderate astronomical length Eqs.
(B22)-(B27) should be valid over both laboratory
and astronomical distances. Reasons for believing
that l satisfies this criterion can be found in the
literature. '

From the above results we see that our ten-
tative identifications of m, q, and qM in Sec. III
were correct. The quantity m represents the mass
of a particle, q represents the charge, and q~
represents the magnetic-monopole moment. We
also find that the length l associated with a par-
ticle must be a universal (moderate) astronomical
length, and & must be equal to 1.

We see from the second order equations of
motion (B22)-(B27) that over macroscopic inter-
action distances electric charge in Einstein's
theory interacts with electric charge through a
weak long- range nonconventional electromagnetic
interaction in addition to the conventional classical
electromagnetic interaction. In the same order of
approximation there is also a self interaction
associated with electric charge which gives rise
to the conventional classical radiation reaction
force acting on a charged particle. The above
properties of electric charge in Einstein's theory
have been discussed in previous papers and wil. l
not be discussed further here. We also see from
(B22)-(B27) that in Einstein's theory in an ap-
proximation which should be valid over macro-
scopic interaction distances, magnetic- monopole
moments do not interact with magnetic-monopole
moments. In this way Einstein's theory differs
from what is usually assumed in electrodynamics
so that if magnetic monopoles are ever discovered
in nature a study of their interaction over macro-
scopic distances should provide a test of Einstein's
theory. Finally we note from (B22)-(B27) that in
Einstein s theory the interaction over macroscopic
distances between magnetic-monopole moments and
and electric charge is the same as that usually
assumed in electrodynamics.

Next we ask the question, can charged particles
in Einstein's theory possess sizable magnetic-

e ~extp cr v+ M ~gCext +v p
e

gvp& + 2 pv (B28)

Making use of (B24), we see (B28) is equivalent
to

~ext p fy+v M
&

+Ccxt p ~+ve
Qvpo C pvpfy (B29)

and from (B26) and (B27) we find (B29) is equiv-
alent to

(pl)'"ee,„„, [e„u"(~,u') ']

=' 'e„c„„„~ ' '[eu"(x,u') 'j„,'' 'u". (B30}
O'

Equations (B30) will in general only be satisfied
if the magnetic-monopole moment associated with
each particle is proportional to the particle's
charge, that is if

or equivalently,

"'e~ = —' (k c) "'e

(B31)

(B32)

where k„ is a universal constant. If (B31) is
satisfied, equations of motion (B22)-(B27) take
the form

2

Mig, = E,',"'u" + 3,(ii„+—ic, ci'u„), (B33}

where

(p) ~ext (p)~ext (g )~ext
IAv p yv vs'

and

(B34)

(p)~cxt 1 (P), e
Q~ J'p Q

T~o p ~p C

1 (&') e (1
4m~, „, c (4P (B35)

monopole moments in addition to electric charge
and still interact over. laboratory distances
through the laws of conventional classical electro-
dynamics, i.e. , Maxw ell electrodynamics? We
shall find that they can if the magnetic-monopole
moment associated with each particle is propor-
tional to the particle's charge. Under these con-
ditions the particles we have been studying are
found to interact over macroscopic distances as
if they had no magnetic-monopole moments.

If the magnetic-monopole moments associated
with the particles are not to effect the motion of
the particles when interacting over macroscopic
distances, we see from (B22)-(B27) that along
the world line of each particle one must have
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The particles interact to second order through
what we have called Einstein electrodynamics. '
If (831) is valid, to second order the interaction
among the particles does not depend on the par-

ticles' magnetic-monopole moments '~'e~. Equa-
tions of motion (833)-(835) are equivalent to (42)
and (43).
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