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We study classical solutions with both magnetic and electric charges in a (4+%)-
dimensional geometric field theory. Then we choose the group SO{3,1) for the internal

symmetry and try to find the solutions under the ansatz that they are invariant with

respect to the diagonal subgroup of SO(3,1)M (3 SO(3,1)I in order to get r=lativistically

covariant solutions, where SO(3,1)~ and SO(3,1)I represent SO(3, 1) for rotations of the

Minkowski space and for the internal symmetry, respectively. Thus we obtain solutions

having a covariant expression for the electromagnetic field associated with magnetic and

electric charges moving with constant velocity. Particles with both magnetic and electric

charges are usually referred to as dyons. Hence our solutions give a specific realization

of dyons in a uniform motion. As a result of the incorporation of the internal symmetry

SO{3,1)I, furthermore, it is found that they have a new pole in addition to the magnetic

and electric charges. The gauge fields associated with this pole contribute negative ener-

gy. Then there exists a relation among the three kinds of charges, which gives a lower

bound to the absolute value of the electric charge. Finally, we discuss the stability of our

solutions.

I. INTRODUCTION

It is well known that an SO(3) gauge theory with

a Higgs triplet exhibits classical solutions with
magnetic monopoles, namely, 't Hooft-Polyakov
solutions. ' Furthermore, Julia and Zee found clas-
sical solutions having both magnetic and electric
charges in this theory. These solutions are of
great interest from the viewpoint that they
represent specific realizations of particles with
magnetic monopoles suggested by Dirac and
dyons which were discussed by Schwinger and
Zwanziger as particles with both magnetic and
electric charges, respectively.

In this paper we try to find classical magnetic
monopole or dyon solutions in a (4+N)-dimen-
sional geometric field theory developed by Kaluza
et al. ' This theory has recently acquired renewed
interest in providing a unified gauge principle that
gives rise to gravity and a Lie group as an internal
symmetry. That is, it is shown that an (4+N)
dimensional metric tensor naturally provides the
gravitational field g& (x), N gauge fields Az(x)
(a =5,6, ... ,4+N) for a Lie group, and a metric
tensor g,b (x) (a =5,6, . . . ,4+N) which plays the
counterpart of the Higgs field. In order to find
classical solutions, we will follow the technique
used by 't Hooft and Polyakov. However, we will

then choose the group SO(3,1) for the internal sym-

metry instead of SO(3). The 't Hooft-Polyakov
solutions are constructed under the ansatz that
they are invariant with respect to the diagonal sub-

group SO(3)s+SO(3)1 of SO(3)s S SO(3)I, where

SO(3)s and SO(3)I represent SO(3) for spatial rota-
tions and for the internal symmetry, respectively.
Therefore, their solutions have the expression writ-

ten only in terms of the spatial coordinates whose

origin, i.e., the center of a magnetic monopole, is

at rest. %hen we try to get relativistically covari-

ant solutions, we find that one of the possible ways

is to replace SO(3)I by SO(3, 1)I and construct the

solutions invariant with respect to the diagonal

subgroup of SO(3, 1)M S SO(3, 1) I where

SO(3,1) and SO(3,1)I represent SO(3,1) for rota-

tions of the Minkowski space and for the internal

symmetry, respectively. Then the problem is how

to understand the symmetry SO(3,1)I in the actual

world. Although we now have no definite answer,

one of our speculations is that it might be the sym-

metry which gives rise to the symmetry SU(2)l S
SU(2)ii (Ref. 10) because they are locally equiva-

lent to each other. As a result of the incorporation
of the symmetry SO(3, 1)i, we can start with as-

suming a covariant expression for classical solu-

tions.
In this paper we present the form of the classical

solutions for a dyon moving with constant velocity.
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Then it is found that they have a new pole in addi-
tion to the magnetic and electric charges. The
gauge fields associated with this pole contribute
with negative energy. This reflects the fact that
the metric of the internal space is no longer defi-

nitely spacelike because of the symmetry SO(3,1)I.
Furthermore, we find that the gauge fields associ-
ated with this new charge play an essential role in

providing the localized structure of our solutions.
At the same time a relation among the three kinds
of charges is derived. This gives a lower bound to
the absolute value of the electric charge.

%e start with presenting the Lagrangian of
(4+%)-dimensional geometric field theory in Sec.
II. In Sec. III, relativistically covariant solutions
of dyons, are obtained in the theory with the inter-
nal symmetry SO(3,1)I. Their Euler-Lagrange
equations are investigated in Sec. IV. Then we

show that the equations indeed exhibit spatially lo-
calized solutions. In the concluding remarks in

Sec. V, we discuss the stability of our solutions, the
mass and the. electric charge of dyons.

II. LAGRANGIAN QF THE (4+X)-I3IMENSIONAL
GEOMETRIC FIELD THEORY

The (4+%)-dimensional geometric field theory
starts with geometries of a (4+ V)-dimensional
space with coordinates z" (A = 1,2, . . . ,4 + N and a
metric tensor yz~ (z). After a few basic assump-
tions are introduced, ' the metric tensor can be
described in terms of three kinds of fields: the
gravitational field g& (x) (p, v=1,2,3,4,), gauge
fields A„'(x) (a =5, 6, . . . , 4+ X},and a metric
tensor gob(x) (a b —5 6, . . . , 4+ N) in the X-
dimensional internal space. The Lagrangian of
these fields is given by the invariant integration of
a (4+%)-dimensional curvature scalar R~&+b ~. In
this paper we neglect the effect of gravitation.
Then the Lagrangian is

L = Jd xW(x),

e K
—2

W(x)=[det(g, b)]' Wi + Wsi+ (Wgi+ir —A„
16mG 16+6 16m 6

, a b~V = 41'„P,+.—b
~sl I g g [(D g )(D gbd) (D g b)(D gd)] (D g )(D gb) g D D g b I

~S2= ( ifadfbcg + efacfbdg g gef )

(2.3)

(2.4)

(2.5)

F'„„=r)„A'„ap'„+efb, a—„A', ,

D& indicates a covariant derivative

Dicgab =~yÃab e~ y, (fdagcb +fdbgac ) ~

Dicg =c3pS +e~y(fd g +fd g

and g,b and g
' are related by

bc
gabg =~ac .

(2.6)

(2.7)

(2.8)

In this theory g' (x) is a Lorentz scalar and
plays the role of the Higgs field. The potential of
this field is given from (2.2) as

where fb, are the structure constants of the group
of the X-dimensional space, 6 is the gravitational
constant, , e is R gauge coupllI1g constant, and K Rnd

A, are constants with dimensions of length and

(length), respectively. Here the gauge field
strength is defined as

V(x)= — —[det(g, b)]' [Ws2(x)+s'A, ] .
16~6

(2.10)

The first term in W is the Yang-Mills Lagrangian
for the gauge fields A& if the internal space is flat

(g,b
——5ab) and we choose the normalization e ir /

16~6 = l. But, as will be shown in Sec. III, the
potential (2.10) has a stable minimum at g =—go+1
in the metric g =g6,b. Therefore, we should re-

normalize g,b so that the flat metric g,b ——Dab is a
stable minimum by transforming g' to gog' .

III. COVARIANT SOLUTIONS IN THE THEORY
WITH THE INTERNAL SYMMETRY SO(3,1)

There are six generators M ~ ( M &
———M ~

and a,P=1,2,3,4) in SO(3,1). The structure con-
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stants f,'b (=f"p iq) are given as

f-"~"=6-x(6.u@p 6—nA~)

+6pp(6„6p6„i..—6g. )

6 —
i (6~p6p6„.—x6gp)

(3.1)+6@i.(6„ 6gp 6„i—,6( &

'I

In the following a,b, . . ., indicating the indices of
six-dimensional internal space, are identified with
the combinations (a,p) (il, (), . . .

To normalize the coefficient of the Yang-Mills
Lagrangian in (2.2), we first take g' =—g6, b

(g,b ——g '5,b). Then the potential (2.10) is

Before giving the explicit form of solutions, we

provide the relative coordinate x„' defined as

xz ——x& —X&(r) to express the differences of the
coordinates between a point ( x„)of an observer
and a center (X„)of a localized solution with a
proper time ~. In this paper we assume a priori
x' =0. Then we get the following rule" for the
differentiation of a function f (x' ): Bg(x' ) =
(6„„o—'x„'U, ) d,'f {x') where B„=B/Bx„,
8&,——8/Bxz, U& is a four-dimensional velocity of
the center (U&

——dX&/dr and U = —1), and
cr =(x U) In. the following we look for solutions
whose center moves with constant velocity. Hence
we assume that U& is independent of xz. In the
rest frame of the center, "

V(x) = — (6g+» A. ),
16irG 'g

/

(3.2)
xk = rk, x4 ———ir (r—=

~

r
~

) and o =r, (3 6)

which is described in Fig. 1. If A. is negative, this
potential has a stable minimum at go = —K A, /4.
Hence we assume that A, is negative. We renormal-
ize g' by transforming g' to gog' in (2.2) so that
the potential takes the minimum at the flat internal
metric g,b ——6,b. Then the Lagrangian (2.2) be-

comes

where r is the spatial vector pointing to the point

(x„) from the center.
As was explained in the Introduction, we will

consider the solutions invariant with respect to the
diagonal subgroup of SO(3, 1)M 48I SO(3,1)i. Then,
in terms of the field h,b(x) defined as

2 2

.X(x)=[det(g,b)]' ' — 4&i+
16+Ggo 16~6go

g,b(x)=6,b+ h,b(x),

the general form of g,b(x) is written as

{3.7)

—V(x), (3.3)
(3.8)

h,b(x) =- —hi(o)(x„'Ug xgU„)(x—i, Up —x' Ui )/o.
I

h, (o')e„—g~px ~ Upexi rsx rUs/o',

e K —=1
16~6gp

(3.5)

V(x)= ——
I [det(g, b)]'~ (Ws2 —4) —2 I,

6~Ggo'

(3.4)

where the potential is adjusted to be zero at g'"
=6,b. From (3.3) one finds that we should take
the normalization

where a =(i),g) and b =(A, ,p). In this paper we in-

vestigate the case that either h
~

or h2 is equal to
zero only for the purpose of making our solutions
as simple as possible. Because the two terms in

(3.8) differ only in the way, of assigning the indices
a and b, the form of our solutions does not depend
essentially on which term we leave in (3.8). Hence,
hereafter we choose the case h2 ——0 and rewrite
(3.8) as

h, b(x)= —h(o)(x&U& —x&U&)(x&U —x' Ui )/o2,

(3.9)

FIG. 1. The potential (3.2) vs g.

-j. 0
FIG. 2. The potential (3.10) vs h.
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where a =(g,g) and 5 =(k,p). From (2.9), h'"(x)
= —h,s(x)/[I+h (cr)]. Then the potential be-

comes

—2

V(x) =
2 [(I+h)'~ (h —2)+2], (3.10)

16~Gg,

which is plotted in Fig. 2. This has a stable mini-
mum at h =0, where its value is adjusted to be

zero. This means that we should take the boun-

dary condition that h (cr )~0 sufficiently fast as
o ~ oo (which corresponds to r~ oo in the rest
frame of the center) in order to ensure a finite-

energy solution. It is quite consistent with a point
of view that the internal space should be nearly Aat
far from the center.

Next we write the general expression for A„'(x)
with a =(A, ,p):

y((cr) y~(cr)
A„'(x) =(5„axe 5'—x) +(5„pe 5„eUg—)

q&(cr) q2(o). . . p((cr) p2(o)
+icy px Up x', +U„+(xxUe xpU—x) xq +Uqeo-' " eo' P P P 3 0 2

, z(((r) z, (o)
+&PAPa &a 2 +U

eo2 eo
(3.11)

Writing the Lagrangian L =(m/2) Jdr Jo do
)&W(cr) in terms of h(o), y((o), y2(o), q((o), etc.,
and requiring it to be stationary with respect to
variations of them, we get the Euler-Lagrange
equations. Because the equations are very long and
complicated, we do not write them here. In order
to show the asymptotic form of F„'„at the infinity
of o, we here, however, give the boundary condi-
tions at infinity which are derived from requiring
that the equations have the solutions localized
around the center. These conditions are

y, (o )~1, y, (o.)~1,
o [q((cr)/cr]'~0, cr [p((o)/o]'~0,

z((o)~0 and zz(cr)~0 as o —+oo (3.12)

3I 1 —o [pz(cr)/cr]' I
+o. [q2(o.)lo] +1~0

as o~ ac, (3.13)

where f'(o ) =df /do. These conditions suggest the
very simple model that y((o ) =y2(cr) and q((o )

=p, (o) =z((o) =.z2(cr) =0. In fact we con-
firmed that there is no loss of essentialities in this
model in comparison with the general case. There-
fore, in the next section we give the full expressions
of the Lagrangian and the Euler-Lagrange equa-
tions in this simple model.

We conclude this section by presenting the
asymptotic form of Fz at infinity under the condi-
tions, (3.12) and (3.13). In the rest frame of the

I

center (3.6), only the following components pf F~
survive as r~ m.

FJ(™(r) e 'yz( ~ )e/krke( „r„lr

F;&™(r)~i&r;e( „r„/r

F,'4' '(r) Hr;r&/r

(3.14)

(3.15)

(3.16)

,& „'„(x)=( i )o 'e~~—px
'

UpF„','e' . (3.17)

In the limit o.~ ce we have the following asymp-
totic form:

.+„'„(x)~( i)e 'e„„px' Up—lo'

+B(xpU„x' U„)/cr3 . —(3.18)

where eB = cr [q—2(cr)/o]' „,eH =1—o.

[pq(o)/o]~ „,and yz(oo)=1 from (3.12). Equa-
tions (3.14) and (3.15) show that the components
F(J™and F 4' ' associated with an SO(3,1)I rota-
tion axis eI~„r„lr are just the electromagnetic ten-
sors of monopoles with magnetic charge e ' and
with electric charge B, respectively. On the other
hand, we have another component F 4'

' which is
associated with an axis (r&/r) U4. From (3.16) this
has another charge H like an electric one. The
components (l,4), l =1,2,3, of the internal space
have a timelike metric so that the gauge fields as-
sociated with the new charge contribute negative
energy.

In the frame of the center moving with constant
velocity, a rotation axis ex~px' Uplcr corresponds
to the axis eI „r„/r in the rest frame. Thus the
electromagnetic tensor is defined as
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a i„'„(x)~P(xqU„—x,'Uq)/cr (3.20)

As we expect this is the covariant expression of the
electromagnetic tensor for a dyon in a uniform
motion.

As to the component of the field strength associ-
ated with the charge H, we note that the rotation
axis (xi U&

—x&Ui )/ crcorresponds to the axis

(ri/r) Uq in the rest frame. With the definition

w ~„(x)=cr '(xi„Up x—
p Ux )F„','~'(x), (3.19)

.we obtain the asymptotic form

IV. EULER-LAGRANGE EQUATIONS

We derive the Euler-Lagrange equations in the
simplified case y i (cr ) =y2(o ) and q, (o ) =p i (o )

=zi(o) =z2(o)=0 given in Sec. III. We use here
the functions K(o)=1 —y2(o), Q(o)=q2(cr), and
P(o) = I+F2(cr). From the asymptotic form of
F„'„given in (3.14)—(3.16), one finds that these
functions describe the spatial structure of the
charges. In this section we work in the rest frame
of the center. There the Lagrangian is written as

L =(a/2) fdr f r dr&(»), (4.1)

W(r) =(1+h)'~' ~y(r)+, ~si(r) —&(r),
16m Gg p

(4.2)

Wi(r)= — [4r (Klr) +Sr K(Klr)'+2(1+h)r (Klr Plr) —2r (Qlr—)4e'r4

+4K'(P' —Q') —2K'(4P —3K)+2], (4.3)

1 1
Ws i (r)= — [(rh') +h K2],4r' (1+h) (4 4)

where V(r) is given in (3.10) and f (r)=df /dr Requirin. g the Lagrangian to be stationary with respect to
variations of h, K, Q, and P, we get the following four second-order coupled differential equations:

&
[r h'l(l+h)' ]'= —

i &
Wi +2(1+h}'~ r (Klr P/r)—

16wGg0 (1+h)'~'

(4.5)
16'»Gg, ' 2go (1+h)'~' ( 1 ~h)'~'

er Zh«[» (1+h) (Klr)']'+Sr[(1+h)' 'K]'=(1+h)'~' 8(P' Q')K 16(P
16~6g, ' 1+A

I

(4.6)

r [r (1+h)'~ (Q/r)']'=2(1+h)'~ K Q,
r[r (1+h) ~ (Plr —K/r)']'=2(1+h)'~ (P K)K— (4.7)

(4.8)

(4.9)

Then if we set the boundary condition

In order to see that the Euler-Lagrange equa-
tions exhibit the localized solutions, we solve them
in the first approximation at large r. Let us first
look at Eq. (4.5} and assume that

K(r)~0 exponentially as r~oo . h (r)"-3gojc h(r) . (4.1 1)

Here we wish to note that (4.9) and (4.10) corre-

3r [P(r)lr] r[Q(r)lr] +1~—0

exponentially as »~co, (4.10)

the asymptotic form of Eq. (4.5) becomes
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(4.12)

spond to the boundary conditions (3.12) and (3.13)
assumed in the general case, respectively. From
Eq. (4.11), Eq. (4.5) gives the following asymptotic
form to h(r):

h(r) —+Ce &' as r —+co,

where C is a constant and

)
1/2 —i (4.13)

We next proceed to Eqs. (4.7) and (4.8). Using
(4.12) and the assumption (4.9), we obtain

Q(r)~M&r+eB[l —h(r)I2pr] as rico,
P(r) K(r)—~Mpr+e 9'[I—h (r) l2pr] as r ~ co,

(4.14)

(4.15)

(4.16)

(4.17)

where M and Mz are parameters with the dimension of a mass. From these solutions the spatial structures
of the electric and the new charge are given by

e'r [Q—(r)lr]'~&[1——,h (r)] as r +co, —

e'r —[P(r)lr]' +8'[I ———,h(r)]+e 'r [K(r)fr]' as rico

Hence B and H are parameters which denote the
values of the charges defined in Eqs. (3.15) and
(3.16).

Inserting (4.14) and (4.15) into Eq. (4.6), the
asymptotic form of Eq. (4.6) becomes

K (r)"-(Mp Mg )K— (4.18)

If Mp &M&, Eq. (4.6) admits the solution of the
asymptotic form

K (r)~De (4.19)

where a=(Mp M& )'~ and D is a constant.
Here one finds that this behavior is consistent

with the assumption (4.9} given at the beginning.
We now wish to emphasize that the localized
structure of K(r) like (4.19) originates from the
contribution of the component of the gauge fields
associated with the new charge H. As was ex-
plained in Sec. III, this component acts with time-
.like metric in the internal space and the leading
term Mpr of P(r) in Eq. (4.15) provides the mass
for the field K(r). Therefore, we stress that the lo-
calized structure of K(r) is essentially attributed to
the incorporation of the internal symmetry SO(3,1).
In the SO(3) gauge theory, on the other hand, the
field K(r) acquires its mass by the Higgs mechan-
ism. As stressed by Fujii, ' the Higgs mechanism
does not operate in the geometric field theory when
the structure constants fs, are totally antisym-
metric. Because ff, are totally antisymmetric in
SO(3,1), the Higgs mechanism does not work in
our model. This really appears in the fact that
Ws &

in (4.4) does not have a term like
const)&E /r at infinity. Hence at first sight our
model looks as though it has no mechanism to

I

provide the localized structure for the field K (r).
But as was explained above the gauge fields associ-
ated with the charge H act with timelike metric to
give that structure.

Thus we could solve the Euler-Lagrange equa-
tions at large r. In order to solve them for all r,
we must set the boundary conditions at r~0. Al-.
though the expression of the energy is not given
here, the Lagrangian (4.1) shows that we need the
following boundary conditions to keep energy fin-
ite: h(r)~ho+ constXr, K(r)~1+ constXr,
Q (r)~ const Xr, and P (r)~1+ const X r as
r~O, where h0 is a constant. Although we have
not obtained any numerical solution, we expect to
get the regular solutions which connect the forms
in the above boundary conditions to the asymptotic
forms (4.12), (4.14), (4.15), and (4.19) at infinity.
Finally, we list the asymptotic values of the func-
tions h(r), etc.: h(r)=ho~0, K(r)=1~0,e'r (Qir—)'=0~&, and e'r (Plr)'=—I —+H
as r =Oooo.

V. CONC%. UDING REMARKS

We first discuss the condition (4.10) which gives
the strong relation among the charges. This comes
from the fact that the Lagrangian density has the
overall factor [det (g,&)]'~ [=(I+h}'~ ] and in-
cludes the Yang-Mills Lagrangian density of the
form &&Q„~,s instead of F„'Q„'„in the ordinary
gauge theory. The first term on the right-hand
side of Eq. (4.5) is derived by taking the variation
of h in the overall factor and the second term
arises from the same variation in the Yang-Mills
Lagrangian density. The condition (4.10) comes
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from these two terms and therefore is very charac-
teristic of the geometric field theory. Equation
(4.10) imposes the following relation among the
charges:

3H —B +e =0 (5.1)

where e ' is the magnetic charge. One finds that
the electric charge B is restricted by

~

B
~

& e
As was metioned in Sec. III, the gauge fields asso-
ciated with the charge H contribute negative ener-

gy. Here it is very important to investigate wheth-

er or not this negative-energy component might
cause a serious difficulty in quantum-mechanical
considerations. But we have not studied it yet and

this is one of our important problems in the future.
We next discuss the stability of our solutions.

Here we first look at the asymptotic form of
r(Q jr)—' given in (4.16). As was explained in

Sec. IV, it should change from zero to B (@0)as r
goes from the origin to infinity. Therefore, one can
realize that the asymptotic behavior of Q (r) forbids
the solution h (r) =0 for all r. This means that the
internal metric field g,b(x) of our solutions is not
allowed to continuously turn to be flat. From this
point of view we insist that our solutions are
stable. Furthermore, as discussed at the beginning
of this section, the absolute value of the electric

charge has a lower bound in this theory. Hence
our dyon solutions are prohibited from 'collapsing
into solutions having only magnetic monopoles.

From the solutions (4.12), dyons have the size of
order p

' [=tr/(3go)' ]. We can roughly esti-
mate the mass of dyons from the potential (3.10).
Using the normalization condition (3.5), we get
M-hop/ 10e . We cannot discuss here anything
about its value because we have no knowledge
about the values of ho and p.

We conclude this paper with a summary of some
important problems to be investigated in the fu-

ture. The first one is to obtain the regular solu-
tions of the Euler-I. agrange equations for all r. As
was shown in Sec. IV, the equations are so compli-
cated that it takes much time to obtain them by
numerical calculations. Another interesting prob-
lem is to study whether the new charge H contri-
buting negative energy will play-some prominent
role in particle physics or not.
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