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Some properties of a particular static, axially symmetric space-time
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The behavior of the directional singularities of a family of Weyl solutions is examined. By examining the. space-time
in a different coordinate system, the directional singularities are understood. The singular points are actually
extended hypersurfaces which have been collapsed to a point by an improper choice of coordinates. The singular
structure is examined in the new coordinate system. The coordinate system shows the space-time to be geodesically
incomplete. A completion of the symmetry axis is described.

I. INTRODUCTION

It has long been known that static axisymmetric
or Weyl solutions of the Einstein equations may
contain points where the space-time exhibits di-
rectional singularities. A space-time has a di-
rectional singularity at a point if the value of a
curvature invariant is different when the point is
approached from different directions. It is quite
probable that this phenomenon indicates that the
coordinate system is inappropriate in the neigh-
borhood of the point, that these "points" really
represent a higher-dimensional surface. We show
that this is the case for a particular family of
Weyl solutions and examine the properties of the
space-time at the points where the directional
singularities occur.

We will study the y solution, a Weyl solution
where the source in Weyl coordinates has a mass
density y distributed uniformly and symmetrically
along the axis for a length 2m. In prolate spher-
oidal coordinates the y solution is

solutions with integer or noninteger distortion
parameter.

II. SINGULARITY STRUCTURE

We shall examine the singularity structure of
the y solution by examining the curvature invari-
ants. Define a complex null tetrad (m, m, l, k)
in the usual way; k and l are real, m and m
are complex and complex conjugates of each
other:

k~l = -1 m~m =1
7

k'k = l~ l = m "m = k~m = l~m = 0

gg 2m (gm ) 2k(p l ) ~

The complex Weyl tetrad components are de-
fined as

C,„„k"m "t-2'm',

C„„ /2~ l"/2'm—',
$2=—2C „„0"t"(/2'l' m'm '),-
g, =-C„„, t'k"l'm'

Choose the (t, x,y, Q) components of the null tetrad
to be

where m~x&~, -1&y- 1, 0& Q&2n, — &t&
We shall consider y and m to be non-negative

real numbers. The solution has interesting special
cases. Either y = 0 or m = 0 is a Minkowski space-
time; y = 1, m 4 0 represents a Schwarzschild
space-time; y -, m - 0, my - constant repre-
sents a Curzon space-time. 'The y solution is also
the static limit of the Tomimatsu-Sato (TS) family
of solutions. ' If the rotation parameter q equals
zero, the TS solutions become equal to the y sol-
ution with the TS deformation parameter 6 being
equal to y. The properties of the singularities
of the 'TS solution for 6 = 2 have been studied by
Ernst' and Economou', this paper may be con-
sidered an extension of their study for static TS

l,x+ m x'-m'
x+m')" x'-m'y' "'-"/'

2 & -m) ' x'-m'

, 0, 0

(4)

- = '(.*'=)"'
m2y2r~ ~2 1 y2 1/2

0~0~ x —m ) x —my

(1 2) 1/2(x2 m2) 1/2

We have calculated the complex Weyl tetrad
components. (All conformal and curvature tensors
referred to in this paper have been calculated
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g —S2

myix m ]r x2
x' -m' )

y'm'x(1 -y')+ x(x' —m')+ (x' —m'y')(x —2ym)
X

(x' —m ' )' (x' —m 'y ' )

03

y(y' —1 )m' x(1 -y') x' —m'y' "
4 (x' —m')(x' —m'y')' x' —m'

As they should, the tetrad components al l vanish
for y = 0, Minkomski space . For the Schmaris-
child space, y = 1, the only nonvanishing component
is p2 and it is everywhere finite. For y & 2, but not
equal to 0 or 1, the components are infinite for
x = e, -1 &

y
& 1 ~ If y & 2, the components are

singular for x = nz, - 1(y & 1. However, the north
pole, x = m, y = 1, and south pole x = m, y = -1
show directional behavior . If me let first x = m

using a REDUCE 2 program obtained from the Uni-
versity of South Carolina, .) The complex Weyl
tetrad components are

(, x(1 -y')
0 ( 2 m2)( 2 m2y 2)2

dr = -m'y(y' - 1)

and then go to the limit y = + 1, the comp one nts
are infinite . If we let first y = + 1 and then go to
the limit x = m, the components are finite . Hence
the poles exhibit directional singularities, i .e .,
the behavior of the conf ormal tensor components
at the poles depends on the direction in mhich me

approach them .
In passing we remark on the Petrov type . Fol-

lowing the algorithm of d' Inve rno and Russell-
Clark reproduced in Ref . 5, p . 64, one sees that
the Z solution (Z & 0 and Z 2' 1) is type D on the axis
and type I or general elsewhere .

IH. THE GEOMETRY NEAR THE NORTH POLE

Since the poles have associated directional sing-
u 1arities we expect that they should be represented
by surf aces rather' than by points . We mi 11 ex-
amine the "north" pole, the south pole has a sym-
metric description . We change coordinates in
the neighborhood of the north pole, using the same
coordinate transf ormation to polar -type coordi-
nates as Emet used' (henceforth we consider only
y& 2)

x' = m'[1 +'Br cos'(-,' 8)],
y' = 1 - Br sin'( —,

' 8) .
Clearly, asm-0; x-m, y-I. In the new (t,x, g,
Q ) coordinate system, the line element is given

by

ds = 4m cos'"
(22 8) 1 ih, ,&, 1 ~ 1 B,, [cos (2 8)dh rsingA -dg r+sin (vg)dg ]

[1+Sj cos (, g)] + 1 " 1 2 ' 2 I 2

1+ Bvcos —,8 ' ' - lj I+ Brcos' ~g

+[1,, )][sin (
—'8)dr'+ r singdrdg+ r' oos'(—'8)dg ])1 - Sr sin' —,

'
8

([I+ Br cos'(—,
' 8)]'~'+ I'I", 1I'[I + Bv cos'(—,

' 8)]'~' - 1 "
~[I+ Br cos'(-,' 8)]' i 2-lj 4 ~[1+ B~ cos'(-,' 8)]'I'+ 1

Here, 0 & ~«, 0 & 8 & w, 0 & p & 2v, -«t « . 8 = m is specifically excluded from the transformation at
the north pole because this refers to the portion of the axis immediately below the pole mher e we know
that the geometry is singular. In this coordinate system, the f, r, 8, Q components of the null tetrad are

&[1+ Bx cos'(-'8)]' ' - 1 "I [1+ Sr cos'(,' 8)]' ' tan—(—,
' g)[1+ Br cos'(3 8)]' ' ']

&[I + B~ cos'(-', 8)]'~'+ 1 ~(
' 4m cos"' '(-,' 8) ' 4m~ cos"' '(-,' 8)

/1 t'$g+ Br cos'(~ 8)]' '+ 1 " [1+ Br cos'(—,
' 8)]' ' tan( —,

' g)[1+ 8y cos'(—,
' 8}]'~'

g2 ([1+ Srcosg~ 8)]' ' - 1 ' Bm cos" '(—' 8) ' Bmx cos"' '(-'8)

([1+(h cos'(—,
' 8)]' ' - 1)" i sin(—', 8)[1- Br sin'( —,

' 8)]' ' i cos(~ 8)[l - Sr sin'(28)J' ' 1
([1+gross'(-'8)]'~'r 1&

' 48 2 m cos"*(-' 8) ' 48 2 mr cos"*(-'8) ' 4 8 2r sing)
'

In thiscoordinatesystem the nonvanishing tetrad components of the conf ormal tensor may be written

y(p' —1) sin'(-', 8)[l+ Sv cos'(-,' 8)]2 ' [1+ Br cos'(21 8)]' ' —I] '"
16m'(S )' cos2)c"'(-,' 8) [1+ Bx cos'(-,' 8)]'~'+ 1)

y [1+ Br cos(-,' 8}]' '[y' sin'(-,' 8)+ cos'(-'8)+ 1]- 2T &[1+Sr cos'(—', 8)]' ' - 1 "
32m

y (y2 —1) Sin'(c) 8) 2 j X / 2
4 64m2 (2+}2cos22g 2(J 8)

[1+Bz cos'(2 8)]' ' .

(B)
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One can readily establish that as r-0; $0-0
(y ~ 2), g, —0 (y& 2), P, has a finite limit (y= 2).
The behavior of g, is that it becomes infinite as
z-0 unless 8= 0 in which case it is always 0.
So the surface z= 0 has curvature singulari. ties
everywhere except at the pole itself. There is
no directional singularity in this coordinate sys-
tem.

IV. THE 'Y METRIC APPROXIMATED AT THE POLE

0 ~ 8& w, 0 & Q & 2w. The Gaussian curvature K
of this two-dimensional hypersurface is

(2r, )" '
4m'cos'"' ""(-'8)

x [(y —2)(y' —2) cos'(-,' 8)+ y'(y - I)] . (12)

ds' = 16m' cos'" ~(—8'
'(2r)"

+
(

)„cos ( 8)dB + „( )dQ

-(2r)" cos'"(-,' 8)dt' . (10)

It turns out that this metric is an exact solution
of the Einstein vacuum field equations for any
y and for all x, 8; not only in the region x- 0.
The Riemann tensor of the approximate metric
is given in the Appendix. When y = 2 the metric
agrees with the approximate metric used by Ernst'
and Economou. For constant t and y =go, a con-
stant, the induced line element on the (8, Q) hyper-
surface is

The exact metric (7) has a complicated form
and we are interested in its behavior chiefly in
the region x- 0. It is a temptation to write a
simpler metric which approximates this metric
in the region x close to zero. Ernst' and Econo-
mou' have studied the behavior of an approximate
metric for the 5=2, TS solution. As we have
remarked, in the case of no rotation, this is the
same as the y solution for y=2. After finding
an approximate metric following the path of Ernst
and Economou we should have a way of determin-
ing whether or not the approximation is good. We
shall give a covariant approach to testing the
approximation. It will turn out that the approxi-
mation is qualitatively good except for the very
case, y = 2, considered by Ernst and Economou.
The Ernst-Economou approximate metric is a
poor approximation in the limit of vanishing rota-
tion.

If one replaces the components of the metric
tensor by a power series in the coordinate x,
the question naturally arises how the series should
be truncated to obtain a good approximation of the
actual geometry near x= 0. We propose replacing
r by Xx and t by X'~t after which the limit X-0
is taken, terms of the order X' " are kept, and
& is dropped from the ensuing expression. This
agrees with the procedure of Ernst when y = 2.
The resulting approximate line element is

For 0~ 8&v the Gaussian curvature is negative
and finite. However, as r, -0, if y=2 the curva-
ture is nonzero, if y& 2 the curvature is zero.

The area of the portion of the hypersurface
from 8= 0 to 8= 80 is

[1 —cos"2 '""(~8
q)

(2r )" 2(y 2 2yy 2)
' (13)

E" = -- 0 0
cos '"(-,'8) cos "'(28)

2 (2r)" ' 8m

(2r)('Y 2)/2 cosY( 8)
0, 0,

'
o - (-'8),242m

(14)

A calculation of the tetrad components of the
Weyl conformal tensor yields the results

y(y —1)(y —2) sin'(28)
(216m' cos~'~"" (28)

qAP yAP 0

y(y —l)[y sin'(-,' ) +2 cos'(-,'B)j
32m'cos~' ~"(-,'8)

{y—1)(y —2) sin'(-,'
64m 2 cos~"2(-;8)

(15)

The approximate metric is I'etrov type D along
the axis (since $,= $, =0 along axis where 8 =0)
and type I elsewhere, in this sense it resembles

For y = 2, the area is finite as r,- 0; for y & 2 it
is infinite as r,- 0 (no matter how small 8, is as
long as 8,&0).

We shall try to establish whether the approximate
metric (10) is really a good approximation to the
exact metric (7). In order to examine this we will
choose a null tetrad for the approximate metric
reasonably similar to the null tetrad used for the
real metric and compare the resulting tetrad
components of the conformal tensor. In the
remainder of this section, vectors and other
quantities associated with the metric (10) will be
written with a label AP; those associated with
the metric (7) will be written without subscript.
The (t, r, B, P) components of the null tetrad
appropriate to (10) are

2rr'Y cos 'Y +R (~ 8)
k„"p—— 1, —

4m , 0, 0
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the exact metric which has the same classification.
As x 0—; g,"~—0 (y ~ 2), g,"~—0 (y & 2), g," has

a finite limit (y = 2). The behavior of g»
~ is that it

becomes infinite as r-0 (y &2) unless 8 =0 in
which case it is always 0; it is also 0 if y=2.
Hence the approximate metric may be a good
approximation to the real metric if y & 2;
however, in the very case used by Ernst and
Economou (y =2) it cannot be a good approxima-
tion. The real metric is singular at x =0
everywhere except along the axis and the approxi-
mate metric has no singularities in the neighbor-
hood of r =0. Although the approximate metric
was designed for y ~ 2, we might look at it for the
Sehwarzschild case, y = 1. All the reasoning
previously made would seem to apply although
there is no directional singularity at the pole.
If y= 1, all the components of the Riemann tensor
are equal to zero, thespace-timeiseverywhere
flat; so again the approximate metric does not
approximate the real metric.

To compare further the approximate metric to the
real metric we look first at the ratios of the
tetrad components of the Weyl tensor in the limit
r-0:

ds = — df + dx (18)

Introduce the null coordinates

du =—dt+ dx,

ularity. Further at the pole, x =0, 6) =0,
there is no curvature singularity. We shall
hereafter usually consider y~ 2. If a timelike
geodesic reaches the pole in a finite proper time
(or finite value of an affine parameter) the space-
time is geodesically incomplete at this point
and should be extended. It is straightforward to
show that the proper time is indeed finite and an
extension of the space-time is necessary. We
shall describe an extension of the two dimensional
space-time subspace spanned by the time coordin-
ate and the rotation axis; this is of course not a
complete extension of the four-dimensional
manifold. In the (t, x,y, P) coordinate system we
shall extend the submanifold along the axis y =1,
dP =0. The fact that this extension was necessary
and possible is stated in the 1972 paper of Voor-
hees (Ref. 1)

qAP y 2 yAP qxP
(18)y+1 ' g, '

g» y+1

"x'+m
u =-u —G(x), &(x)-=2, dx'.

Xp

G(x) is monotonic in the regions

(20)

~AP
k t

A P [cos (Lp8 ) ]-x

To see how meaningful these comparisons are
we look at the ratios of the components of the null
tetrad vectors as x- 0,

I.

II: -m&x&m.

The mapping is well defined only if we specify
to which region it is being applied. In the u, zg

coordinate system the line element is

Et
AP
l t

AP = [cos(L8)] 1 x-mt~ds' =
~

du du) .x+m j
(21)

m' m~
AP [ o (L8) ]-1 AP

One sees that near the axis, the null tetrads
become nearly equal to each other and the
curvature invariants all approach some constant
value. It would seem that near the axis the ap-
proximate metric resembles the y metric
reasonably closely as far as qualitative features
are concerned; however for y=2, the approxima-
tion fails because the singularity structure at
x=0 is so much different. Of course, as we
remarked, the y and the approximate metrics
have the same Petrov classification.

V. EXTENSION OF THE SYMMETRY AXIS
AND THE CONFORMAL STRUCTURES

It has been remarked that in the (t,x, 8, @)
coordinate system there is no directional sing-

%e now introduce the coordinate mappings

S

u = sec"s'ds', m= — csc"~'A',
Sp tp

S = 2(l/)+ t)& %=2((—$) y'
00 & $ &ao m & (& oo

(22)

The line element in the two space becomes

ds' = Q(d t2 —dq'),

sec"—,(0+ t) csc"-,(0 —() .1 x m yl yl
4 x+m

A rather lengthy algebraic calculation can show
that Q is finite, nonzero, and a continuous func-
tion of g and $ at x =m.

A better understanding of the line element (18)
and its extension (23) is obtained by the behavior
-at infinity as described by its conformal, struc-
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ture. The technique for construction of conformal
diagrams of geodesic completions of metrics of
this type (18) has been known for sometime; a
brief review might be beneficial. The following
remarks are based on the paper by Walker-' which
should be consulted for details. We discuss a
timelike two surface with a metric which can be
put in the form

0
II
L.

ds'= -F(~)dt'+ F(r) 'Ch' . (24)
u & w

I
I
I ----~ r, (

The only curvature invariant of this metric is
the intrinsic Gaussian curvature K-=—', d' Fjdh'.
If K and E are finite for all x, then every geo-
desic can be extended indefinitely. If K or E be-
comes infinite for some x = x, then there are in-
extendible geodesics and the space-time is singu-
lar.

Let the zeros of E by given by x =a;,
i =1,2, 3, . . . , n, with n finite. If E approaches
a constant value and K- 0 as x- ~, the space is
asymptotically flat and conformal infinity can be
represented on diagrams by a pair of finite null
lines.

When F vanishes (horizons), the timelike Killing
vector becomes null; we can think of the x = a, as
dividing the space into n+1 distant regions.
Each region is bounded by. the horizons, by one
horizon and conformal infinity, or by one horizon
and a singularity (say at r= x, on the figures).
The conformal structure of each such region will
be referred to as a block (see Fig. 1). The con-
formal representation of the space-time is found

by "gluing" the blocks together according to a
well-defined scheme. Those seams along which
E=O and K is finite are nonsingular while those
along which either E or K are infinite are singular.

We now turn to the extension of the geodesics
by gluing the blocks together. Our convention
for the resulting diagram is that the timelike
coordinate in each block increases vertically up-
ward. If E&0 in a block, t is the timelike coor-
dinate; if E&0, z is the timelike coordinate.
Figure 2 shows the possible arrangements.

In summary, the rules for constructing the con-
formal representation of the space time are very
simple.

(1) The timelike coordinate in each region
changes vertically.

(2) The blocks are combined in all possible
ways by joining them along nonsingular seams.

(3) K must be smooth across a seam, hence a
block cannot be flipped and joined to itself.

The above rules may be applied to the y metric
along the polar axis. Equation (19) represents
the line element in an appropriate form with

FIG. 1. The conformal structure of blocks. (a) is
a nonsingular block. (b) is a singular block. The wavy
line x =yo shows when the intrinsic curvature K is
infinite. (c) is a nonsingular block with conformal in-
finity Q represented by double lines.

/

(25)

The results are displayed in Figs. 3 and 4. . The
only root is a root of order y at x=m. We can
only apply the considerations of the preceding
paragraphs to integer values of y (y=l, 2, 3, . . .).
Since there is only one root, there are only two
blocks, For y odd, E changes sign as x crosses
m and one obtains a diagram of the two space of
"finite" size. For y even, E& 0 in both blocks
and an infinitely long chain of blocks results.
For values of y such that 0&y &1 and 1&y & 2,

FIG. 2. Gluing blocks together: 1 and 2 indicate the
two ways in which neighboring blocks may be glued to-
gether. A representative pair of Killing vector orbits
y=const is shown.
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although y is not integer, no extension is expected
as the space is singular at x=m.

The points on tQe diagrams labeled exceptional
points are not covered by a coordinate patch.
However they are at infinite affine distance and
cause no concern. For y41, the exceptional
points occur at N= m=0.7 If y &2 and not an inte-
ger, an analytic extension is not possible. If
n&y(n+1 for integer n, an extension is possible
which is C".

X= -l7l

VI. CONCLUSIONS

Upon examination of the y solution at the "point"
x =m, y =+1, we have found that this "point" is
actually a two dimensional hypersurface for y o 2.
The Gaussian curvature of the hypersurface can
be calculated (this was done in an x —8 coordinate
system). For 0(y(2, the Gaussian curvature is
infinite at x=0 (g=m, y=+1) and the "hypersur-
face" is a point; for y=2, the Gaussian curvature
is finite at x=0; for y& 2 the Gaussian curvature
is zero at x =0.

The directional behavior of the curvature in-
variants in the original space-time is thereby
explained as the evaluation of these invariants at

FIG. 4. The conformal representation of the space-
time (x, t) plane when y&2 and odd, y=. +1. The wavy
line represents the physical singularity. The arrows
refer to the exceptional points. These points are not
covered by the coordinate patch but are at an infinite
affine distance.

different points on the hypersurface. We attempt-
ed to understand the behavior of the metric at
the pole (x=0, 8=. 0) of the hypersurface by find-
ing a metric which gave similar behavior to the
real metric in the neighborhood of the pole. The
attempt was unsuccessful for y = 2 and only par-
tially successful for other values of y.

We then showed that the space-time was incom-
plete at the poles for y» 2. We looked at the
polar axis and found an analytic extension of two-
dimensional space-time which includes the axis
and time coordinates. We described the con-
formal structure of the extended space-times.

ACKNOWLEDGMENT

One of us (L.W. ) acknowledges partial support
by the National Science Foundation under Grant
No. INT-7825663.

APPENDIX

The approximate y metric [Eq. (10)] was in-
tended to approximate the exact y metric only at
the poles (x=0) and for y~2. It turns out that
the approximate metric satisfies the vacuum
Einstein field equations for any value of y and
over the whole four-space (r, 8, g, t). The non-
vanishing components of the Biemann tensor are
given below. y =0 and y =1 both yield Minkowski
space-time:

FIG. 3. The conformal representation of the space-
time (g, t) plane when y» 2 and even, y = +1. The
wavy lirie represents the physical singularity. The
arrows refer to the exceptional points. These points
are not covered by the coordinate patch but are at in-
finite affine distance.

4y(y —I)~' „;;-.,-.(.8)1212 (2~)y 2

4ysin An 2
+g3g3 (2 )y 2y+2(18) ly(y —I) sin (r8)

2
+ (y —I)cos8],

(AI)

(A2)
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y(y —1)[ysin'(-,'8) + 2 cos'(-,'8)](2r)"cos'"(-,'8)
1414 4r ' cos'(-,'8) 7

(A3)

Ii„„=y y y (2r)" 'sin(-,'8) cos'" '(—,'8), (A4)
( '-3 +2)

2

4yr
' sin' An'

»» (2r)r CQS3r+3(1 8)

x [(2 —2y) + (y' —3y+ 2) sin'( —,'8)],

y(y —1)(2r)"cos'"'(-,'8)
4

x [(y —1) sin'( —,'8) + cos'(-,'8)],

y(y —1)(2r)"sin'8cos'" 3" '(—,'8)
&3434=—

4y(y' —3y+ 2)r sin'8 sin( —,'8)
1333 (2r)r cos4+1(18)

(A6)

(A8)
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