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Summable chains of instantons. II. Explicit integration of quantum fluctuation determinants
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Determinants arising in the computation of one-loop quantum fluctuations are obtained explicitly for a particular
class of SU{2j multi-instanton backgrounds. For this class the space-time integral irivolved is evaluated analytically
for arbitrary index. Results are given, for isospin 1/t'2 and 1, in terms of either the Dirac or the Klein-Gordon

operator, these two being simply related. Correction to the dilute-gas approximation is displayed explicitly. The
periodic Prasad-Sommerfield background is discussed as a limit of our class. Concluding remarks indicate further

possible developments.

I. INTRODUCTION

Quantum fluctuation determinants corresponding
to nonzero modes in multi-instanton backgrounds
have been studied by a number of authors at dif-
ferent levels of generality. ' Brown and Creamer'
considered 't Hooft's multi-instanton solutions and
expressed their result as a correction to a sum of

separate single-instanton contributions obtained
in an early work of t Hooft." This is expressed
as a space-time integral. Then they remarked
that "Unfortunately the integral. W, in (4.8) cannot
be evaluated explicitly for arbitrary winding num-
ber n." In fact, even for n =2 one had to resort
to approximations. Only for n =1 was the result
totally explicit. (A recent work for the n =2 case
is quoted at the end of Sec. III.) Hence an exact,
explicit expression for the correction to the dilute-
gas approximation is not available even for the
't Hooft class of multi-instanton background.
Other authors' ' have studied the general instanton
background corresponding to the (8n —3)-parame-
ter Atiyah-Drinfeld-Hitchin-Manin (ADHM) solu-
tions. Interesting general results have been ob-
tained. But they naturally involve even more com-
plicated integrals (including the relatively simple
't Hooft background as a particular case) which
prove to be intractable so far as explicit analytic
evaluation is concerned.

We will show that the relevant sphce-time inte-
gral can be evaluated explicitly, for arbitrary in-
dex, for a particular class of mu1. ti-instanton con-
figurations. We studied in a preceding paper
(Ref. 11 quoted hereafter as I) the Green's func-
tions corresponding to this class instanton back-
grounds. This class is obtained by imposing con-
straints on the parameters of the centers and
sizes of the 't Hooft SU(2) solution. In the nota-
tions of I, the gauge potentials turn out to be

A, .= q'„„.8„[lnp(x)],

where

9q~, 'e,~„——q',„=+5„(n,j, I' = 1,2, 3)

for index (o —2).
An equivalent form is given by

px)=~~ sec'(knlo )

~0 [I —t na(k /vn)]'+ r' '

Various properties and significances of (1.2) or
(1.3) are discussed in detail in I, for example,
their relations to static de Sitter solutions and to
single "multicharged" instantons of "size" one in
Witten's sense. (Detailed references can be found
in I). Here, for a given index, the parameters
are fixed. But this is done in such a way that in
many applications the results can be made (with-
out restricting the instanton number). as explicit
as for the one-instanton case. This is the re-
markable property we demonstrated in I concern-
ing the Green's functions and will demonstrate
again here for the fluctuation determinants.

II. THE INTEGRAL IN QUESTION

Various cases are considered in Befs. 1 to 9 and
even for the same case different authors do not
always express the result in an identical form.
But one finds that for the 't Hooft SU(2) multi-
instanton background the integral that remains to
be evaluated can be taken to be

I= d'x(lnp)( lnp), (2. 1)

( ) ~ csc (k7I/o) '( 2 8 )~ [t —cot(kw/n )]' + r '

(1.2)

3146 1981 The American Physical Society



SUMMABLK CHAINS OF INSTANTONS. II. KXPI, ICIT. . .

where, for index ~,

and

(2.2)

(2.3)

of Sec. IV, we consider solutions which are not
periodic in t. %e emphasize this fact, probably
evident to many, to avoid trivial confusions.

Again, now

l e-1

( -~) = I&i-cot—+r'
y=l

See, for example, the Eqs. (28a) and (28b) of Ref.
8, which give, for the Dirac operator, the results
for the fundamental and the adjoint representation,
respectively.

Restricting (2.2) to (1.2) means [with n=(n —1)]
setting

1 km
y = cot —,0 (k = I, . . . , o. —1) .

sin(kg a ' 2 o. '

(2.4)

This gives [Eq. (2.22) of I]

Hence, finally

1 sine~ sinn~
o(2 (sin&u sin~)~

Cl lnp = —TrEE*

such that

d'x 'inp=(n —1) .
16m

p = 2' 'e "(cosT + coshR )
'

(2. 18)

(2. i4)

(2. iS)

cote~ —cote&p=Q )cot~ —cot@

where

z =- (t +ir) = cot~ .

In the coordinates (r, R») defined by

I'~+ za, 't

t+ ir = tan]
)

or

(() =
2 (T + 'ER» ) 1

7T

2 2

o(sinhnR» f coshR»+ cosvP=
sinhR II, cosha R — -1 cosa 7

coshR~ + cos 7.
&2e-X~

~cosho R» —(-1) coen r

(2.5)

(2. 8)

(2.7)

(2. 8)

(2. 9)

The change from p to p eliminates the 5 singu-
larities. This gauge-invariant density is most
conveniently derived for our purpose by starting
with the potentials in the gauge [see (2. 10) of I]

ax-
A =—4

9~

(2. ie)

A,. = (e"—1)i[4,8,4'] (j = 8, 91),

where

(t) = —,'(sin8cos((()a, + sin8sin((ro2+ cos8o2) .

(2. 17)

The required gauge transformation is given in I.
The well-known expression for such an ansatz is

where

(n Bmha*) (2. 10)

TrS'1'" =—,), (e'" —()—+), (e'"-()—2 q &X 2 BX

ar ' at
(2. 18)

It will be noted that while

-~ &t&~, 0»r~~ (2. 1i)

2
(8 2 ~8 2)(1e21 ~)y' (2. 19)

Hence carrying out the trivial angular integrations

0» v'&2g, 0»B (2. i2)

in terms of (r, R ) the equivalent domain becomes
I= -8n dt dr lnp[((), '+ 8 ')(~e'" —y)] . (2. 20)

(See I for a detailed discussion of the significance
of these coordinates. ) In the integration to follow,
we will not ampute the domain [-~, +~] of the
Euclidean time in flat space. The finite domain
(0, 2)1) of r, achieved by a coordinate transforma-
tion, has a significance quite different in the con-
text of flat space from the restriction of the t in-
tegration over one chosen period for periodic so-
lutions (see Sec. IV). Except in the limiting case

From (2. 7) one notes that

dt dr(B,' + &„2)= dr dR» (&, + 8„') .

Since X is independent of 7,
OO 2f )2I= -87t dA dv lnp

0 0

(2.2i)

(2.22)

The r integration gives, using (2. 14) and Ref. 12,
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dv inp =2(([-)l + (a' —1)ln2]

Hence

—2(a —1) dr ln(coshR + cosr)
0

= -2m[)(', + (a' —1)R —2(a' —1)ln2] .
(2.23)

I=16' dR y+ e —1 R
0

-2(a —1)ln2]„,(-'e'(( —X) . (2. 24)

(Note how the coordinates w, R„drastica'lly sim-
plify the integration probl. em. This is no accident
since we started in I from static de Sitter solu-
tions. ) This is a finite integral. But in order to
do the integration we had to break it up into pieces
some of which are individually divergent. So we
will take the limits e and e'- 0, where the domain
of R is [e', 1/r]. All the divergent terms will be
seen to cancel out at the end.

Partial integrations lead to

1/6
I= lim (-16m') [X + (a —1)R —2(n —1)ln2](e'" —1) —(c(( —1)(~e'" —X)', '

6 6'~0 dA

(d+ (gn((8~'(f aa, (e'"-i)~

Using (2.10) one has (neglecting terms tending to zero)

(2. 26)

, = 2(o —1)' ln2 —2(a —1) 1na ——,
' (a —1) + lim (n —1)' —+ (e'" —1) dR~ (2. 26)

For the simplest case o. = 2, this gives

I= (-16m')-', . (2.28)

This can be verified by a direct integration of
(2. 1) setting

1 1p=1+, ,—1+
t +r Y.

(2.3O)

The term in the square brackets is finite. Thus
finally it remains to evaluate the integral [using
(2. 10)]

~2 s jnh R~
dR - . 2

* —1 cothR —cv cotho R
sinh'n R

(2. 27)

This is done in Appendix A. Putting all the terms
together, one obtains (for integer a & 1)

Q 1I= (-16 )v—+ 2(a.' —1) ln2 —2(a —1) lna ——
a6 2

uv &('
——(&' —1) —cot — —2~ g —cot —~e e

(2. 28)

Namel. y by evaluating directly

After a partial integration, this leads to (2.29).
For a scale factor y, i.e. , for

p=1+-x'' (2.32)

one has by rescaling

I= (-16v')(luau'+ -', ) . (2.33)

III. EXPLICIT MULTI-INSTANTON DETERMINANTS
AND CORRECTIONS TO "DILUTE-GAS"

APPROXIMATIONS

In Ref. 8 the logarithms of the multi-instanton
determinants (for the Dirac operator and the
't Hooft background) are conveniently displayed
for both isospin -', and isospin 1. For our class
of configurations we can now use (2. 28) and the
results of Appendix B to obtain the explicit forms
of 1 and f' [E(ls. (28a) and (28b) of Ref. 8]. For
A = e —1 one obtains

I= (-16((')6 dy ln(1+v), ( y = ~~) (2.31)4

0.- &

1"= (n —1)[&in(u+-4g'(-1) + &ln2] + & g 1np, + -', g ln(y„—y, P +, d'x lnpCl' lnp
r&s

' 96m
(3.1)

= -(a' —1)[-'lnu + 4g'(-1) + —' ln2] ——,
' lna ——(n' —3) —n (a(' —1) —cot—3

+— —cot— (3.2)
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(Here «&«= -PejlnM, represents the Pauli-Villars regularization terms. ) For c& =2, this reduces to

I'= —[~2 ln1«, +41'(-I) + ~ ln2+ ~] (3.3)

1p=1+-x' (3.4)

similarly,

I'= -4(n —I)[&2 lnp +4«", '(-I) + 6 ln2]+ ~o g Iny; + —", g ln(y„—y, )
7') S

+ 2 d xlnp 21np+2lnR e -1 (3.6)

= -4(n —I)[~21np + 4g'(-I) + T ln2] + ~ inn —~(n' —3) +4»ll'(a)]+ rc«(c«' —1)—cot—

o- j.

cot I' G
Q Ct

(3.6)

For n =2 this reduces to

I'= —~8 l.n1«, —16l'(-1}—z ln2 ——",. (3.7)

This is seen to agree with the result (16) of Ref.
8, with in' =0 [since (3.4) holds for our case].
Again, comparing (3.3) and (3.7), one has (for
a =2, i.e. , for one instanton)

and

01-1

&I' —= I' — I"(a, &)

$~1

= ——(c« —5c«+ 2) —n(a —1) —cot—1 2 g F
36 CY Q

I =4I +2ln2 —z. (3.8) 0,-1
I'(i, ~

In view of (2. 29) and (820) this agrees with (20b)
of Ref. 8. For a general. scale factor y, , for n =2,

=2 inn —2(n' —1) ln2 —z(&«.
' —6a. + 2)

i.e. ,

), s

P i+( )2 (3.9)

+4»&&e —«)'«+ ee&e' —«)(—'eee —')

one obtains, setting in the formulas of Ref. 8,

detM-'=detM, '=(2p ), detMg '=1
for single instantons

I'&««) ——-[~ ln p, + 4g'( —1) + ~ ln2 + ~8]

+ —,
' lny, 2

and

I'&, «« ———[-,' ln&L&+ 16/'(-I) + —, ln2 + —",]
+ 3 lnp( (3.12)

By a sensible choice of regularization method one
can use the same p, throughout. Hence subtracting
from (3.2) and (3.6} the sum of the respective
single-instanton contributions with parameters
( y, , &;;i = 1, . . . , a —1) given by (82), we obtain
[using (814) to evaluate Z; lnp«']

gI'and h,I' give the corrections to the 'dilute-
gas" approximation for our configurations Their.
remarkable properties enable us to provide expli-
cit expressions. One point should however be
noted. The dilute-gas approximation, namely
additive treatment of single-instanton, or anti-
instanton, contributions is associated with a cutoff
on the instanton sizes, the centersbeingsufficiently
far apart. This is what can render it consistent,
though not necessarily realistic. In our configur-
ations p,

2 = 1 + y,.2, as emphasized in the remarks
in Sec. V of I. Thus the (a —1) instantons overlap
thoroughly (Fig. 1). We hope that the quotation
marks on the words dilute gas will serve as a re-
minder of this aspect. On the other hand, what is
really remarkable is that by not cutting off sizes
but letting them vary in a particular way one can
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where p is given by our (2. 2) and (2.3). Thus
(-16m')J of Ref. 6 is our I of Sec. II. Similarly,
using notations of Ref. 6,

and

21ng y„' —ln
&

[y„' —-(&+I), [y,'
0 0 1

Thus for detM, ', detM„' (and their product
detM '), one gets back, as expected, exactly the
't Hooft gauge expressions of Ref. 8, evaluated for
our configuration in Appendix B.

Different regularization conventions are used in
Refs. 6 and 8 (Pauli-Villars and f-function regu-
larizations, respectively). But for our purpose,
it is sufficient to note that, formally, after taking
the above-mentioned limit one has simply (com-
paring the corresponding results of Refs. 6 and 8)

(I'+2&) = —(a —1)(3 Inp'+-,' ln2) (0 = o. —1) (3.17)

and

FIG. 1. Schematically, the relation between centers
and sizes and the consequent overlapping of the instant-
ons in our class of configurations. The case 0, = 6 or
index 5 is presented as a typical example. The defin-
itions of centers and sizes are the usual ones employed
in the context of 't Hooft-gauge representations.

extract an explicit, exact expression for the de-
parture from additivity in this context.

So far we have been il.lustrating the properties
of our background with reference to the Dirac op-
erator. ' The Klein-Gordon (KG) operator is es-
sentially the same for our purposes. Still, for
completeness and for direct comparison with the
results of Ref. 6, we now display some of ours
in terms of the KG operator.

In contrast to Ref. 8, the results of Ref. 6 we
will have to use are given in the conformally ex-
tended 't Hooft gauge or the Jackiw-Noh1, -Rebbi
(JNR} gauge. As in Appendix B, we take the usual
limit

(I'+2K)) =4(I'+2&) . (s.18)

[As a useful check we have used the JNR gauge
(1.3) for p, with odd o. to have all X's finite, and
calculated directly, using the relevant results of
Ref. 6 without any limiting process being involved.
One gets back exactly, as one should, the results
(3.15) and (3.16).] Moreover, defining b» and 4X)
analogously to (3.11) and (3.12), it is now evident
that

hP+ 2AS= 0,
~Z'+ 2&&= 10.

(3.18)

(3.20)

Hence the necessary expressions for D and are
obtained immediately from the preceding ones of
this section. Using (s.il) and (3.12), we have dis-
played the numerical values of & and 4S for the
lower values of a (see Table I and Fig. 2). Using
the limiting expressions in Appendix A, one can
show that as e becomes very large, retaining only
the asymptotically leading terms,

yo ao with $0 /yo 1.
The remaining y, 's and y, 's (i =1,2, . . . , o —1) are
all assumed to be finite. Then from the definition
of f„of Ref. 6 (with &=o. —1)

and

4X)- —,
' ulna —0.22+

0 D 4(ES) .

(3.21)

(3.22)

lim(ln det f„)
2

=-1.np+lim -ln ' +ln 1+
x yo &o

= -lnp,

Thus it is seen that &u and && (also, of course,
Q andX)) diverge faster than n as o. Inn.

It should. be remembered in this context that for
our configurations (and for our chosen scale} the
"sizes" as defined in the 't Hooft gauge (through

X,') become linked with the index (o.'—1). We have
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

-0.389
0.936
0.246
0.441
0.671
0.929
0.121
0.151
0.183
0.21V
0.252
0.289
0.327
0.366
0.40V

x]0 '
x]0 '

x10
x10
x10
x 10
x10
x 10'
x10'
x10
x10

-0.433 x10 "

0.400
0.104 x 10
0.18V x 10
0.284 x10'
0.392 x 10
0.509 x 10
0.636 x 10
O.V69 x 10
0.910 x 10
0.105 x10
0.120 x 10
0.136 x 10
0.152 x 102

0.169 x 10

TABLE I, The values of && and && are obtained from

{3.11},{3.12}, {3.17}, and {3.18}. They represent, for
isospin g and isospin 1, respectively, the corrections
to the so-called dilute-gas approximation, i.e., the de-
parture from the sum of the contribution of the compon-
ent instantons, each taken separately. The numerical
evaluations invol. ve small approximations. The exact
value for O' =P. is, of course, zero for && and ~@.

g )
(k 1,, a 1),1

For k=1, for example, as a-~,
(3.23)

(3.24)

J = lndetM '+ (a —1)(—,'- ln2),

where

(3.25)

Hence to limit sizes, for our class of configura-
tions, we have to limit u. The divergence asso-
ciated with sizes takes, for our case, the special
form indicated by (3.21). The strict connection
(3.23) can hovrever be relaxed by a suitable re-
scaling of our initial ansatz. These aspects wi11

be studied elsewhere, comparing different pos-
sible modifications, in connection with the con-
struction of zero modes corresponding to our con-
figurations.

%e close this section by comparing an interesting
ansatz for the 't Hooft case presented by Osborn
and Moody' with our exact results. Their approxi-
mate form [Etls. (24} of Ref. 6] gives for J'

d'x lnpG & ln p16g2
(3.26)

(taking the usual limit X,'- ~, yo'- ~) . Even J'
presents some problems.

Rules can be given for construction of the deter-
minant in 4 for unconstrained centers and sizes.&'

But it seems that they cannot be used in practice
to obtain a compact, explicit expression for ar-
bitrary index. For our configurations we have ex-
act, explicit expressions for the integral and also
for (lndetM '). Using (2.28} and (815), one obtains

IN

hZ=J Jo=—' a a' (a' 1)—cot- +(a-1) ln2

15-
—2 ln(a —1}i —& a - lna+ 3

10-

I-1
pk k

6 0 (3.27)

10 15

FIG. 2. Here the corrections to the dilute-gas approxi-
mations 4$ and AX) are compared graphicaQy. The

values are taken from Table I. Only the integer values

of n are significant in the present context. The curves
serve merely to guide the eye.

= 0.050t . (3.26)

This should be compared with the asymptotically
leading term —,

' elno in S. Thus the ansatz is
seen to work very well for all values of e. Our

The right-hand side looks complicated but the num-

erical values of &J (see Table II) turn out to be
quite small and the ansatz is seen to work remark-
ably well. The error propagated in S is „4J.
For large a, asymptotically (using the limits ob-
tained in Appendix A)

4+- - ln2m'+2@
18 3
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TABLE II. Some numerical values of &J given by
(3.25). The Osborn-Moody ansatz evidently works re-
markably well. The exact value for & =2 is again zero,
as in Table I.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

—0.277 x 10
0.255 x 10
0.639 x10 '

0.108
0.155
0.204
0.254
0.305
0.356
0.408
0.460
0.512
0.564
0.617
0.669
0.722
0.775

exact results confirm the usefulness of the con-
formal and limiting properties incorporated in, 4'.'

We add finally, that we have just received a re-
port by G. P. Moody, "where the integral is cal-
culated for the case of tao.instantons in 't Hooft's
gauge. For &=3, our result should emerge as a
particular case of his. But this does not seem easy
to verify as the results become quite complicated
(even for index 2) as our particular type of con-
straints on center and sizes are relaxed.

1
lim —(o.'—1)= 1 .

Q
(4.2)

The factor I/o. represents the effect of restriction
to a single period (0, 2v) [or (- v, +n)] of f. Let us
now note the effect of applying the same simple
procedure on I', given by (3.2), noted here as I"& &.

(The limits of f', B, I) can be treated analogously. )
One has

lim —I'&
&

= —[—,
' 1np+4f'(- I)+—,

'
Ln2]

ai~

1 '
k7t km '|(

+-', l.im (4.3)

sections. The periodic limit served to show that
the resuLts of various lengthy studies (see the
relevant references quoted in I) can be obtained
immediately as byproducts of our technique. Here
we want to examine briefly what an analogous lim-
iting procedure gives for the determinants of Sec.
III.

For the whole domain [-~, ~] of the Euclidean
time t, ( 4.1) of course leads to infinite action.
In the context of periodic backgrounds, one how-
ever integrates over one period 2v (for our chosen
scale). This should not be confused with the do-
main 2w of v' in Secs. II and III [see the remarks
following (2.12)]. It is known that for 0 ~ f &2m.
(4.1) leads to an action 8v' or index 1. For (1.2)
or (1.3) one has the index (o. —1). Here the lim-
iting procedure to obtain the result for the periodic
ease is indicated in the simplest possible fashion,
namely

IV. THE PERIODIC LIMIT

The periodic solution, gauge equivalent to the
static Prasad-Sommerfield monopole, is given by
setting in (1.1)

1

p = Q [(t- 2m')'+ r']

cot(z/2) —cot(z/2)
(s —z)/2

(z = t+ir), -s in'
2r(coshr —cost) (4.1)

where we have normalized a scale parameter to 1.
We showed in I how this case can be studied very
conveniently as a limit (o'. -~) of our class given
by (1.2) or (1.3). [In fact, (1.3) is better suited to
the limiting process. ] The gauge potentials giving
the background and the corresponding Green's
functions were obtained effortlessly as limits. In
I, as in the present paper, our main topic is the
nonperiodic, finite-action case of the preceding

Using (A15) and (A20), one has

+ ~ (Lnw+ y) —3 lno.'. (4 4)

sinhy
2r[coshr —(—1) cost]

' (4.5)

[In comparing with (4.1), one can suppose for
simplicity that n -~ through even values. The
relevant integrals, anyhow, do not depend on the
sign preceding cost. ] As mentioned in I, in de-

The source of the divergent term (=Lno.') on the
right-hand side can be better understood as fol.-
lows. Rescaling the coordinates as t-t/2u,
r r/2n [and similarly 7 and A„of (2.7)], one ob-
tains from (2.9), as o.-~,
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riving (4.1) as a limit one drops the divergent con-
stant factor (4a') in (4.5) since it does not contri-
bute to A„[(1.1) involving logarithmic derivatives].
But in constructing determinants we started with
a form with all the derivatives on one factor as in
(2.1). The factor o.' of p in (4.5} contributes to I'
a term

(2 lno. )
Ji d'x(TrE~E} (4.6)

and in the limit precisely the term ——,'1na in (4.4).
An exactly similar situation arises also for I', X),

and S. In each case we have a term of the type
c inn, the constant c depending on the case con-
sidered. 'The origin in each case is the e' factor in
(4.5) which does not contribute to the limiting form
of the background potential A„. Hence through a
suitable interpretation one should be able to regu-
larize or simply discard such terms in a consis-
tent fashion. Here we simply display the conse-
quences of our limiting process.

Periodic backgrounds have been studied by sev-
eral authors. Apart from the references quoted ip.

I, the statistical mechanics for periodic back-
grounds has been discussed in Hefs. 14 and 15.
Our (4.1) is a particular case of the periodic po-
tentials considered (along with finite-temperature
effects) in Refs. 14 and 15. It may be noted in this
connection that the asymptotically leading- logarith-
mic term found in Ref. 15 [Eq. (6.13) of Ref. 15]
corresponds formally to our (lno. ) term. A close
comparison makes this soon evident. In our ap-
proach and for our particular case [without an
additional term +1 in (4.1)], we have to insist on
the limit n-~ and reinterpret. But we are also
able to calculate the nonleading terms exactly.
As indicated in the following section, the next
logical step in our program should be to formulate
completely the functional integral for our finite-
action nonperiodic configuration and some of its
natural generalizations. So far as this turns out
to be possible, results for the corresponding limit-
ing periodic cases should again be obtainable in a
relatively simple fashion.

V. REMARKS

For our class of configurations we have shown
that for arbitrary index the Green's functions and
the nonzero-mode determinants can be constructed
as explicitly as for a single instanton. We started
from the fact that the de Sitter space is not only
conformally flat (a fact much exploited by various
authors in studying flat-space instantons), but at
the same time has a static spherical symmetry.
In a series of papers we have shown how to exploit
this situation to obtain various interesting results. "

The paths thus opened up can lead to other results.
In particular, we hope to continue the work started
in I and in this paper in the following directions.
We will study elsewhere the zero modes for our
class of backgrounds and the corresponding mea-
sures. The complete functional integral should be
obtained explicitly. This would be the logical next
step. But one can try to go further. One can try
to construct a hierarchy of multi-instanton con-
figurations with specially simple and interesting
properties, of which ours is the simplest. They
can have, for example, as limits the multicharged
monopole states recently constructed, """just as
our present class has the singly charged Prasad-
Sommerfield monopole as an infinite action limit.
A passage via de Sitter space should again prove
fruitful in this context. We hope to explore these
aspects elsewhere.
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APPENDIX A: USEFUL INTEGRALS AND LIMITS

sinh2xI =
Ji dx . , —1 (cothx —o. cothnx)'

sinh ax (A1)

= o."(I, + n'I, —2 nI }—(I, + n 'I, —2@I ) (n = 2, 3, . . . ),

(A2)

where

sinh2x, 1 sinh'x
Il dx . 2 coth'x = ——cothax + dxsinh'o. x Q sinh~+x '

(A3)

Our aim is to evaluate the integral (2.27). We
start with the corresponding indefinite integral and
break it up into relatively simple pieces. Partial
integrations are used to extract the would-be di-
vergent terms for the limits to be imposed. The
remaining integrals are finite and easily available
for the domain [~,0]. This permits an easy and
careful treatment of the limits. A good check is
provided by the fact that the divergences of the
separate terms must all cancel out at the limit
zero and the only surviving divergent term at the
limit of infinity must cancel exactly the term
(n —1)'/e in (2.26). Let
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sinh'g
coth'Qx

sinh2Qx

1 ~, , 1 (sinh2x 2oioh'x coth'ox c—
~

. , c—cothox)SQ 2Q I,sinh2Qx Q

j. 2 sinh x——sinh2x —— dg
Q sinh'Qx

cial properties of (dk such as

and

ln(1 —
&o«) 1 km k tT—cot—.

« i (1 ~«) 2 «h ~

(A13)

f' sinh(n —2)x
sinhQg

sinh'x
I3 = dx . 2 co&@cothQgsinh'Qg

1 ~ sinh2x 2 sinh'x+- cothQx —4 dx4Q sinh2Qx Q sinh2Qx

(A4) Finally one obtains

Q' sinh2x
lim dx . , —1 cothx —Q cothQx ',

sinh'Qg
t

=-(o. —1) -+—n n —(n —1)—cot—21 1
6 Q Q

—2 —cot —+ —,(o. —2) (o. =2, 3, . . . ) .
km k7t'

Q Q

I4 = dx coth'x =x —cothg,

1I = dx coth'Qx =x ——cothQx5 Q

(A6)

(A7)

(A14)

This leads to (2.28).
Let us now note the following useful asymptotic

expressions for the terms involving cotangents,

I, = dx cothx cotho.x

2 21+ 2
-+

lim n —(ri —1)—cot-2 2 '™
Q Q

2
o. —(n -1) 1 ———.,

2 2 1r -r
3 Q g 3

(A15)

+
(e«tc ] )(e«th«1)

1=~+1n(l —e '")+—ln(l —e "")
Q

dQ

(u' —1)~ u —1 u, '

where u =e'*. Using (for o. =2, 3, . . . )

1 1 k ~ ej2gk/ ~
u —1 ot «0 (u —co«)

(A8)

(A9)

For the sum involving cotangents we proceed as
follows. As Q —~,

1 -' ~e mz wz/a—cot—+ de, (A16)
ot ot 7T —7I'8 /ot

the remainder term tending to zero.
We note t,hat

g cotg + dx = g ln sing —g —m ln z —x
0

I, =g +ln 2„+—ln ln sing dx

1 Q+1+2 —
2 +2x-

o.(e'* —1) 2Q
ln(e'" —1)

g2X (d
k=1 k

(A10) Also

= [n inn —vj+ v ln2 = w(ln2m —1) .

(A17)

Now we put in the limits. One has for the values
of Q con sld er ed

q

~

~sinh'g 1 m
dx . , =—1-—cot-

sinh'Qx 2Q Q Q
(All)

1=-1+ 1+-+ +-1

Q (A18)

J sinh(n —2)x w w

sinhQg 2Q Q
(A12) lim 1+2+ ~ ~ +—=lnQ +y,1

Q~ tto Q
(A19)

To evaluate the limits of (A10) one must use spe- where y is the Euler's constant. 2' Combining the
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(A20)

Hence the leading term for the sum

Q (k((/a) cot(km/a)

results (A16) to (A19) and neglecting remainder
terms vanishing in the limit, one obtains

km km
lim — —cot—= - ln~ —y + ln2m.

Q ~ ~ Q Q

(The last term is to be taken as strictly zero for
i=j.)

This is exactly the matrix considered in Appen-
dix C of I, where we inverted it. So, without going
through the elaborate process indicated in Ref. 2,
we can obtain detP from the results of Appendix C
of I. One easily obtains

is seen to be -QlnQ which is the same as that for
-ln[(a —1)!].

detA
detP =

where

(87)

APPENDIX B: PRODUCTS AND DETERMINANTS
A =diag(A„A„. .. , A, ) (88)

In Sec. III, we need the determinant detM ',
where [see E(l. (22) of Ref. 8]

A~ = 2k(a —k) (89)

+(y*-y')'«
{f,j, l, m=1, . .. , a —1)

with in our case

. km
' .km

X~= 81Q ) /~=cot

(k=1, . .. , a —1, a=2, 3, ...).

1'„=1+6,, (~,j=l, . . . , a- 1).

It can be shown that

det~=Q .
Hence

(810)

'This determinant can be factorized' as

detM ' =detM~ 'detMA ', (82}
detP =

2' "[1x(a —1)][2 x(a —2)] [(a —1) x 1]

(812)
where

detM -I 2(n-1) !( 2 (yr ys)2 (84)

2 (n-D[ F(a )]3
1

One can also show that

(812)

and a more complicated expression in Ref. 8 for
~A'. We will evaluate directly detM ' for our con-
figurations using the results of Ref. 2.

Adapting the results of Sec. V of Ref. 2 to our
case, namely making (!(.„y,}-~such that A.,'/y, 2

-1 and dividing each element by ~,', one recovers
(Bl) from their (5.3). For the remaining!(. 's and
y's we then use the special values (812). Follow-
ing through this technique, the results of Ref. 2

give
e-l

detM '=2' "(detp}~ sin— .„,sin'(f- j)—
Q

(85)

and

I-],
jW Q

g „,sin
j=l

( Q
, sin'(i- j)—=~

Q &2

(814)

(815)

From (84) and (814) one also obtains readily

S (816)

(Such and related, more elaborate results have
been much used in 1.)

Thus, finally,
a-(2n-922(a-& & [1(a)]2

1
P,.~ = 6,, — sin(i —j)—) (1 —5,.~) (86)

(i,j=1,. . . , a —1).

where the elements of the matrix P turn out upon
examination to be

Hence from (83},

serM '=I ) (r(~H'.
A

If one defines'

detM„' =R(,) .... (y„—y, )'
t- r&s

(alv)

(818)
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one gets

R(a 0 = 2(e-1) (B19)

For o. =2, the direct comparison of (Bl) and (B15)
I

is trivial giving

detM ' =2 (a =2) . (B2O)

(Remember that for our class X, =1 for @=2.)
For a =3 one gets directly from (Bl) and (B2)

2X

x,x, [x,'+z, '+(y, —y, )']

XqX~ 0

0

[X,'+ X,'+ (y, —y, )']
(B21)

where —2~03 3 (B22)
. 2~i=~ =~2~ yi= —y2=~ ~

This gives

(B22)
which confirms (B15).

Also using (27b) of Ref. 8, we have checked
0 f» & =2, 3, and 4. The result (B19) is veri-

fied.

*Equipe de Recherche associee au C.N. R.S.
~

t
$Laboratoire associe au C.N.R.S.
L. S. Brown and D. B. Creamer, Phys. Rev. D 18,
3695 (1978).
E. Corrigan, P. Goddard, H. Osborn, and S, Templeton,
Nucl. Phys. B159, 469 (1979). -

H. Osborn, Nucl. Phys. B159, 497 (1979).
4A. A. Belavin, V. A. Fateev, A. S. Schwarz, and Yu.

S. Tyupkln, Phys. Lett. 83B, 317 (1979).
5B. Berg and M. Luscher, Nucl. Phys. 8160; 281 {1979).
H. Osborn and G:. P. Moody, Nucl. Phys. 8173, 422
{1980).

~I. Jack, Nucl. Phys. 8174, 526 (1980).
B. Berg and J. Stehr, Nucl. Phys. 8175, 293 (1980).
C. Callias and C. H. Taubes, Commun. Math. Phys. 77,
229 {1980).

' G. 't Hooft, Phys. Rev. D 14, 3432 (1976); 18, 2199(E)
(1978).
H. 8outaleb-Joutei, A. Chakrabarti, and A. Comtet,
Phys. Rev. D 23, 1781 (1981) (referred to as I).
I. ,S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series and Products (Academic, New York, 1965), p.

527.
G. P. Moody, Report No. {DAMTP 81/3) (unpublished).
B.J. Harrington and H. K. Shepard, Phys. Rev. D 17,
2122 (1978); 18, 2990 (1978) H. K. Shepard, ibid. 22,
523 {1980).

5D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev.
Mod. Phys. 53, 43 {1981).
Apart from the relevant references quoted in I, see
also A. Chakrabarti, A. Comtet, and K. S. Viswanathan,
Phys. Lett. 968, 105 (1980); H. Boutaleb-Joutei,
A. Chakrabarti, A. Comtet, ibid. 1018, 249 (1981).
R. S. Ward, Commun. Math. Phys. 79, 317 (1981).
M. K. Prasad, A. Sinha, and L. L. Chau Wang, Phys.
Rev. D 23, 2321 (1981); M. K. Prasad, Commun. Math.
Phys. 80, 137 (1981); M. K. Prasad and P. Rossi,
Phys. Rev. D 23, 1795 (1981).
P. Forges, Z. Horvath, and L. Palla, Phys. Lett.
99B, 232 (1981); Reports Nos. KFKI-1981-21 {unpub-
lished), KFKI-1981-23 (unpublished).
Reference 12, p. 344.
Reference 12, p. XXVIII.


