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Towards a unified picture for gauge and Higgs fields
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A scheme for a geometrical unification of gauge and Higgs fields, previously given for SU{2), is generalized to
include arbitrary semisimple gauge groups. Gauge and physical Higgs fields appear as different components of the
same tensor in a high-dimensional manifold, the higher dimensions being comprised by the group coordinates. Their
respective inhomogeneous transformation behavior is derived from the same principle. The number of Higgs fields is
restricted. The form of the Higgs potential is fixed, and the mass of the Higgs particle is predicted in terms of the
vector-boson mass.

I. INTRODUCTION

In the construction of unified" and grand uni-
fied'~ models the necessity to introduce Higgs
fields appears to be aesthetically disturbing. In
fact, the price for the unification of some interac-
tions may be seen as having to introduce a new

one, the one produced by the Higgs field.
The objective of the present paper may be seen

as the attempt to give, at least for a certain class
of Higgs fields, a model that displays a formal
unification of gauge and Higgs fields, much in
the spirit of the Kaluza'-Klein' model that gives
a formal unification for gravity and gauge fields. '
In doing so one hopes to get restrictions on avail-
able theories. These restrictions may concern
the parameters of the theory as well as the form
of the Lagrangian. In the Lagrangians of this
paper, in particular, the form of the Higgs poten-
tial will be fixed and the Higgs mass predicted
in terms of the vector-boson mass.

The starting observation is the following. In a
Kaluza'-Kleine formulation of gauge theories
(compare Ref. 7 and references therein) it is nat-
ural to consider gauge fields A„' as components
of a tensor in a (4+0)-dimensional space, 0 being
the order of the gauge group. (Greek indices are
Minkowski indices, late Latin indices are group
indices. ) Further components of the same tensor
are in particular A, ', which in the following will
be considered to be candidates for the Higgs field.

This identification introduces a formal SO(1, 3
+k) symmetry that relates gauge and Higgs fields.
The symmetry is formal since the dependence of
A ~ and A, ' on the group coordinates is fixed. '
The dependence of A ' on the group coordinates
is characterized by the differential equation

I,A„' =f'„,A„',
where f'„, are the structure constants of the group
and I.~

are the group generators written as differ-

ential operators. The metric in the group space
is the Killing-Cartan metric of the group g„=

The differential equation (1.1) is compat-
ible with gauge transformations in the sense that
the gauge-transformed gauge field A" obeys the
same differential equation. In fact, '

AE8 ijs A f ystT (d fJ III) P 1 (1.2)

and the assertion is true provided [L„d ] = 0 and
U and U ' obey the differential equation for a rank-
2 tensor operator under group transf ormation,
viz 10

f ~fJs"=f.t"ff "+fs" &,".

For the would-be Higgs field A, ', two basic ob-
servations are the following. One is that, if the
formal SO(l, 3+0) symmetry is to be preserved
under gauge transformations one should attribute
an inhomogeneous transf ormation behaviour to

The A, ' are therefore to be identified with the
components of the physical Higgs field in the con-
text of a theory with hidden gauge symmetry. The
other observation is that since A, ' is a rank-2
tensor under group transf ormations, the homo-
geneous part of the gauge transformation of A, '
should be U," U' A„. Such a transformation can-
not be reproduced from'an expression like UA, U ',
A, =A, 'f, . From this point of view the concept of
treating both A„' and A, ' as components of algebra—
valued one-forms does not seem to be suitable. "

I therefore propose to introduce the two-forms
A„, 0 +0' and A„o'A6' as the basic objects of the
theory. " The algebraic structure of the gauge
algebra is hidden in the basic one-forms O'. In
fact, their duals are the differential operators I.,
which satisfy the commutation relations of the
gauge algebra.

It will be convenient to formally introduce the
two-form A~~ g +g, where capital middle indices
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II. THE LAGRANGIAN

We introduce the basic two-form

A =A.~~8 +8

Adopting the convention 4 8= 0, it may be ex-
panded into

(2.1)

run from 1 to 3+0. & contains components A.„,
, and &„8, the latter will be assumed to vanish

in this paper. " In order to preserve as much of
the formal SO(1, 3+k) synimetry as possible, the
Langrangian will be required to be a sum of terms

+me & ' &as~&"" &s~&""

. krher@g z, is the usual Yang-Mills field strength
-tens&L- d'or & ' and+ „,F„„differ +„+ in the re-
"plcement of differentiations with respect to
Minkowski coordinates by differentiations with
respect to group coordinates. Terms bilinear in
fields will be determined by the requirement of
gauge invariance. The Lagrangian itself will be
independent of the group coordinates J.,g = 0 as
a consequence of the gauge invariance of the
theory.

In the following section, a detailed description
of the Lagrangian will be given in a concise form.
The differentiation with respect to group coor-
dinates will be specified. It can then be seen that
the Lagrangian is one for a Yang-Mills Higgs sys-
tem with hidden gauge symmetry. The maximal
number of components for the Higgs field is
k(k —I)/2, k being the order of the gauge group.
The inhomogeneous transformation behavior of
the physical Higgs field is derived by analogy
with (1.2) and, up to first order in, the group
parameters, is shown to be identical to the usual
one. Gauge invariance is achieved modulo a con-
straint on a constant matrix. By comparison with

the usual formalism, this matrix is identified
with the vacuum expectation value of the Higgs
field. A first solution of the constraint is given;
the construction of further solutions is currently
being attempted.

In Ref. 14, preliminary results were given ap-
plicable to the case of SU(2) as gauge group. The
current paper is formulated for arbitrary semi-
simple gauge groups. " Furthermore, some of
the concepts more or less explicitly inherent in
Ref. 14 are here being clarified.

E =DA = (D»A»z, )e "9 *8

+A, [d(8 .0')]. (2.4)

The la.st term in (2.4) emerges since on the
grounds of Cartan's first identity, "d8 does not
vanish in general.

As a Lagrangian we will choose up to an overall
normalization factor

z-(z; ~), (2. 5)

where (; ) is a scalar product induced by (0",p»)

«ga8 d~ag(+'' ')«get est«En' 8'8a
Explicitly,

where the tensor components g«„are introduced
by

P y 8E' 8I 8N

Working out (2.4) one finds

F„B =[d„As —dsA~ —»(Af A) 8],

(2.7)

(2.8)

I" s„,={dsA„,-d„Ag, +d,Ag„

+» [ (A f,A) 8, —(Af, A) & „]+ [&u„' —u, „']A &,},
(2.9)

+» [(AJ,A),„+(Af„A)„+(Af, A)„,]}, (2.10)

where the matrix convention for A andf» has to
be remembered. The Lagrangian displays a mani-
fest formal rotational symmetry under SO(1, 3+k).
Note that it is by employment of this formal sym-
metry that the relative factors in (2.6) are being
fixed.

Before specifying the derivative with respect
to group coordinates let us introduce the analog
of (1.2) for Higgs fields. It reads

derivative D~ acting on the A~~ by

D»A»~ =d»A»i + K(Af»A)»«K = const. (2.3)

In (2.3), for M=o, , d„ is the usual partial deriva-
tive acting on Minkowski coordinates, and for
3f =g, d, is a derivative acting on group coor-
dinates; the latter will be specified below. A
field strength tensor is now introduced by

A =2A. , 0 +8'+A.,q0'~8 . (2.2)

It is convenient for the following to introduce a
symbol f»~» which is nonvanishing only if all its
indices are group indices. Further, a matrix
notation will be used such that (f»)~» =f~»» and

(Af»A)» =A„"f„»„Af. We then introduce a

+
4 [f,'"(d„U,' )U, ' „—f„'"(d,U,

'
)U, '„). (2.11)

4g s

Guided by our principle of formal symmetry we
will identify the differentiations in (2.11) with
those appearing in (2.9) and (2.10). It would be
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suggestive to choose d, = Lt. In fact, in the group
space, I.t is the exact geometric analog of d .
We will see now, however, that such a simple
identification will not work.

In fact, using an infinitesimal parametrization
for U,

~tv Rtu ~et gvt e fount& (2.12}

the inhomogeneous term in (2.11) is for d, = I.,
given by

AC2
fs. & (2.13)

where C", is the value of the quadratic Casimir
operator of the group in the adjoint representa-
tion. " In view of (1.1) and the identification"
2&a„„=f„„the transformation behavior of F«„
can now be discussed. In order that g be invariant
under gauge transf ormations we requir e homo-
geneous transformation laws for p,

s'
&+ass = &s' &mes

(2.14)
v s~est ~v +v'st ~s +vs' t ~t +vs t' '

CA

dg
(2.19)

(2.18) coincides with the transformation behavior
of the physical Higgs field in the conventional
hidden gauge symmetry formalism. " This aspect
will be discussed in more detai& below.

We are now in position to carry out the differ-
entiations with respect to group coordinates in
(2.9) and (2.10). One finds

ancl

F8„,= (dqA„, —
p [(Nf, A)„8 —(Nf„A), 8]

+K[(Af,A)„8 —(A f„A),8]j (2.20)

t
&~nas = ~. &ast (2.22)

F„„=—,
'
{2[(Nf A ),„+(Nf„A)t, + (Nf,A }„g

+ (Af, N},„+(A f„N}„+(Af, N)„,]
—x [(Af,A),„+(A f„A)„+(A f,A)„g]]..

(2.21)

The requirement that under gauge transforma-
tions (2.19)

Using (2.13}one finds however that a homogeneous
transformation law for +B„cannot be derived.
Therefore, I'R„,I' 8"' will not be gauge invariant.

A second best choice for d, would be

fixes g in terms of the gauge coupling g:

2g= -C",K.

Therefore, instead of (2.18) and (2.19),

(2.23)

d = Ns Ls'& (2.15)

which means geometrically that d, is a k-tuplet
of directional derivatives. In order to preserve
Cartan's first identity we have to make the further
ident if ication

I
2&:~=No' f.s t (2.16)

d~Nsv = fse"Nwu+ fu~ Nsw. (2.17)

Again p8„, and the transformation behavior of &
and&„, are fully specified. In order to derive
a homogeneous transformation law for p8„, under
(1.2) and (2.11), one finds upon explicit calculation
that N, v has to be antisymmetric. In particular
the simple choice d, = L,, is not possible, as has
been remarked already above.

In order that A.~„satisfies the same differential
equation as A.,„we will require

1
&&as = &st&a de&s~

K
(2.24)

(2.25}

+
12 {([e,N]ft N),„+(Nf, [e, N]),„

1

+ ( [e, N] f„N) t~ + (Nf„[e,N] )g

+ ([e, N] f, N)„, + (Nf,fe, N])„,$. (2.26)

In order that F,~ transforms homogeneously as
is necessary to get an invariant Lagrangian, we
have to require

5A,„=[a,A],„+—[e, N],„.1

Under (2.24) and (2.25), Fs„, transforms homo-
geneously as specified in (2.14}. For F„„we find

s' sl s'&I".tv =&.' I"s"t+&: I"s. t+&t' &.,

The matrix N itself will be assumed not to trans-
form under gauge transformations and not to dis-
play explicit dependence on Minkowski coordinates;
i.e. , d N,v=0.

(2.11) is now well defined. For completeness
we write its infinitesimal version as well as that
of (1.2):

(([e,N] f, N},„+(Nf, [e, N]),„
+ ( [e, N] f„N)„+(Nf„[e,Nl }g,

+ ([e, N]f N)„, + (Nf, [e, N] }„,)= 0,

which mea, ns that

((Nf, N),„+(Nf„N)„+ (Nf, N)„,) (2.26)

CA
5A,„=[&,A],„— ' [e, N],„,4g

(2.18)
are formally to be the components of an invariant
tensor under group transf ormations. Theref ore
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e,„,=0,

or equivalently

~'"' =0svt 7

(2.29)

(2.30)

1
&8.=Bs.+ =

2K
(2.32)

one finds from (2.20) and (2.21}, respectively, that

E8„,= (d 8B„,+ g [(Bf8 A }„8—(Bf,A),8] ]. (2.33)

3F„„=
4 [(Nf, N),„+(Nf„N)t, + (Nf, N}„g]
1

—a [(af, ))),„+(ay'. a),.+ ())fa)„]j(., () . 3, 4)

&8„, and &„„transform as above, if N does not
change under gauge transformations, if the con-
straint (2.29) is fulfilled, if A, „, transforms ac-
cording to (2.24}, and if B„, transforms homo-
geneously,

5B,„=[~,B],„. (2.35)

Therefore 8 is to be identified with that Higgs
field that the normal hidden gauge symmetry form-
alism starts off with and & corresponds to the
vacuum expectation value of B.

In fact, this identification is compatible with the
observation that E,„,g'"', the would-be Higgs
potential, displays a minimum at

1
Bvs-+

2 Nvs
K

(2.35)

or

1
Avs 0~ Avs Nvs

K
(2.37)

Note that the latter choice in (2.37) leads to a
Lagrangian equivalent to the one following from
(2.21).

The shift (2.32) has been done after the differen-
tiations with respect to group coordinates have
been carried out. Because of tbe condition (2.17),
however, we would have arrived at the same re-
sults if the shift had been carried out first.

I conclude this section with first a discussion
of the constraint (2.29). For SU, as a gauge group,
(2.29) is an identity for all N, provided q is norm-

since the gauge group is compact, with q = constant
and

0,„,=((Nf, N),„+(Nf„N)„+(Nf, N)„, +q f,„,). (2.31)

First solutions of the constraint (2.29) will be
given below.

Using (2.20) and (2.21) it can be seen that the
Lagrangian displays a Goldstone-Higgs-Kibble
phenomenon. In fact, setting

¹a~T,g, +a2T6 ~2+a3 (2.39)

where a», are constants. N may be characterized
by

tr (f„N) = 0, v = 5. . . 12. (2.40)

The mass term for the vector bosons following
from (2.20) is proportional to

tr ([N,A„])', (2.41)

where A„ is defined as A„=A 'f, . Working out
the commutators [f„,N], one finds by counting the
number of linear dependencies among them that
tbe little group of N (equation (2.39)) is two dimen-
sional. We thus would have two massless vector
bosons. Unfortunately, (2.39) corresponds to q = 0
[cf. (2.31)] and thus leads to a potential with a de-
generate ground state. I am presently trying to
find further solutions of the constraint (2.29).

III. DISCUSSION

The reader might wonder how the field strength
tensors (2.20) and (2.21) have been found in the
first place. In short, the answer is the following.
For once one requires a transformation behavior
for gauge and Higgs fields as given by (1.2) and
(2.11), respectively. One then desires to write
all field strength tensors gK~ in the form

+KLN d& +LA dLA KN ~KL~ & (3.1)

where GK» is to be determined such that p'«~
transforms homogeneously under (2.11)and (1.2).
For geometrical reasons, d, should be essentially
given by P„ for reasons given in the preceding
section, d, has been set d, = N, 'L, . The form (3.1)
is motivated by the fact that E &, the usual Yang-
Mills field strength tensor, is already of the form
(3.1).

Choosing the A„ to be antisymmetric folIows
from the constraints on the construction of P„„.
In fact, in terms of the homogeneously transform-
ing Higgs field B„„E„„cannotcontain terms
linear in B [which would have to be of the form
(Nf„B)„, etc ]since su.ch terms could not give
rise to a homogeneous transformation law for F„„
if N does not transform under gauge transforma-

alized to q = —tr(NN). (Compare Ref. 14.) For
higher groups the situation is much more difficult.
There exist special though degenerate solutions
(2.29), however. For definiteness consider the
gauge group SU,. Introducing

(2.3S)

they may be written (note that late Latin indices
run from 5 to 4+ 8 = 12 in this case)
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tions. Since further E„„asa function of 4„, by
construction does not contain a term independent
of A.„„&„„asa function of B must have a term
bilinear in pg. Following the arguments of the
preceding section, this term must be proportional
to an invariant tensor of rank 3 under formal group
transformations 6N=[e, Pg]. Using the input (3.1),
for a symmetric A.„, this tensor would have mixed
symmetry, i.e. , would be partially symmetric,
partially antisymmetric. Such an invariant tensor
for rank 3 does not exist, however.

For symmetric A.„„atotally symmetric I'„„
may however be found using much the same argu-
ments as lead to the construction of the totally
antisymmetric &„„for antisymmetric &„,. Having
however different symmetry properties for com-
ponents of I'«~ with different values of K, L, M
is not compatible with the requirement that a for-
mal symmetry exists that transforms the various
components of I«~ into each other. Considering
the possibility of applications I summarize here
what the structure described in the preceeding
section at the best can do.

Higgs fields would be restricted to be in the
reducible k (k —1)/2-dimensional antisymmetric
tensor representation of the gauge group, k being
the order of the group. This representation is
bigger than the adjoint representation [except for
SU(2)]. For example, for SU(3) it is 28-dimen-
sional containing irreducible representations 8,
10, and 10*. The possible symmetry-breaking
patterns are however restricted by the constraint
to be fulfilled by N.

For given &, the Higgs potential is fixed and,
due to the assumption that the tensor I'«~ derives
from the concise form (2.4), all relative normal-
izations in (2.6) are fixed. The Lagrangian of (2.6)
contains essentially two free parameters: the
self coupling of the gauge field and the ma, ss of
the vector bosons (or, equivalently, the radius
of the group space). The mass of the Higgs bosons
is then determined in terms of the vector-boson
mass and the self coupling of the Higgs field in
terms of the self coupling of the gauge field.

With regard to applications, clearly the biggest
obstacle of the present construction is the con-
straint (2.29), whose possible solutions will be
the subject of some future work.

To conclude, I would like to mention two pa.pers
whose objectives are rather similar to the present
one. The first is by Manton" who gets a formal
unification of gauge and Higgs fields by employing
high dimensional Yang-Mills theories. The second
is by Macrae. " The starting point of the latter
paper is not unlike that of the present one. How-
ever, Macrae's Lagrangian is quite different from
the one constructed here.
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APPENDIX

As has been remarked' in the Introduction, a
forma, lly gauge-invariant theory containing gauge
fields and would-be Higgs fields based on the use
of algebra-valued one-forms may be constructed.
This will be demonstrated in this appendix. As
will also be seen, however, the theory does not
display a Goldstone-Higgs-Kibble mechanism
unlike the theory based on two-forms described
in the previous sections.

Introduce

A.„=A„'f, &
A., = A, 'f„ (A1)

F„8=d„AB—dgA„+K[A„, AB],

F„,=d„A, —d, A„+K[A„,A,],
F, ~

= d, A, —d, A., + tc [A„A,] + 2uP„A„.

(A3)

(A4)

(A5)

Equations (AS)-(A5) may be obtained as compo-
nents of the two-form

F =d(A, 6')+~A*A,

where

(A6)

and Cartan's first identity has been taken into
account.

The gauge transformations

A -UA U + —Ud~U ',] 1
K

A, —UA, U '+ —Ud, U ',

(A7)

(a8)

lead to homogeneous transformation laws for
+KL ~

(A2)

where the range of indices and other conventions
are as in the previous sections. In generalization
of the usual field strength tensor I„a of a Yang-
Mills theory, we introduce now
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Err, —UE~z, U ' (A9) related by

and thus to a gauge-invariant Lagrangian trE~~E~~
if

td, dt t = 2(d td„. (A10)

Note that for d, = L, we have the identification

=B „——N, „
1
K

which gives

(A14)

(A11)

and

E,„=d A,„—(Nf+), + x(Af„A)„
E,t = (Nf+), t —(Nf,A), —(Nf A)t,

+ y (Af A)„.

(A12)

(A13)

From (A12) onwards, formulas are specified for
antisymmetric 4„,and N„,. For the symmetric
case a similar analysis can be carried out. The
case N„,-g„, is a special case, since g„, itself is
an invariant tensor under group transformations.
From (A12), physical Higgs field 4„,and homo-
geneously transforming Higgs field B„,should be

2~ s~=f st.
1

In this case (A10) is identically true. If we set
d, =N, 'L„(A10) will give a constraint on N, „which
plays the same role as (2.29). However in this
case, unlike the situation in Sec. II, we would
have no reason to introduce directional deriva-
tives N, 'L, except the desire to produce certain
mass spectra for the vector bosons.

In order to see whether the Lagrangian displays
a Goldstone-Higgs-Kibble phenomenon it is con-
venient to project components E,' and E„". One
finds

and

E,„=d B, +v(Af B)„, (A15&

E„„=—(NfP'), + —(Nf N)„
1 1

—(N f+)„+ii(BfB)„. (A 16)

(416) contains a term linear in B and therefore
does not transform in the right way, i.e. , homo-
geneously. We therefore conclude that the model
given by (A3)-(A5) is not equivalent to a gauge
model with hidden gauge symmetry. The latter
requirement is essential in the context of re-
normalizability considerations.

The only exception to the above consideration
is the case when for symmetric g„,we choose
N„,—g„„ then the transformation properties of
(A13) survive the shift (A14). In this case (as,
actually, in all others) the second equation of
(A8) leads to the transformation behavior expected
for physical Higgs fields. The model (A3)-(A5)
might therefore serve as a theoretical laboratory
for the discussion of the questions of the geomet-
rical unification of gauge and Higgs fields, if we
choose the identification d, = L,.
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