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I study a class of lattice versions of QED with fermions with the aim of clarifying the relationship between the
fermion spectrum (doubled or not), continuous chiral symmetry, the range of the lattice interactions, and the validity

of perturbation theory. Theories of this class with an undoubled spectrum, such as the formulation due to Drell,
%'einstein, and Yankielowicz (D%'Y), have infinite-range interactions and infrared-divergent perturbation series.

The infrar'ed singularities can be removed by a resummation of the series. I then carry out a renormalization

program for DWY QED after which the a~0 limit of the theory is finite and coincides with continuum QED.
Finally, I consider the nonperturbative structure of DWY QED.

I. INTRODUCTION

Rigorous formulation of a continuum quantum
field theory normally involves defining the theory
as a singular limit of a cutoff or regularized
theory. In perturbation theory many satisfactory
regularization schemes exist, including Pauli-
Villars, dimensional regularization, and others.
However, for nonperturbative studies of gauge
theories, interest has focused on the lattice regu-
larization, which has the virtue of preserving ex-
act l.oca1. gauge invariance. Bl.ock-spin renormal. —

ization group, ' Monte Carl. o,' and rigorous mathe-
matical methods' have provided a. great. deal. of
information concerning the phase structure and
continuum limit of pure gauge theories on a 1.at-
tice.

The extension of lattice techniques to realistic
theories such as quantum chromodynamics (QCD)
has been hindered by uncertainty regarding the
proper treatment of lattice fermions. Straightfor-
ward transcription of the Dirac equation to the
lattice by replacing derivatives by nearest-neigh-
bor differences leads to the so-called spectrum-
doubling prob1, em: the continuum limit of the 1.at-
tice Dirac equation describes 2~ fermions rather
than just one, where d is the number of dimen-
sions of space-time which are in the lattice for-
mulation. Of the many proposed sol.utions for this
problem, two will be discussed in this paper.
Wilson' adds a term with no y-matrix structure
to the lattice Dirac equation. 'This term functions
as a momentum-dependent "mass," giving the ex-
tra fermions masses on the order of the cutoff
and removing them from the spectrum in the con-
tinuum limit. As an additiona1. mass term, it a1.so
destroys the global ehiral symmetry of the Dirac
theory at m= 0. The method of Drell, %einstein,
and Yankielowicz' (DWY) yields the correct fer-
mion spectrum and preserves chiral symmetry by
transcribing the continuum derivative as a non-
local lattice difference operator. The definition is

such that in momentum space the lattice deriva-
tive acts as mu1tiplication by ip

Clearly, if the spectrum-doubling problem is
connected with chiral symmetry, then it must be
ful. ly understood before lattice methods can give
reliable information about the symmetry structure
of QCD. Indeed, an important issue connected
with chiral symmetry in any gauge theory is the
axial anomaly. Any lattice gauge theory with con-
tinuous chiral symmetry must answer the follow-
ing question. In consequence of the continuous
symmetry, there will be a conserved axial-vector
current on the lattice. The naive manipulations
leading to a nonanornalous Ward identity for this
current are valid in the presence of the lattice
regularization. Does the continuum limit of this
current existed If so, does that not yield a contin-
uum axial-vector current wi. th no anomal. y, and is
that not impossible?

The straightforward transcription of the Dirac
equation answers this question by doubling the
spectrum: the anomaly is canceled between the
different fermion species. ' The Wi1.son formu1. a-
tion answers by explicitly breaking the lattice
chiral symmetry. An extra term appears in the
Ward identity and becomes the anomaI. y in the
continuum limit. " In this paper I will show that
the DWY theory encounters infrared divergences
in. perturbation theory which need careful treat-
ment. Order by order the continuum limit of the
conserved axial-vector current does not exist due
to these infrared divergences.

It is becoming generally recognized that an un-
doubled spectrum, continuous chiral symmetry,
and locality of interactions are incompatible
though desirable properties of a lattice fermion
scheme. Indeed, in the literature one can find the
claim"' that a lattice fermion theory with un-
doubled spectrum and continuous chiral symmetry
is itself impossible, although the arguments in
support; of these cl.aims involve additional assump-
tions. One purpose of the present work is to clar-

3218 1981 The American Physical Society



PERTURBATIOX THEORY FOR UNDOUBLED LATTICE FERMIONS 3219

ify the relations between these three properties
of lattice fermion schemes.

Before using a particular regularization scheme
for nonperturbative investigations, one mould like
to have confidence that it yields acceptable re-
sults in the familiar context of perturbation theo-
ry. Sharatchandra' has shown that Wilson's for-
mulation of QED on a four-dimensional Euclidean
lattice passes this test. He showed that in per-
turbation theory a multiplicative renormalization
of fields and parameters suffices to remove all
divergences in the a- 0 limit of the S matrix,
mhich then agrees mith the 8 matrix of continuum
QED. The main purpose of this paper is to give
the corresponding analysis for the DWY version
of QED. In this ca,se multipl. icative renormaliza-
tion does not suffice: additional counterterms are
required. 'This is to be expected, since once long-
range interactions are admitted the DWY I agran-
gian is by no means the most general one consis-
tent with its symmetries. The analysis, like
Sharatchandra's, should extend to QCD as well.

Perturbation theory with DWY lattice fermions
has been studied by Karsten and Smit in the four-
dimensional Euclidean lattice formulation. "' ' "
They computed both the one-loop vacuum polariza-
tion and the VVA triangle diagrams. They con-
cluded that the axial-vector current did not de-
velop an anomaly in the continuum limit. Its ma-
trix elements, along with the vacuum polariza-
tion, were nonlocal, not I.orentz covariant, and
infrared singular in the continuum limit. Further-
more, the theory appeared nonrenormalizable in
that infinitely many Green's functions were super-
ficially divergent. Nakamaki" reached similar
conct.usions from a study of the DWY theory in
Hamil, tonian form. In this paper I show that the
perturbation expansion of Karsten and Smit breaks
down owing to the infrared singularities. I des-
cribe a resummation of the perturbation series
which removes these divergences, and carry out
a renormalization program to all orders of the
modified expansion. 'The renormalized Green's
functions at each order in this expansion go over,
for a- 0, to those of continuum QED to the same
order.

The paper is organized as follows. Section II
reviems the fermion-doubling problem and ex-
plores the reasons it occurs. The DWY solution
to the problem is discussed, and the "topological"
connection between spectrum doubling, chiral.
symmetry, and the range of interactions is ex-
plained. In Sec. III I summarize Sharatchandra's
arguments for the renormalizability of Wilson's
lattice QED, which form the basis for the argu-
ments I subsequently apply to the DWY theory. In
Sec. IV I show' how continuum QED in a fixed gauge

can be faithfully transcribed onto a lattice. 'The

DWY derivative and long-range interactions ap-
pear automatically. Although this is not the DWY
lattice gauge theory which has been discussed in
the literature, it provides a simple counterexam-
ple to the claim that no lattice version of QED
with undoubl. ed spectrum and continuous chiral
symmetry is possible. Section V begins the dis-
cussion of the DWY lattice gauge theory studied
by Karsten and Smit. I derive the Feynman rules,
check the classical continuum limit of the I.a-
grangian, and exhibit the conserved currents and
Ward identities. The theory appears nonrenor-
malizable by power counting. However, the per-
turbation expansion is shown to be invalid due to
infrared divergences which arise as a direct con-
sequence of having an undoubl. ed fermion spec-
trum. 'The summation of tadpole diagrams is
shown to remove both the infrared divergences
and the problems with power counting. Section VI
begins the discussion of renormalization. The
obstacle to direct application of Sharatchandra's
methods is the inability to expand integrands in
powers of external momenta. I divide the inte-
grals into subregions, in each of which the Tayl. or
expansion in external momenta is possible. I
then give the prescription for order-by-order
construction of counterterms, and show that in

the presence of the counterterms the a 0 limit
gives ordinary continuum QED. Section VII sup-
plements this rather abstract discussion by apply-
ing the renormalization prescription to one- and

two-loop examples. Although detailed calculations
are not carried out, the form of the necessary
counterterms is clarified. I consider to what ex-
tent the counterterms can be generated by re-
scaling fieMs and parameters. Finally, I show
that in the renormalized perturbation expansion
the conserved axial-vector current still has diver-
gent matrix elements. These can be made finite
by redefining the current, at the cost of introduc-
ing the usual anomaly. Section VIII summarizes
the conclusions and points out remaining pro-
blems. In particular I consider whether the prop-
erties of the DWY lattice gauge theory establ. ished
in perturbation theory will persist in the exact
nonper turbative solution.

Notation: The Einstein summation convention is
not used in this paper. Summations will be indi-
cated expl. icitly.

II. LATTICE FERMIONS

This section revie'ws the spectrum-doubling
problem of lattice fermions and motivates its solu-
tion via the "DWY derivative".

Consider the Klein-Gordon equation for a scalar
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field,

(2.1)

'The problem of transcribing this equation onto a
three-dimensional lattice with continuous time is
solved by making P a function on lattice sites in-
dexed by x and replacing V' by an appropriate dif-
ference operator. Plausible choices are V,', V ',
V, ', and V ~ V„where

V,'f(x) = —[f(x+ a.') —f(x)], (2.2a)

V'f(x) = —[f(x) —f(x —at)],
a

(2.2b)

V,'f(x) =—[f(x+ at) —f(x —a')] . (2.2c)

V E = — e'& sin —Qa+yyz+ ' 2 . 2 (2.3a)

(In this paper the variable x indexing lattice sites
will always carry dimensions: x, =n;a where a
is the lattice spacing and n; is an integer. a is a
vector of length a in the i direction. ) The spec-
trum of the lattice Klein-Gordon equation is found

by seeking solutions of the form

y(x f) e-ieteik%

leading to the dispersion relations

pared to one for Eq. (2.3d).
It is not coincidental that Eq. (2.3d) alone is

satisfactory. The gradient of a function f(x) on
lattice sites is naturally defined as the function
on jinks which is the sum (with sign changes for
the orientation of the link) of the values of f at the
sites bounding a given link. This is V,f. The
divergence of a function f (x) on links is a function
on sites given by the sum (with sign changes for
orientation) of the values of f, on links impinging
on a given site. This is E,vs, . Hence the La-
placian is naturally given by V ~ V, . The different
derivatives represent the lattice boundary and
coboundary operators, ' which are not equal.

From a more abstract point of view, what is
happening is the following. Associated with a
scalar, vector, or antisymmetric tensor field
there is a differential O-form, 1-form, or 2-form.
A rotationally covariant differential operator act-
ing on the field can be expressed in terms of the
exterior differential operators d and 5 acting on
the form. A natural lattice formulation is avail. a-
ble by associating n-forms with n-cochains (func-
tions on sites, iinks, or plaquettes for n= 0, 1, 2)
and d and 6 with the boundary and coboundary op-
erators represented here by V~ and V' '. 'The

problems with fermions arise because they fall in-
to spinor rather than tensor representations of the
rotation group and so have no associated n-forms.

Consider now the Dirac equation,

E'= — e '~& sin' —& a+gyp'
2 (2.3b) (iy ~ 8 -tn)/=0, (2.4)

1
V~: E = —,

2
s'n Q)a+m (2.3c)

V„~ V, : E'= —, sin'2k, a+m'.
a

(2.3d)

(Qn an infinite lattice lt is a continuous variable
which can be chosen to run from -w/a to +tt/a.
The notation A = v/a will sometimes be used. )

All these expressions reduce to the usual con-
tinuum dispersion relation when a- 0 with k fixed.
However, V', and V' are not Hermitian: the ener-
gy in Eqs. (2.3a) and (2.3b) is not real. The re-
maining possibilities differ only in the period of
the sine functions. Equation (2.3d) has the 2&/a

periodicity of the lattice while Eq. (2.3c) has
period tt/a. This signals spectrum doubling. For
an acceptable spectrum only the spatially constant
(k= 0) solution should minimize the energy. For
Eq. (2.3c) this solution is degenerate with seven
others having k, =tt/a for some values of i (Q al-
ternates sign in some lattice directions). About
each of these solutions there is a band of long-
wavelength excitations, resulting in eight low-ly-
ing particle states in the continuum limit com-

which is seen to have the same dispersion relation
as the Kl.ein-Gordon equation by applying jy -8
+ m to both sides. Assume this equation is to be
put on the lattice by substituting a difference op-
erator for the spatial derivatives, g being defined
at lattice sites. This assumption is by no means
necessary, but it does guarantee that the lattice
Dirac equation will have the usual chiral invari-
ance when m = 0. The fermion dispersion rela-
tion will be that of the Klein-Gordon equation
whose Laplacian is the square of the Dirac differ-
ence operator. The acceptable dispersion rela-
tion (2.3d) cannot be obtained.

'The I:irac equation requires a Hermitian differ-
ence operator whose square is an acceptable La-
placian. DWY' achieve this in terms of the
Fourier transform of a lattice function f(x),

f (p)= a'g e t~+f(x),
(2.5)

f(x) = 2, d'p et~+f(p),

by defining Vtf(x) as the inverse transform of

iPtf (p). This leads to the exact relativistic
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spectrum E =p + m on the lattice. In coordinate
space the definition is

I n+1

Vqf(x) =Q [f(x+naq) —f(x -naq)] . (2.6)
na

The nonlocal. ity of this operator is essential for
avoiding the spectrum doubling. Indeed, a general
derivative operator may be written

It is amusing to note that, because a Fourier
series converges to the mean at a point of dis-
continuity, the DWY function D(p&) =

p& for p&
c ( v/-a, v/a), extended periodically, does have a
zero at p&= v/a. However, there is no band of
low-lying states surrounding this point.

It is quite possible for D(P&) to have more than
two zeros. The choice

(2.7a)

with Fourier transform

&&f (p) = ~&(p)f (p), (2.7b)

where the factor i has been extracted for conven-
ience. The fermion dispersion relation will be

E~= D~' p +m (2.6)

and spectrum doubling occurs if Q&D&'(p) = 0 has
solutions other than p=2nv/a. Usually D&(p)
=D(p&) is a function of Pz alone, but in any case
one can fix p = 0, i4 j, and study the function
D(P&)=D&(p) alone. Hermiticity requires D to be
real, a satisfactory continuum limit requires
D(p&)-p& as a- 0 with p& fixed, and on general
grounds D has period 2m/a. It is evident from
Fig. j. that if D is continuous, it has at least one
zero for 0&P&(2v/a, with a band of low-lying
states around this zero to become an extra fer-
mion in the continuum limit. 'The DWY derivative
(Fig. 2) escapes this conclusion due to its discon-
tinuity at p&=m'/a. One recalls that the Fourier
coefficients of a discontinuous function fall off as
I/n or slower, so D&(x —y) is necessarily nonlo-
cal. This argument, which al.so appears in Ref.
6, is a simple and intuitive case of the more gen-
eral topological theorem of Ref. 8.

Vqf(x) =—[f(x+ 2a~) -f(x —2a))],4a

for example, leads to "spectrum quadrupling. "
It should be evident from this discussion that

there are interesting geometric and topological
issues connected with lattice fermions. Further
research al.ong these lines is in progress.

III. WILSON'S L'ATTICE @ED

This section reviews Wilson's4 lattice formula-
tion of QED and Sharatchandra's' conclusions con-
cerning its perturbative renormalizability. The
method of Sharatchandra's proof is summarized
in some detail since it provides a canonical set
of arguments for establishing the perturbative
equivalence of lattice and continuum theories.
The analysis of the DWY lattice QED formulation
in this paper will be based heavily on these argu-
ments.

Throughout this paper, detailed discussions of
lattice perturbation theory will be carried out in
the four-dimensional Euclidean, rather than the
Hamiltonian, formalism. This makes available
the technical conveniences of the straightforward
path-integral quantization and manifest symmetry
between time and space coordinates characteristic
of this formalism.

Wilson's lattice QED action is

I= a' P —,'E „'(x)+ a' g —[|7„A„(x)]' -a' g g(x) —.y —[tP(x+ a )e «~&~«& —g(x —a ) e «'"& '" '~ ']
&yP ~ P Xyg X ~ 0

a g — g + a etc +4 + ~ a e f8cA~(x-c+) 2 g a ~ g g
2a

ij D(p ~

) jt D) (p)

&a~ra -77-ra
p

orle

FIG. 1. General behavior of a continuous function
D(p, ) appearing in the fermion dispersion relation, il-
lustrating the necessity of spectrum doubling.

FIG. 2. The DWY derivative D, (p), which avoids
spectrum doubling by virtue of discontinuities at + 7)/a.



JEFFREY M. RABIN

where / „(x)= V'„A„(x)—V'„A (x). (The y-matrix
convention is (y„,y„}=—2&~„)

For e = 0, the free fermion action is constructed
using the derivative V' and would therefore yield
a doubled spectrum if not for the additional terms
in the third line of Eq. (3.1). In momentum space
these terms read

sin g p~a p P

and they -vanish for p-0 or for a-0 with p fixed.
However, they give masses of order A to the ex-
tra fermions with p =m/a, removing them from
the spectrum in the continuum limit. They also
explicitly break chiral symmetry, as is appropri-
ate for a mass term.

'The coupling to the gauge field is introduced in

a manner consistent with invariance under the lo-
cal gauge transformations

e- gex(e&
&)&(x)

A, (x)-A, (x)+ V„')((x) .
(3.2)

Finally, note that the lattice derivatives in Eqs.
(3.1) and (3.2) are used "naturally" in the sense
of Sec. II: 7'„ is used to create the pl.aquette vari-
able E „ from the link variable A while V forms
the scalar divergence of the vector A

Expanding the exponentials in Eq. (3.1) and in-
troducing the Fourier-transformed fields permits
one to read off the Feynman rules from the coeffi-
cients of the terms in the action. For the photon
field it is convenient to define the Fourier trans-
form by

The second term in Eq. (3.1) serves. to fix a "co-
variant" gauge. 'The form of the photon kinetic
energy (not periodic in A„) identifies this as the
noncompact formulation of QED; the compact for-
mulation would replace E „'(x) by

(8je a P ~ „( &e] )
2 2

e'a4

a' Qsxp t'(Q k)
'x =(2')'ll,'„(Qk),

where

5„,(q) =— Q 5(q+ 2') .
f7 ~ eo

(3 4)

S+(p) S„(p)
A~„(p) = 8 ~

—
( I

—x)
S (p) S (p)

It is shown in the Appendix that because the Feyn-
man integrands are themselves periodic functions
of momenta, the trivial integrations can still. be
done. Thus even on the lattice one can label Feyn-
man graph lines with exactly conserved momenta
and perform nontrivial integrations only over. a
set of loop momenta.

Sharatchandra showed that this set of Feynman
rules defines a multiplicatively renormal. izable
lattice QED: fields and parameters can be re-
seal. ed so that when a- 0 the Green's functions
are finite and identical to those of ordinary QED.
(In fact, Sharatchandra considered compact QED,
which is technically more complicated. ) This is
demonstrated in four steps.

(1) The Feynman rules reduce to the continuum
Feynman rules when a- 0 with momenta fixed.
Since the Feynman rules reflect the momentum-
space coefficients in the action, this merely
means that the action has. the correct classical
continuum limit. However, it does imply that if a
normal diagram (one conta. ining no multiphoton
vertices) converges as a- 0„ it agrees with the
continuum result for the diagram.

(2) The list of primitively divergent diagrams
and their superficial degrees of divergence 0 (for
a-0) coincides with the list for continuum QED.
For normal diagrams this can be shown by bound-
ing lattice quantities by continuum quantities. For
example, for the photon propagator,

~ d'p
A (x)= e"'"'""'A (P), (2»)' (3.3)

- —
I

I wSF(p) —
a Z y sin p a+2 s)n —p Q +fn2p(

so as to get real expressions for propagators and
vertex functions. For example, the Fourier
transform of -iV A (x) will be (2/a) sin(e P„a)
A (p) rather than (1/ia)(1 —e 'e&')A (p) Some.
of the resulting Feynman rules are given in Fig.
3.

Strictly speaking, the Feynman rules require an
integration over the momentum of each internal.
line. In the continuum theory, many of these in-
tegrations are trivial because of the momentum-
conserving 5 functions. On the lattice, however,
one has at each vertex a factor

I—e y cos 2 (p+q) a+a sin —(p+q) Q2

a e Spv y sin —(p+q) a —a cos —(p+q) a
I

2 pc 2 p

FIG. 3. Some of the Feynman rules for Wilson's lat-
tice @ED. There are n-photon vertices for all n &0.

2
S„(p)=— — sin ~p„a .
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2 2 w-p & —sin& p a~p 0+p
7T

i a 2 l 1 a '

implies

1 1 m~ 1 w.
p' Q (4/a')sin'(2p a) 4 p'' ~ ~~ a

'

Now imagine shrinking some internal fermion
propagator to a point in a normal diagram. 'The

loss of this propagator increases D by one unit,
but a two-photon vertex is created which carries
an explicit factor a according to Fig. 3. Hence D
is unchanged. This argument generalizes to show
that the presence of multiphoton vertices does not
interfere with power counting.

(3) All Feynman integrands possess Taylor ex-
pansions in powers of their external momenta.
Ignoring infrared problems, e.g. , by assuming
a photon mass, this means that the Bogolubov-
Parasiuk-Hepp (BPH) procedure of subtracting
the first D+1 terms in the Taylor expansions of
divergent subgraphs, with combinatorics handled
by a forest formula, can be implemented. It fol-
lows from point (1) that normal diagrams take
on their continuum values when a - 0 after the
subtractions are done. If a divergent subgraph
contains a multiphoton vertex then it has the form
a times an integral of O(1/a" n), ¹ 1. After
D+I subtractions this becomes a O(1/a" '), so
all such diagrams vanish when g —0.

(4) It remains to enumerate the counterterms
which are required to implement the BPH sub-
tractions. As in the continuum theory, the Ward
identities are useful here. They are derived, as
usual, by making a change of variables corre-
sponding to an infinitesimal gauge transformation
in the path integral for the vacuum functional in
the presence of sources. The action proper is

QS.(k)I'.(P+k, t) =S '(P+k)-S, '(p), (3 5)

g S„(k)II„„(k)= 0, (3 6)

QS„(k,)I„„„,(k„k„k3,k~) = 0, (3.7)

where S„(k)=—(2/a) sin —,'k„a and I„„„,is the photon-
photon scattering amplitude. By substituting the
Taylor expansions of the amplitudes into the Ward
identities and using the lattice cubic symmetries
one can show that I„„„,is not divergent, the di-
vergent terms are at worst logarithmic, and the
momentum dependence and tensor structure of
these terms is exactly as in continuum QED. Be-
cause the action differs by terms of order a from
the continuum QED action, it follows that multi-
plicative renormalization of fields and parameters
generates precisely the needed counterterms,
plus additional terms of order a lna which have
no effect when a-0.

These arguments have been reviewed in detail
so that the reader will understand exactly what
ingredients go into a proof of perturbative equiv-
alence of lattice and continuum field theories.
In Sec. V, I will discuss the problems that arise
in applying the same arguments to the DWY
version of lattice QED.

invariant under such a transformation but the
gauge-fixing and source terms are not. The Ward
identities state that the contribution of these terms
does not affect the vacuum functional. It should
be evident from Egs. (3.1) and (3.2) that the Ward
identities differ from their continuum versions
only in the replacement of B„by ~„. They read,
in momentum space,

IV. FAITHFUL LATTICE TRANSCRIPTION OF QED

In Sec. II it was pointed out that with the DWY derivative one can construct a lattice free fermion theory
with continuous chiral symmetry and a sensible spectrum. I now give an "existence proof, " showing that
in fact a lattice QED can be formulated which continues to enjoy these properties and makes sense in
weak-coupling perturbation theory. This serves as a simple counterexample to statements in the litera-
ture that no such formulation is possible. "'

The idea here is to make contact between continuum and lattice field theories via a momentum-space
formulation which both share. This technique has been used by DWY' and by others" and in fact moti-
vates the introduction of the DWY gradient.

The Euclidean action for ordinary continuum QED reads

I= d'x &E„„'— x —.y„8„+ieA„x g x -m|t) x x
gV

(4.1)

The first step is to fix the Coulomb gauge and eliminate the dependent variable A.o by means of its equation
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of motion:
7

I= dx &BOA +& &&A" — x —.y B„x -mgx x — e'xy&. x x
2 j

+e ~x, xg&x~ x x
&(& —&')

(4.2)

It is to be emphasized that I is manifestly gauge invariant because it is written in terms of gauge-invariant
fields: A is now the transverse photon field and ()) is the Coulomb-gauge (physical) electron field. All
gauge degrees of freedom have been removed. These degrees of freedom are not true quantum variables
and should not be included in the transcription to the lattice. The action (4.2) is now written in momen-
tum space:

I= —, —,'O'A(k) ~ A(-k) —(j)(k)y k)c)(k) —m(t)(k))t(k) —e —,)j)(k)y A(p)(j)(q)&'(p+q -k)
(2v)4 ' (2v)'

d p'B q d@l+2e' . --- -&-. 0'(k)&(l)8"(P)(j(q)()'(k+0 -l -q)(2v)' I
-kl' (4.3)

Next, impose a cutoff A on the magnitude of each component of momentum in Eq. (4.3). (This is why it
was necessary to write I in terms of explicitly gauge-invariant variables. Had that not been done, gauge
invariance wouM have been lost at this point. ) The resulting action could equally weil be interpreted as
the momentum-space action of a lattice field theory, namely,

&„„„.=a'g ~d(x-y)A(x) A(y)-a' g )j)(x) y„&,—(.x-y) j(y)))
Xr P &r3b&

-a'g m(j'(x)(j'(x) -a" g ef(x, y, e)((x)y,.A,.(»)())(z)+a" P 2e'Z(x, x', », y')$ (x)&(x')(j' (y)(j(»'),
x xr 3f

(4 4)
where

& d'u
d(x y )

— —k&e()) (x x)-'
(2(()'

~ d'k
(x y) = r'k eih (x r)-

(2v )'

&) — ) q e((k'x 0x ax)f, 4-('P-~ k)

~ d'k d'P d"n d'l 1
g(

. p y y /) q ~ ~ e(lt(' +Ox' lx' xq' ))r(()p4+ k l q )(2w)'2 i l —ki

The nonl. ocal coefficient functions here are all.
translation invariant and, except for g(x, x', y, y ')
which contains the noncovariance associated with
the Coulomb interaction, invariant under the lat-
tice cubic symmetries. D„(x -y) is just the DWY
derivative operator. Note also that in this for-
mulation there is no possibil. ity of assigning the
photon field A&(x) to the links of the lattice: all
fields are treated on an equal footing and may as
wel. l be situated on the sites.

The lattice theory (4.4) may be quantized by the
path-integral technique provided one integrates
only over transverse gauge fields with k ~ A(k) =0.
It is evident that in all respects —including per-
turbation theory —the theory is equivalent to
Coulomb-gauge continuum QED regularized by a
momentum cutoff. To each continuum operator

there corresponds a lattice operator, obtained by
a double Fourier transform, with the same regu-
larized matrix elements. 'The fermion spectrum
is sensible and there is chiral symmetry for m = 0.
Also, there are no umklapp processe~", momen-
tum conservation in Feynman diagrams is exact
rather than periodic, and propagators and vertex
functions are identical to those of continuum QED.
The theory can be given a finite a- 0 limit by in-
cluding in the momentum-space action the counter-
terms needed to renormalize continuum QED.
Because of the momentum-cutoff regularization,
photon mass counterterms will be needed. For
Q' theory in 1+ 1 dimensions all necessary coun-
terterms are known exactly and this program has
been carried out explicitly by Bronzan. "

Although this procedure provides a lattice
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V. DWY LATTICE GAUGE THEORY

A. Introduction

This section begins the discussion of the lattice
gauge theory with action

I= a' Q —,
' E„„'(x)+a' Q —[v„A„(x)]'

&eNeI' Xyg

-a' g g(x)y„—.D„(x -y)g(y) exp iea QA, (z)
1

&eVeP g=X

-a4 m x x, (5 1)

theory which faithfully represents continuum
QED, it is not a lattice gauge theory. A lattice
gauge theory possesses a local gauge group on the
lattice under which the action is invariant but the
fields transform nontrivially. The above theory
does not qualify because the gauge freedom in the
fields was removed before transcription to the
lattice. In the next section I discuss the lattice
gauge theory constructed using the DWY deriva-
tive.

'The lattice theory constructed above possesses
neither a local gauge symmetry nor periodic mo-
mentum conservation. It is easy to understand
qualitatively why these properties are connected.
At a technical level, perturbative proofs of Ward
identities require shifts of integration variables
which are made possible by periodicity. More
generally, consider a term in the lattice action

Z(x„x„.. . ,x„)y(x,)y(x, ) . .y(x„.),
where Q is a generic field. Assuming that E is
translation invariant its Fourier transform
E(P„P„.. . ,P„) can have support only when Qp
= 0 mod 2v/a. To obtain exact momentum conser-
vation 5 must be so chosen that its support lies in
the subregion QP, = 0: not all momenta can be al-
lowed to become large simultaneously. 'This is
the case for the coefficient functions in Eq. (4.4).
However, a gauge symmetry which is local in co-
ordinate space will affect the high-momentum com-
ponents of fields. A gauge-invariant coupling
term will couple high-momentum components of
fields, so that in general the support of E cannot
be restricted to Qp, = 0.

where

Z„„(x)= V„A„(x)—V'„A„(x),

and

~d4k .D„(x)-
( ),zh„e

= (—I)"~t'/a'x„

if x„40 but x„=0 for all v 0 p,

= 0 otherwise, (5.2)

and the notation Q',.„A„(z) means the following.
Owing to the presence in Eq. (5.1) of the DWY
derivative function D„(x -y), the summation need
only be defined in case x„4y but x„=y„ for all
v4 tz (x and y are separated in the p, direction
only). In that case it means the sum of the values
of A on the oriented links between x and y:
Q', „A„(z)means

(y+~&- a)/c

A„(x+na„)

—8(x„-y„)
(x& ~+ -a)/a

A„(y+na„) .
n=

For e= 0 the fermion action is that of the DWY
formulation, with undoubled spectrum and contin-
uous chiral symmetry for rn = 0. 'The action is
invariant under the gauge transformations of Eq.
(3.2). Since the photon action is exactly a,s in the
Wilson formulation it should be clear that the
Ward identities are still given by Eqs. (3.5)-(3.7).
In particular, the nearest-neighbor derivative,
not the DWY derivative, appears in Ward identi-
ties. (Nakawaki" has considered a lattice theory
in which all derivatives are taken to be ik in
momentum space. This simply replaces S„(h) by
k„everywhere without affecting the arguments
to follow. ) However, the consequences of the
Ward identities are vastly different for the theo-
ries (3.1) and (5.1) due to the different fermion
spectra. 'This will emerge shortly.

The theory (5.1) possesses a conserved electro-
magnetic current which can be identified by con-
sidering the coupling to an external field:

g v-„q, (z) = 0,

' (z)= a'5A'*'(z ) „~xz,
= —ea'

Xzg
xp, &git &

gent

gp= Xylol Pg

$(x+,D„(x -y}tt'(y) exp iea QA„(zo) +H.c. . (5.3)
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'There is also an axial-vector current, conserved for gq = 0:

i.'(&) = ~'

Xp, &4p, ~ $y,
g ~g &V ~ff

V V

g(x)1'~y, D~(x -y)g(y) exp 'iea p A (ge) +H.c.
(5.4)

Both these currents are gauge invariant.
By expanding the exponential in the action and

introducing Fourier transforms, one derives what
I shall call the naive Feynman rules. These are
given in Fig. 4. Momentum conservation in this
theory is once again modulo 2w/n. The first point
to observe is that the continuum Feynma~ rules
are indeed recovered when a 0 with all momenta
fixed. This verifies that the action has the correct
classical continuum limit, a fact which is not im-
mediately apparent from Eq. (5.1). The most
striking feature of the naive Feynman rules, how-
ever, is the presence of infrared singularities in
the vertex functions. The one-photon vertex, for
example,

D~(P) -D~(P+k)
S„(k)

behaves as 2&eY, /ak-„as k„-0' with P —m/a
from below and P~+ k -m/a from above. This is
a consequence of the discontinuity in D„(P) at P„
= v/a, and thus, indirectly, of the Ward identity
(3.5) relating the vertex to the fermion propaga-
tor. 'These singularities have important conse-
quences for the renormalization program in the
manner of Sharatchandra. Due to the singularities
and discontinuities in the vertices, naive Feynman
integrands do not possess 'Taylor expansions in
powers of external momenta. Furthermore, the
singularities alter the results of naive power
counting. A diagram with E external fermion lines
and B external boson lines would normally have
superficial degree of divergence D =4 —&E —B.
Here, however, for each external photon Line

there is a factor 1/S, (k) which sits outside
the integration and does not help to converge it.
The integral is left with D = 4 —2E. The infinite
class of diagrams with E= O.or 2 is superficially
divergent. Due to the infrared singularities,
then, the crucial steps (2) and (3) in the renor-
malization program of Sec. III do not go through
for DWY fermions, and the theory indeed appears
nonrenormaliz able.

Karsten and Smit base their objections to the
DWY lattice gauge theory on the above points,
which they have explicitly verified in the example
of the one-Loop vacuum polarization. " They
found that ll„„(k) had D = 2 even after the cancella. —

tions due to gauge invariance. In the continuum
Limit there are infrared singular terms with un-
acceptable (nonlocal) tensor structure in both the
divergent and finite terms, a typical structure
being

LL, „(k)- '" Q ~
k,

~

—sign k, sign k„ (5.5)

—a' g Tt(x)y, —.D~(x-y)P(y) exp iea gA (z) .
&e3feP g=X

(5.6)

S~(p) S„(p)
4~„(p) = 8~„-() —&)

S (p) S (p)

—I

SF(p) = Z y 0 (p)+m ~

P

D~( p) —D~ ( p+ k)

S~( k)

2-e
S- S y D (p) -D~(p+k) -D~(p+l)+D~(p+k+(I)

eS 8 ...8

S~ (k()S~ {k2) ...S~ (k„)
n+I n n

( P; k ~, ...k n+ i }= &~ ( P; k l, ... k n ) + ~p ( p+ "n+ l,' k l, ."k n )

FIG. 4. Naive Feynman rules for D%'Y lattice @ED.

2
S~ (p) = sin p p~ Q .

+ other singular terms.

(Note that the Ward identity g, k L1 „=0 is satis-
fied. ) Furthermore, since the necessary Taylor
expansions do not exist, there is no natural way
to make the separation into divergent terms and
finite remainders which defines the counterterms
required. Since the Green's functions are not dif-
ferentiable, the conventional normalization condi-
tions do not make sense.

It is important to understand clearly the origin
of the infrared singularities in the vertex func-
tions. They come from the term in the action
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The exponential. factor, in momentum space, in-
valves a geometric sum:

~ de
exp ieag, e'~'e'~y '?'A„(k)

(2v)'

A d4$ e~At~x each' P

la

x

I
y

Z, P

+ ~ ~ ~

A d4y ef0'x ef0 y

(2v) $ (k)
+ (k} ~ (5.7)

FIG. 5. A class of diagrams whose summation re-
moves the infrared singularity from the vertex function
and permits a nonsingular perturbation expansion.

The singuiar factors I/S„(k) enter the vertices
via the expansion of this exponential in powers of
e. However, consider the behavior of the inte-
grand in the infrared region k -0; it is propor-
tional to i ~x —y„~. Since x and y are summed
over all lattice sites in (5.6}, the distance between
them is unbounded. This means that the expansion
of the exponential to any finite order rs in e cannot
be a uniformly valid approximation over the en-
tire range of values of ~x„—y„~. If the expansion
is attempted anyway, its nth term will behave
as ~x~ —y„~ '. Since the function D (x —y) in (5.6)
falls off only as ~x„—v„~ ', the individual terms
in the perturbation expansion will be divergent
in the infrared. The concl. usion is that the infrared
singularities in the naive Feynman rules are symp-
tomatic of an inval. id perturbation expansion which
does not accurately represent the infrared be-
havior of the theory. I emphasize that the fault
lies with the perturbative expansion rather than
with any inconsistency in the theory. If the ex-
pansion in powers of e is avoided then the expon-
ential enters the sum (5.6) as a rapidly oscillating
phase when lx„-&„I is large. Such a p~ase ~ac~or
actually improves convergence of the sum. Final-
ly, note that perturbation theory can fail even
when the fermion spectrum is doubled. If D (x —y)

has a, power-law falloff faster than ~x, —y„~
'

then as pointed out in Sec. II the spectrum is
doubled, but singularities will still appear at suf-
ficiently high order in perturbation theory. The
equivalent momentum- space statement is that even
if D„(p) is continuous, a discontinuity in its nth
derivative induces a singularity in the (n +)I-ph -o

ton vertex function. This follows from the recur-
sion relation for the vertices in Fig. 4. A nonsin-
gular perturbation expansion is obtained only if
D (x —y) falls faster than any power of ~x„—y„~.
Such a D (x —y) strongly suppresses the contribu-
tions from the region of large ~x„—v ~

where the
expansion of the exponential is invalid.

The failure of naive perturbation theory discussed
above becomes evident from the structure of H„„
in Eq. (5.5). Consider a diagram in which the one-
loop II„,(k) appears as a subgraph. The integration
over k encounters a I/k„singularity. Such a sin-
gularity is not integrable, in contrast to the usual
infrared singularities which often are, e.g. ,
Jd'k/k'. Since the singularity arises from a ver-
tex function rather than a propagator, it also is
not regularized by a photon mass, and simply
leads to a divergent amplitude indicating the break-
down of perturbation theory.

B. Removal of the infrared problem

Now that the origin of the infrared problems which plague naive perturbation theory is ctear, how can they
be circumvented'? The most obvious approach is simply to impose s. cutoff on ~x„-y„~ in the nonlocal
interaction Lagrangian:

1
x y„—.a, x —y y exp iea A„~

XgPpP yyy g ~gl

1 1
x y~ —.D„x-y y + x y„—.a~x-y y exp iea A„z -1

Xggy V Xy gyW Ia ~ g=X
JX -y~ l&&a

The cutoff permits a nonsingular expansion in powers of e but destroys manifest gauge invariance.
Therefore the cutoff must be imposed in the fixed gauge in which quantization is performed. This should
be a physical gauge, since otherwise the loss of the Ward identities will jeopardize unitarity.

I now show that in fact an cgd hog cutoff is unnecessary since the theory generates its own cutoff. Con-
sider for example the bare one-photon vertex function, and add to it all diagrams in which additional pho-
tons are emitted and absorbed at the same vertex (Fig. 5}. The sum gives the vertex function computed to
lowest order in the interaction Lagrangian rather than lowest order in e. The diagrams are most easily
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summed in coordinate space, where they yield

Z Q )eas,lx-x')y„)).b. '-v')&A)'-))~. „l -z')
X goal yP g =X

])n
x 1 —~ze a P g a„(w, —u)2)+ ' ' '+, (2n —1)(2n —3) ' ' ' l(ea) "

(5.6}

(5.9)

A similar calculation applies to the multiphoton vertex functions. The inclusion of these photon tadpole
contributions to the vertex functions thus generates effective Feynman vertices which differ from the
naive ones of Fig. 4 only in the replacement

dk eaX e~
D„(x —y) -&„(x—y) =D„(x—y} exp --,'e'

X n„(w, —a),) a„,(u),„,—u), „)+
10] y ~ ~ ~ t %2tf X ~I

where the combinatorial factor (2n —1) (2n —3) 1 is the number of ways of pairing the points w„. . . , go, „
in the photon propagators. The sum in brackets exponentiates, giving

I
A d4k

~hl

exp --,'e'a' g 6,„(go, —m, ) =exp -2e'a' ,e"'"~-~'~..(a)
lf)z &182=X ~ ~ tf)g p tt)2=X ~A

w4z. i,k x' i' y'

, (2.) S.(u)

=D„(x—y) exp -2e' 2, a' . 2g~ &„,(k)
' d'u, sin'-,'a„(x-y).

2n ' san'2k„a

At issue is the large-distance behavior of g)„(x). Since"

sin'( nx) —„2w6„,(x),
'P2 sin ( 2g)

one has

(5.10)

A d4k
X)„(x) = D„(x) exp -we' (— „s„,(u) 6(u, )x, (5.11)

X ~oo /

and S (x) falls off exponentially fast. It follows that the Fourier transform Z, (p) and all its derivatives
are continuous, and that there are no infrared singularities in any of the modified vertices. Although

D„(p) as a function of p„has unit slope at p„=0, there is no reason for g)„(p) to share this property. This
means that ultimately a finite renormalization will be required to express the theory in terms of a charge
defined by the static limit of the electron-photon vertex rather than the parameter e. This is discussed
more fully below. Figure 6 shows the expected behavior of & (p).

In general, the summation of a selected class of diagrams is not a gauge-invariant procedure. This is
reflected in the explicit appearance of the photon propagator in Eq. (5.10). Z (x —y) is thus a gauge-depen-
dent function. It will be shown, however, that the S matrix has a gauge-invariant continuum limit order by
order in the modified perturbation expansion.

Summing the diagrams of Fig. 7 effects the replacement D (x —y) —g) (x —y) in the fermion propagator,
resulting in a doubled spectrum according to the analysis in Sec. II. Since we wish to develop a perturba-
tion expansion about the free field theory with undoubled fermion spectrum, this replacement must be un-

, ( D~(p)

+ 0 ~ ~

FIG. 6. Qualitative behavior of the function X)„(p) ap-
pearing in the effective Feynman rules.

FIG. 7. A class of diagrams whose summation would
double the fermion spectrum.
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done by the addition of a counterterm

(5.12)

again in the fixed, physical, quantization gauge. Of course this amounts to an assumption that the inter-
acting theory (5.1) has the same qualitative spectrum as the noninteracting e =0 theory. The validity of
this assumption is discussed further in Sec. VIII.

The resummation of perturbation theory discussed above is most clearly understood in the Hamiltonian
formulation of the theory in the physical Coulomb gauge. " The Hamiltonian (now on a three-dimensional
lattice) is

a=a' 28~ x +&B x +~ x x +&
X x, y

1

++6 g g(x)y —D,.(x —y)g(y) exp iep+A, . (z. ), 2 ' T,p(x) = —5„-0, p(k) =1/S (k), '7 ' A"=0.
X gyp $ Il=x

(5.13)

The summation of photon tadpole diagrams simply corresponds to normal ordering the exponential in Eq.
(5.13). Including the counterterm analogous to (5.12) the Hamiltonian becomes

d3k
&.(x —y) =D.(x-y) exp --,e

-~ (2x)'2l S(k) i

II=g.'g [—,'&z,'(x)+ —,'8'(x}+m7t'(x)g(x)]+a' g ~e y(x —y)g (x)g(x)g (y)gy)
X x, y

+p x y. —.D. x —y y + x y. —.Q. x —y y: exp iea A.
&

z —1:
K=X

e fk'x e gk 7 2 S 2(k)

Si(k} 5'(k) „

(5.14)

H is gauge invariant because the fields appearing in it are, but Ward identities which state that S (k) terms
in the photon propagator do not contribute to physical quantities do not hold. This may be understood as
follows. In a more general gauge, related to the Coulomb gauge by a time-independent gauge transforma-
tion, a structure g(x)D&(x —y)g(y) in Eq. (5.14) appears as It(x)D&(x —y)P(y} exp[ieaZ," „-A~(z)]. Thus A~
is coupled to the conserved current

j,(z) =-ea g gx)y, D,(x —y)gy)+ gx)y, ~,(x —y)g(y): exp ieag A,. (w) —1: +H.c.
1@=X

x~=+yy )&f

(in the Coulomb gauge) as required by gauge invariance, while Ar couples to the nonconserved

j~(z) =-ea' g $(x)y,.f),.(x —y)g(y): exp iea A~r(w):+H. c.
X, y %=X

x ~ g. (yg4 ~
~g.=g. , gx;j j

[j,(z) =-e$(z)g(z) in either case. ] In continuum

QED A~ and Xr enter the action only through the
local field A, so both couple to the same current.

The effective vertices possess all the proper-
ties required for a proof of renormalizability as in
Sec. III. The functions involved are C" and possess
the required Taylor expansions. Furthermore,
naive power counting now works properly. A dia-
gram with I' external fermions and B external
photons is 1/S (k,)S~(k,) S„(ks) times an inte-
gral with superficial D=4 —&j'. But the absence
of infrared singularities requires that the Taylor
expansions of the vertex functions in the integrand
begin with the term of order 0, k, ~ k~„, re-
ducing D to 4- &E- B. Similarly the numerator of

an n-photon vertex must go as p, „p,„
the 4's are small, and this must be accompanied
by a factor a ' on dimensional grounds. Hence
multiphoton vertices are accompanied by factors
of p as required in the arguments of Sec. III. How-

ever, one obstacle remains to the application of
Sharatchandra's arguments to the DWY lattice
gauge theory: the presence in the fermion propa-
gator of the discontinuous function D (P). This
problem is addressed next.

VI. PROOF OF RENORMALIZABILITY

So far it has been established that in the modified
perturbation expansion for the DWY lattice gauge
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...I e(A —
I
(' (e, e)

I )I ,
lines, p

(6 3)

theory, the vertices are infinitely differentiable
functions of momenta and naive power counting
correctly gives the degree of divergence of Feyn-
man integrals. In general, diagrams will actually
have their full superficial degrees of divergence
since the Ward identities which normally reduce
D do not hold order by order in this expansion.
However, Feynman integrands still do not possess
Taylor expansions because the fermion propaga-
tors contain the discontinuous function D„(P). This
difficulty exists in any lattice field theory in which
there is (a) periodic momentum conservation, and

(b) fermions with undoubled spectrum. In this
section I explain how to carry out a subtractive
renormalization progr'am for such theories. The
next section considers the form of the counter-
terms required to implement the subtractions.

Consider an arbitrary Feynman diagram. The
corresponding amplitude takes the form

A(e) = „ f e, l(), e)
lines -A

Sex, (2w)'5'„, gmomenta, (6.1)
vert ices

where k denotes the external momenta and I is
written using the Feynman rules. At this point
I(l, k) possesses an expansion in powers of k be-
cause for ~l„~& A, D„(l)=l„which is perfectly
continuous. &(k) does not have an expansion,
though, because the periodic 5 functions contain
additional dependence on k.

Choose now a subset (q) of the momenta(f) to
act as independent loop momenta. According to
the Appendix the trivial integrations over (l) -(q)
may be done provided I(t, k) is a periodic function;
provided, in other words, the fermion propagators
are written in terms of the discontinuous D~(l)
instead of simply t„. The integrations then result
in a discontinuous integrand I(q, k). However,
since D„(f) is piecewise continuous, the domain of
integration can be divided into subregions with

I(q, k) continuous in each.
An efficient way to do this is to return to Eq.

(6.1) and to substitute for the periodic 6 functions

6'...(t)=]~g g 6(p„+2n„A). (6.2)
n&

—-~

Since only finitely many lines enter each vertex
of the graph, and all lines are restricted by

~ l„~& A, only finitely many terms in the sum can
actually contribute. Doing trivial integrations then
yields

i.e;, a sum of integrals indexed by j. The inte-
grands I, (q, k. ) are generally all different, as are
the functions lI'(q, k) which give the p, th component
of the momentum in line ) in terms of q and k. In
writing I, (q, k.), D„(f) is to be replaced by i„as is
permitted by the 9 functions. Each integrand

I, (q, k). thus has a Taylor expansion in the vari-
ables k. Let j = 0 label the integral with no um-
klapps —+„=0 in Eq. ' (6.2) for every periodic 6
function in Eq. (6.1). The terms jt 0 are diagrams
in which momentum components in multiples of
2A enter vertices "from nowhere" in all possible
ways.

Consider one particular integral labeled by j.
The integral will be made finite in the limit a-0
by replacing I, (q, k) by. a renormalized integrand

R, (q, k) via the following prescription. - As in or-
dinary BPH renormalization, lay down forests of
nonoverlapping boxes on the diagram, each box
surrounding a renormalization part —a two-,
three-, or four-point function. Make the usual
subtractions of the first D+1 terms of the Taylor
expansions of the boxed subgraphs, with the fol-
lowing exception. If a box contains an umklapp
process (if the external momenta of the boxed
subgraph do not sum to zero, but to a multiple
of 2A, which can happen only for three- and four-
point functions) then no subtractions need be made
for that box. The reason for this exception is the
following. According to the usual criterion a
Feynman integral converges if all subintegrations
have D &0, a subintegration being an integral over
a subset of the q's with all other momenta held
fixed as a- o. The integration over the internal
momenta of a boxed umklapp process does not
count as a subintegration because the external
momenta cannot be held fixed when g - 0. Renor-
malized Green's functions are not required to be
finite when their external. momenta approach in-
finity.

After the subtractions are made, the jth integral
is guaranteed to be finite when g- 0, even ignor-
ing the 6-function constraints in Eq. (6.3). The
0 functions impose additional restrictions on the
region of integration, so including them does not
make a formerly finite integral diverge. As in
Sec. III, if the diagram under consideration in-
cludes a multiphoton vertex then the explicit fac-
tors of g in such a vertex cause the renormalized
diagram to vanish as g- 0. For a normal dia-
gram, the integrand I,(q, k) of the no-umklapp
term in Eq. (6.3) becomes the continuum Feyn-
man integrand for the same diagram when a- 0
(provided the continuum parameter e is identified
as the coefficient of y„ in the zero-momentum
limit of the lattice one-photon vertex). The 8
functions make a negligible contribution in the



PERTURBATION THEORY FOR UNDOUBLED LATTICE FERMIONS 323l

limit a- 0, so the renormalized j = 0 integral at
a = 0 equals the corresponding renormalized con-
tinuum integral. Finally, consider the jw 0 con-
tributions to a normal diagram. The integral of
R,. (q, k) is finite. Now consider the effect of the
0 functions. There is a vertex of the graph at
which some components of the three entering
momenta sum to 2gA, pgg 0. Since no momentum
exceeds A (8 functions), at least two momenta
are large on the scale A (and incidentally n = +1).
These large momenta may be traced through the
graph; eventually a large momentum must flow
through a line carrying one of the integration
momenta q. But if one has an integral from -A
to +A, finite when A- ~, and adds a I9 function
requiring the integration variable to be of order
A, the result vanishes for A-~. Hence all j.w 0
terms vanish for a-0.

It has now been shown that in the modified per-
turbation expansion for the DWY lattice gauge
theory the subtracted Feynman integrals yield
the usual results of continuum QED order by order
when a- 0. It follows trivially that the a- 0 limit
of the 5 matrix is in fact gauge-invariant despite
the gauge dependence of the lattice expansion due
to the summation of photon tadpoles. It is clear
that the subtractions described above can be im-
plemented by counterterms in the action, but the

FIG. 8. The scalar self-energy in the lattice gtjt)p

theory.

structure of these counterterms is not as simple
as in the case of Wilson's QED. This is discussed
next.

VII. STRUCTURE OF COUNTERTERMS

A. Examples

This section presents some examples of the
renormalization program just discussed for lat-
tice theories with undoubled fermion spectra,

'
with

the purpose of exhibiting the types of counter-
terms to be expected. Since the Ward identities
are not maintained order by order in the modified
perturbation expansion for lattice QED, there is
no formal difference between the renormalization
program for lattice theories with and without local
gauge invariance. Therefore, to save indices,
the examples here are taken from a theory of
DWY fermions interacting with scalar mesons
via a g())(x)(C)(x)(t)(x) coupling.

I. Scalar self-ene~

The one-loop scalar self-energy (Fig. 8) is given by

d'qd'f S,(q)S.(f)~'...(p+f-q)~'. ..(q- f-p )

=2 Tr Ef drdls (tr)s (l)S ((1+)—2+SAA)S (2 —)-)d+SmA)
n, m

A

=I Tr Q d fSz(p+&+2nA)S&(f), ... )9(A Ip~+f„+2n„AI)~ Q p'+2(m+n)A],
n, m A

where rn and n are four-vectors with integer components. The fact that al1 momentum components are
bounded in magnitude by A imposes the restrictions m =-n and n~ =0, +1. Extracting the overa11 mo-
mentum conserving 5 function gives

tl(2)=d Tr f dlS (2+(+SAA)S (l) S(A —id, r(„+2A„A~),
n&-, yf

(7.2)

where S„(q) now means (y q+m), &„(q) no longer appearing.
Consider first the no-umklapp (n = 0) contribution:

m~n(~, ~-p~ & A-p A

2] dl TrS (2+))S (l)=d S((r„)f d)„+S(-2 ) dl, Trd ((t+))S (l). (72)
u max(-&, -&-p@) -A-p

It is clear that apart from the 8 functions the integrals have expansions in powers of p, of which the terms
up to e(p ) may be divergent, while subse(luent terms must give the continuum results when a-0 with p
fixed. The discontinuous behavior of the integrand has been isolated in the 0 functions which appear be-
cause one must know the sign of p„ to tell whether p, + l, &A or p„+ l, &-A is possible for

I
l„I &&. The

required counterterms will have the form
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e(esp)e(eeg)e(eee)e(eee)(gals e +pc ~ „e e)q(e)q( e)-,
// ~.V

(7.4)

with A, B„,C „divergent constants. Indeed, one can say more: since II(/)) has definite symmetry under
8(P ) must appear in the even and odd combinations 8(P, ) + 8(-/)~) =1 and 8(p„) —8(-/), ) = sign /)„

giving counterterms

&+ &~ ~~ + c~PP+ D.. P~ (7.5)

which may be further restricted by the lattice cubic symmetries. These counterterms will be nonlocal
when expressed in position space, but this is to be expected since the bare action was nonlocal as well. It
would be wrong to conclude from this nonlocality that infinitely many counterterms are required (counting
separately the nearest-neighbor, next-nearest-neighbor, etc. , terms) since in momentum space there are
clearly finitely many divergent constants.

Next, examine a typical contribution to II(/)) containing an umklapp (n, = 1, n=0):

g'8(-/0)
-A "P0 - fflgn(A, A-P )

d/0 d/, TrS 1(PO + /0 + 2A p + 1)Sp(/) .
A „' 'i' ' max("A, -A-p;)

(7.6)

Evidently counterterms of the form (7.4) will suffice to make this finite for a-0. After the removal of
the terms up to n(/) ) in the expansion of the above integral, the remaining terms vanish because the um-
klapp restricts the l0 integration to a small region near -A, as expected from the arguments of Sec. VI.
All umklapp contributions vanish similarly and when p-0 the continuum result is recovered from the no-
umklapp term.

2. Vertex function

The one-loop vertex correction (Fig. S) reads

)'=g e(q)f gaga'q le (a)s (a')a())e...(e+a' —a)ll...(a —) —q)5...() —a' —q')e(-q'), (7.7)

where A(/) =1/S (/). This becomes

&=g'g(q) p f g'ada g'(s, (a)s, (a )a())
n n' nl™A

=g'v(q) Z

&& f) (/) + k' —0 +2nA)5 (0 —/ —q+ 2n' A)5 (/ —k' —q'+ 2n"A)v(-q')

d /Sp(/+q —2n'A)Sp(/-q'+ n2" )A&( )/

,',8(A —i/, +q, —2n„'Ai)8(A —i/„—q,'+2n„"Ai)5 tp —q — +q2(n+n'+n") ]A(-v)q.
(7.8)

According to Sec. VI subtractions a're only required in the case of overall momentum conservation n+n'
+n" =0. Consider the no-umklapp term n =n' =n =0:

m)n(AtA+q ~ A q )

g v(q) '
' '

d/ S p(/+q)S~(/ —q') &(/)5 (/) —q —qe)v( q!) . -
may ( A, -A+q', -A q )

(7.9)

The conditions on the range of integration can be expressed using & functions, but this is not necessary:
since the integral is only logarithmically divergent, the limits of integration can be taken as -A to A
with vanishing error as A-~. The integrand requires only a subtraction of its value at q =q' =0, which
can evidently be effected by a counterterm of the same form as in the cutoff continuum theory.

For a typical umklapp term, n0 ——0, z0 ——-1, rg|)' ——+1, n=n' =n" =0,

d/,
'

[
ha

mi&(-A~ -A+q )0' 0

g'e(q)e(qe)e(-qe) f Ijn (A, A+ q'. , A -q . )

dl,.
'

& (-A -A +q'. -A -q. )i' i I

x S (/ +q, +2A, I+q)S„(/ —q'+ 2A, I —q)6(/)5 (/) —q —q')v(-q'), (7.10)



PERTURBATION THEORY FOR UNDOUBLED LATTICE FERMIONS

the situation is even better. Since the integrand has D=O, the limited range of the lo integral causes it
to vanish as a-0 and no counterterm is needed.

Two-loop scalar self~nergy

This is included as an example of the vanishing of umklapp contributions beyond one-loop order. The only
diagram which is not simply an insertion of the one-loop fermion propagator gives (Fig. 10)

S'"=g'(Sr)"rrf d'gd'g'd')d')'d'ggr{g)S (g')S (I')S (()d(r)

x 5',(p+k' —k)5' (k —f —q)5', (f —f'-p')54 (f'+q —k') .
S& &(S)=g'Tr g f d'gd'{S (S)gr(g-S —Smd)S ( -{+gSr)d(S{)d(g —{+ Sm'd)

e, m', n

(7.11)

In addition to the overall D =2 integration there are various subintegrals having D =0. The overlapping
divergences in the no-umklapp term are handled exactly as in the continuum theory: the overall subtrac-
tions plus the inclusion of the vertex counterterms discussed above yield a finite result. Consider now the

umklapp contribution m = n = 0, mp' = -1, m' = 0:

~
f Sllll( g, g+y )

g'. , „' dk„dl, TrS (k)S (k P)S (l-P)S (l.)z(k, —l, —2A, k Qlg(k, l-, A) e(A lk f, l}
sax( $ y $+p )

(7.13)

Here the explicitly indicated range of integration
is not particularly small. However, there is the
8-function restriction kp lp ~ A. The subintegral
over k at fixed l is therefore restricted to a small
region near k, = ~, which causes it to vanish as
A-~ since it had D=O, and similarly for the l
subintegral at fixed k. Finally, a subintegral over
k+ l at fixed k —l vanishes as A -~ since a fixed
k —l will fail to satisfy k, —lp&A. Then, after
counterterms of the form (7.4) have removed the
terms up to O(p') in the integrand's Taylor ex-
pansion the result must vanish since kp —lp& & re-
quires the integration variables to be large.

B. Summary

From these examples it appears that in lattice
theories with undoubled fermions one must expect
momentum-space counterterms which are poly-
nomials in the momenta, plus sign p„ functions
times such polynomials. The dependence on sign

I

p„reflects the fact that although the lattice Green's
functions do not have Taylor expansions about p„
= 0, they do possess "one-sided" Taylor expansions
valid when p„&0 or p„&O. The counterterms thus
serve to impose appropriate normalization con-
ditions on the left and right limits and derivatives
of the Green's functions at p„=0. Only finitely
many types of counterterms arise although they
are nonlocal in position space. Some of the coun-
terterms which are simple polynomials and only
logarithmically divergent can be generated by re-
scaling fields and parameters, as in Wilson's
QED, but others must be added by hand.

For DWY lattice QED, E{l. (5.1), the prescrip-
tion is as follows. First rescale fields and para-
meters in E{l. (5.1), writing it as a renormalized
action plus counterterms. Next sum the photon
tadpole diagrams to produce an infrared finite set
of Feynman rules. Third, execute the renormali-
zation program of this and the preceding sections.
This both determines the multiplicative renormal-
ization constants and requires additional counter-
terms. In particular, photon mass and photon-
photon scattering counterterms will be needed due

FIG. 9. Vertex correction in ggg theory.
FIG. j.o. A contribution to the two-loop scalar self-

energy in ggg theory.
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to the absence of Ward identities. Finally, to make
contact with continuum QED a, finite charge re-
normalization is needed to express the theory in

terms of a charge defined by the static limit of. the
effective one-photon vertex: e~h», ~& =5),'(0)e.

C. The axial-vector current

The fates of the axial-vector current and the ax-
ial-vector Ward identity (5.4) in the present treat-
ment are easy to see. The axial-vector current
couples to vertices exactly like the photon but with
an extra factor y, . In naive perturbation theory its
matrix elements, like most Green's functions, are
infrared divergent. The divergences can be re-
moved, along with the Ward identities, by dress-
ing the vertices at which the current couples with

photon tadpoles. In the absence of the Ward identi-
ties the VVA triangle diagram will be linearly
divergent. 'To obtain a finite continuum limit obeying
Bose symmetry and the vector Ward identity it will be
necessary to modify the axial-vector current by
the addition of counterterms which introduce the
anomaly. There seems to be no way to arrange
perturbation theory so that one maintains order by
order both nonanomalous Ward identities and in-
frared finiteness.

The important point to abstract from perturbation
theory is that there is no reason to expect a non-
local operator such as the conserved axial-vector
current (5.4) to have a finite continuum limit:. In
view of the anomaly, there is every reason not to.

batively, e.g. , by normal ordering. This creates
an infrared cutoff which permits a. perturbative
treatment of the remaining effects. Note that
what is perturbative in the continuum may be non-
perturbative on the lattice. In this paper some
processes involving multiphoton vertices were
summed to all orders, but the continuum limit
wa, s just the usual perturbative expansion.

(3) The relation between gauge invariance and

Wa,rd identities in a nonlocal theory is rather
subtle. Results normally ascribed to gauge in-
variance are actually consequences of gauge invar-
iance plus locality. A Ward identity is a, statement
that some component of A. —such as the longitudi-

P
nal part A~ —does not contribute to physical pro-
cesses. In a local theory A, cannot appear in the
Hamiltonian alone, but only in the combination
A~ +A~=A which is a local field. A constraint on
the coupling of A~ is then a constraint on the
coupling of A and hence A~. Thus Ward identities
put constraints on physicaL processes involving
real transverse photons, but only via the loc",.Lity

as sumption.
In Hamiltoni. an Coulomb gauge DWY @ED a

counterterm was required to keep the fermion
spectrum undoubled. In the form

x exp iea P Az (&)
Z=-K

VIII. CONCLUDING REMARKS

A. Summary

This has been a long and somewhat technical
paper. Three major points deserve emphasis in
addition to the overall claim that the DWY deriva-
tive permits the formulation of a completely sat-
isfactory gauge- and chiral-invariant lattice QED.

(I) All theories with DWY fermions require a
special renormalization prescription because the
fermion propagator does not admit a Taylor ex-
pansion. Equivalently, the usual normalization
conditions cannot be applied because the bare
Green's functions need not be continuous or dif-
ferentiable at p„=0. One must normalize the left
and right limits p„0~ such that renormalized
Green's functions are continuous and differenti-
able. This is just the restoration of rotational
symmetry in the continuum limit. It requires
nonpolynomial counterterms, nonlocal in position
space but finite in number.

(2) Gauge theories with DWY fermions do not
admit an immediate perturbative expansion. Such
an expansion creates spurious infrared problems.
At least some effects must be treated nonpertur-

it is fully invariant under time-independent gauge
transformations. In a local theory it would be
ruled out because X~ is a noniocal function of A,
but on the lattice it is acceptable. (Of course it is
only useful in the Coulomb gauge where X~ =0.)

With this counterterm there is still a, Ward iden-
tity insuring that X~ does not contribute to physi-
cal processes, but it no longer directly constrains
Xr. The Ward identity has been "lost" in the sense
that it no longer functions to reduce the degree of
divergence of a Coulomb-gauge Feynman diagram.
Ward identity constraints on physical processes
are recovered only in the continuum limit where
the theory becomes local if properly renormalized.
This is how the nonlocal lattice theory escapes the
problem of the axial anomaly. The triangle dia-
gram is divergent, and the Ward identity it obeys
in the continuum limit is determined by the renor-
malization pre scription.

B. Beyond perturbation theory

The results of this paper are rather formal in
that they show what can be done with DAY lattice
@ED in perturbation theory and what counterterms
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are needed to do it. Continuum QED at this time
is defined by its renormalized perturbation series,

- but a lattice theory presumably has a meaning
even beyond the region of validity of perturbation
theory. As remarked earlier, perturbation theory
cannot predict a qualitative spectrum, but must
instead be constructed around a zeroth-order ap-
proximation which already has the correct quali-
tative spectrum. It is important to ask whether
the perturbation theory constructed in this paper
accurately reflects the exact solution to the theory
(5.1). In principle this should be determined by an
exact renormalization-group treatment and analy-
sis of the fixed points. The renormalization-group
transformation should generate an action contain-
ing the counterterms required in perturbation
theory. %hat can be said in the absence of such
information'?

There seem to be two possible scenarios based
on the Nard identity

QS„(k)I'„(f)+k, t)) =S '(P+y) -S '(P), (8.1)

which is an exact property of the theory. If the
exact fermion propagator describes an undoubled
spectrum then S~ ' has a discontinuity at some
point p, . Letting p- p, and k- 0 in E(I. (8.1) shows
that I „must have a singularity there. This in
itself is not a disaster since p, is normally of
order I/g. A disaster occurs only if this singu-
larity propagates down into the low-momentum
(continuum) limit of some Green's function. This
happens in naive perturbation theory where loops
of high-momentum particles contribute to the low-
momentum behavior of, for example, II,„(p). If
it happens in general then the theory has problems.
If it does not happen, so that singularities are con-
fined to high momenta, then the continuum limit
may be as described perturbatively in this paper.

The high-momentum singularities would be gener-
ated from the sum to all orders of the order-by-
order nonsingular effective theory of Sec. V B.
The conserved lattice axial current has no con-
tinuum limit due probably to singular contributions
to its matrix elements. .

If no infrared singularities arise at any momen-
tum, then S~ ' must be continuous and the fermion
spec trum doubles. This happens nonperturbatively
since the spectrum is undoubled at e =0. This
scenario is suggested by the summation of the pho-
ton tadpole contributions to Sr (Fig. 7). Summing
perturbation theory to all orders would not intro-
duce any singularities but would merely restore
gauge invariance, which was lost order by order.
The axial current could have a nonanomalous con-
tinuum limit, the anomaly being cancelled between
the doubled fermion species. It is even possible
that both these scenarios could occur, each char-
acterizing a different phase of the lattice theory.
The DWY lattice gauge theory (5.1) could thus have
an extremely rich and interesting structure beyond
perturbation theory. In my opinion it is extremely
important, though difficult, to learn which of these
eases occurs. The possibility that the fermion
spectrum multiplicity is determined dynamically
does not seem to have been previously suggested,
and would add a new dimension to our understand-
ing of the realization of chiral symmetry in lattice
theories.
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APPENMX

I prove that, given a set of Feynman rules periodic in all momenta, periodic & functions can be used to
do trivial momentum integrations just as ordinary & functions are used in continuum theories.

It suffices to show that if

I-=dk~ ~ ~ ~ dk E k„.. . , k„5~„k~ G k2, . . . , k„ (Al)

where & is periodic in k, with period 2~, then

dk~ ' ' ' dk„& G k 2, . . . ,k„,k2, . . . , k„ (A2)

To do this, write (Al) as

In the mth term change variables from k, to k', =k, + 2m~, giving
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f(2m+») A

(2m-») A

dk2'' dk„+ k», k2, o ~ o, k„ k» — k2, etc, k„ = dk2''' dk„& k2, . . . , k„,k„. . . , k„

(A4)

dk» dk2 dk E k» 27K& k2
' k ~ k» ~ k2 k

-A

by periodicity.
If the function I" is initially defined only for -JI &k»&A then the above holds if I" is extended periodically.

~D. Horn and S. Yankielowicz, Nucl. Phys. B161, 533
(1979); B. Svetitsky, S. D. Drell, H. R. Quinn, and
M. Weinstein, Phys. Rev. D 22, 490 (1980).

2M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. D 20,
1915 (1979); Phys. Hev. Lett. 42, 1390 (1979); L. Mc-
Lerran and B. Svetitsky, Phys. Lett. 98B, 195 (1981).

3A. Guth, Phys. Rev. D 21, 2291 (1980), and references
therein.

K. G. Wilson, Phys. Rev. D 10, 2445 (1974); in Nezo

Phenomena in Subnuclear Physics, edited by A. Zich-
ichi (Plenum, New York, 1977).
S. D. Drell, M. Weinstein, and S. Yankielowicz, Phys.
Rev. D 14, 487 (1976); 14, 1627 (1976). Actually the
"DWY derivative" seems to have been introduced by
G. Wentzel, Helv. Phys. Acta. 13, 269 (1940).

L. H. Karsten and J. Smit, Nucl. Phys. 8183, 103

(1981).
~W. Eerier, Phys. Rev. D 23, 2384 (1981).
H. B. Nielsen and M. Ninomiya, Nucl. Phys. B185, 20
(1981).

~H. S. Sharatchandra, Phys. Rev. D 18, 2042 (1978).
L. H. Karsten and J. Smit, Nucl. Phys. B144, 536
(1978).

' L. H. Karsten and J. Smit, Phys. Lett. 85B, 100 (1979).
Y. Nakawaki, Prog. Theor. Phys. 59, 248 (1978); 61,
1197 (1979).
J. B. Bronzan, Phys. Rev. D 21, 2270 (1980).

14W. Rudin, Principles of Mathematica/ A.nalysis
(McGraw-Hill, New York, 1964).

5I thank Marvin Weinstein for stressing this point until
I finally understood it.


