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The leading and first subleading coupling-constant logarithms are explicitly calculated and summed to all orders

for the self-energy graphs of massless three-dimensional fermionic QED.

I. INTRODUCTION

Finite-temperature field theories have been in-
creasingly studied since it was realized that spon-
taneously broken symmetry is restored at high
temperature. ' Since then, it has been argued that
in quantum chromodynamics (QCD) there is a.

phase transition to unconfined quarks above a
critical temperature. ' Above a critical point,
imaginary-time degrees of freedom decoupje if
only the long-distance (infrared) behavior of the
theory is required and hence it is governed by an
effective theory in one dimension smaller. At in-
finite temperature, the decoupling is complete so
physical four-dimensional theories become equiva-
lent to super-renormalizable three-dimensional
ones. ' Thus, the latter have gained considerable
interest in their own right.

The super-renormalizable interactions of mass-
less field theories lead to severe perturbative in-
frared divergences which have been investigated
by various methods. " In particular, Jackiw and
the author considered the gauge theories of mass-
less fermionic three-dimensional QED and QCD
in which a simple resummation of perturbation
theory removes the divergences and leads to .log-
arithms in the coupling constant. ' At high orders,
high powers of logarithms arise, the leading terms
of which have been calculated and summed by the
author. ' This paper explains in more detail and
extends some of the results first presented in Ref.
6.

Section II of this paper repeats the explanation
in Ref. 5 of the origin of the coupling-constant
logarithm, modifying and extending it for use in
calculating higher-order logarithms.

In Section III, I derive rules for calculating the
dominant logarithms and use them to sum the terms
proportional to (e'.lne')" (leading logarithms) and
e'(e'lne')" (first subieading logarithms) for al. 1 n
in the exact fermion propagator.

Section IV performs the same calculation for the
vacuum polarization and explains why certain
cl.asses of diagrams neglected in the calculations

do not contribute any further logarithms to the
orders considered.

Section V discusses how nonperturbative terms
appear to arise in the summation of the logarithms
and Sec. VI summarizes the results.

II. COUPLING-CONSTANT LOGARITHMS

In three-dimensional massless fermionic quan-
tum electrodynamics (QED,), the coupling constant
e has dimensions of (mass)' '. This super-renor-
malizable interaction makes the ultravio. let di-
vergences trivial but leads to infrared divergences
in the loop integrations of perturbation theory. A

self-energy graph of high order behaves like a
high power of e'/p on dimensional grounds, where

P is the external momentum of the graph. When
this is inserted as a subgraph into a loop integra-
tion of a higher-order diagram, the inverse pow-
ers of P .lead to a divergence at small p.

Reference 5 gave a simple resolution of this
problem. Whenever a self-energy occurs in a
propagator, replace it by the dressed propagator
in which an arbitrary number of self-energy in-
sertions are summed. Then the small-P diver-
gence occurs in the denominator instead of the
numerator, so it is innocuous. This resummation
of perturbation theory has interesting consequen-
ces—it leads to analytic terms which are not per-
turbatively calculable and to coup. ling-constant
logar ithms.

To proceed, the Euclidean Feynrnan rules of Fig.
1 for QED, in a covariant gauge are used. The
complete photon and fermion propagators are
shown in Fig. 2. 'The crosshatched subgraphs are
the one-particl. e irreducible self-energies which
to lowest order are shown in Fig. 3. The evalua-
tion of the graphs of Fig. 3 gives

(pl p p„ e 2

D „(p)= " ' +u ', ", ll(p')= — +O(e')p' ll(p') p' ' 16
(2.1)

2

S(P) =, , Z(P) = —
6

+ O(e'), (2.2)
p —z(p ' 16p
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FIG. l. Euclidean Feynman rules for QED3.
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FIG. 2. Dressed propagators for (a) photon and (b)
fermion.

The gauge-dependent 'a term gives the lowest-or-
der result of (2.2). To calculate the remainder,
write the unknown part of the propagator as a di-
mensionless function

(~2 g
2

~~k k'- 11(k2) ' (2.4)

where II is given by (2.1). After the angular in-
tegration is done for the n-independent (o.'= 0)
part, the result is

where p =(p')'~' and by gauge invariance II,„(p)
=II(P')P „(P) for some scalar II. In the calculation
of the fermion self-energy (2.2), the ultraviolet
divergence vanishes by the angular integration.
For the photon self-energy (vacuum polarization)
in (2.1), the divergence is zero with any gauge-in-
variant regular ization.

The perturbative infrared divergences first
occur at O(e') when the vacuum polarization is in-
serted into the photon propagator of the lowest-
order fermion self-energy of Fig. 3(b). So I will
first consider the consequences of the resumma-
tion in this self-energy using the exact photon
propagator D„, of (2.1),

d'k 1 P„„(k) k, k„
(2 )'y p', g "k' Il(k') k'

(2.3)

~.(p) = t dk(k'/p)C(k/p)f(e'/k)/k',
0

where

(2.5)

Z, = t dxC(x)f(x/x), A. =e'/p,
0

(2.7)

where C is some known function analytic at x=0
and vanishing at x =~ and the first few derivatives
of f are known at the origin (i.e., its small-coup-
ling expansion). A direct expansion off leads to
divergences in the small-x integration correspond-
ing to the previously mentioned infrared diver-
gences. However, using the known form (2.4) of

f, one can assume t'hat it and its derivatives van-
ish at small x (large coupling). Then (2.7) can be
analyzed more carefully and the following result is
derived in the Appendix (the order-X terms were
derived in Ref. 3):

g 2 1
C(k/p) =p, d&,y„y„P„„(k)

(2 8)
4g'p x2 4x 1 —x)

and x =k/P. For the moment, I will not be con-
cerned about the precise form of C(k/p) or f(e'/k),
but will analyze (2.5) more generally.

Using the dimensionless variable x = k/p, the
required integral is

ap

co P'

dx C(x)f(z/x) =f(0) dx C(x) + Q —InXC'"'(0)f'"+" (0) —C'"'(0) ~t dy lny f'"'"(y)
„., nl (n+1) I

oo 1 1f '~"(0) ~I dx lux C'"+"(x) +C'"'(0)f '~"(0) +2 Q-
Jo tg+~

(2.8)

In addition to the vanishing of f and its deriva-
tives at infinite argument, the derivation of (2.8)
assumes that C is analytic at the origin and its
derivatives vanish at infinity, which is true for
our case (2.6). Also f must be analytic at the ori-

rl„„=l~ =I ~ +0(e I

+ 0 (e~)

FIG. 3. Lowest-order self-energies for (a) photon and

(b) fermion.

I

gin. However, this is not true as we shall see that
eventually logarithms of the coupling X appear in
the vacuum polarization and feed back into fcausing
its higher derivatives to diverge. Hence, the an-
alysis leading to (2.8) breaks down beyond some
order in X. Nevertheless, to the orders discussed
here, there is no problem. Further, the log-
arithmic singularity at x =1 in C(x) means the
logarithmic integrals of the derivatives of C in
(2.8) diverge at x =1 for large enough n —they have
to be regulated. See the Appendix for details.

In the expression (2.8), the first term is the
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(2.9)

and from (2.4) with (2.1)

f "'(0)= —1/16. ,

So up to order X, (2.8) gives

o(e2p' e2P g2 g2 e2P p2

16P 48v'p p p 3v'p p

(2.10)

+analytic perturbatively calculable O(e") terms

+O(e') . (2. i 1)

Because of the symmetry of C(x), there are no
logarithms or incalculable terms at O(e') in Z and
they next appear at O(e').

When the dressed fermion propagator of Fig.
2(b) is inserted into the self-energies of Fig. 3,
a similar analysis applies. In these cases

lowest-order result. Logarithms of the coupling
X=e'/P appear in the first term of the sum in
(2.8) and occur as (e')" inc' for all n ~ 1 and their
coefficients are perturbatively cal culable. The
second term in the sum involves integrals of the
derivatives of f over the entire range of its argu-
ment. Perturbation theory onl. y gives the deriva-
tives of f at the origin, hence can never give us
the values of these integral. s. So, in addition to
the l.ogarithms at order e' and above, at the same
orders there are terms analytic in the coupling
which are not perturbativel. y calculabl. e. The re-
mainder of the terms in (2.8) are perturbatively
calculable since C(x) is known exactly, and they
give just a power series in X.

Returning to the explicit form of C in (2.6), we
see that it is an even function of x so only the even
derivatives are nonzero at the origin. At x=0, its
value is

which is also even and vanishes at the origin so
the same conct.usions apply.

Previously, the analysis was done using a spec-
tral representation of the exact photon propaga-
tor."' Though this was sufficient for obtaining the
lowest-order 1ogarithm and nonperturbative an-
alytic term, it does.not generalize as wel'. to the
higher orders considered here. Otherwise, the
two methods are equivalent.

In general, for diagrams with more than one
dressed propagator of Fig. 2, logarithms arise
independently from each one, so powers of log-
arithms occur. The next section explains how in
a diagram with n dressed photons with n indepen-
dent loop momenta fl.owing through them, each
photon will contribute an e'lne' leading to an over-
all (e' inc')" term Ie'inc' comes from the lowest-
order logarithm in (2.8) and an e comes from each
of the vertices at the photon ends]. These l call
the leading logarithms (LL), since for a given
power of logarithm they are the terms with the
lowest power of e'. The e' term from onl. y one of
the photons gives terms like e'(e' tne')" '—the first
subleading logarithms (SL). Further subleading
logarithms (e') (e'inc')" with m ~ 2 include dia-
grams with a nonperturbative e' or higher term
occurring in at least one of the photon propagators.
Hence, in general, the coefficients of these sub-
leading logarithms are not perturbatively calcul-
able.

I perturbatively calculate the leading and first
subleading logarithms and sum them for the com-
plete fermion propagator (and hence self-energy)
and the vacuum polarization. The techniques apply
equally well to other amplitudes and, in general,
a.l.l further sub. leading logarithms are nonperturba-
tive.

1 + ae'/16p + O(e')f=PS(p) =

and for Fig. 3(b)

(2.i2)

III. SUMMED LOGARITHMS OF THE FERMION
PROPAGATOR

u e p „ I.„(I +P) (u+P)„(e+P)„
P (2v)' ' ' " (k+P)' (k+P)'

ae'P "1+x' 1+x
I.n —14~2P'

l 4x 1 —x (2.i3)

Here C(0) =0 due to the f(( factor from the fermion
propagator, and again C(x) is even, so the first
nonzero derivative is the second. Hence the first
logarithms from the fermion propagator arise at
order e'. With the dressed fermion inserted into
the vacuum polarization of Fig. 3(a), C(x) is pro-
por tional. to

First I calcul. ate the leading and first subleading
logarithms for the simplest case —the complete
fermion propagator —and then apply the methods
developed to the photon vacuum polarization in the
next section. I claim that the leading logarithms
are given. by the sum of all diagrams in which an
arbitrary number of dressed photons form arches
on a bare fermion line in all possible ways —a
typical such graph is shown in Fig. 4. The first
subleading logarithms are given by the same dia-
grams except one of the lines gives only its bare
contribution instead of a logarithm. A generaliza-
tion of the results of the previous section shows
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FIG. 4. A typical contribution to the leading logarithms
of the fermion propagator.

that each photon line contributes a leading e'lne'
.logarithm, but no subleading e' lne' logarithm ex-
cept through the bare e' term which contributes a
gauge (o.') dependent part. In the analysis of Sec.
II, it was assumed that there were no logarithms
in the perturbative vacuum polarization [the de-
rivatives of f(x) were finite at zero]. In Sec. IV,
this will be shown to be true, at least for leading
and first subleading order which might feed back
to give extra logarithms in the complete fermion
propagator.

Other diagrams such as Fig. 5, with fermion
loops not already included in the vacuum polariza-
tion, also give no additional logarithms at the
leading and first subleading orders'. This is also
shown in Sec. IV.

Again the results of the previous section, when
generalized, show that any insertion of dressed
fermion propagators also does not lead to new log-
arithms at the orders considered.

I now consider the complete contribution of dia-
grams such as Fig. 4. 'The required angular in-
tegrations corresponding to C(x) of (2.6) are
greatly simplified when one picks out only the
leading and first subleading loagrithm coefficients,
which enables one to calculate them exactly to all
orders. The contribution of a diagram such as
Fig. 4 to the fermion propagator with n complete
photon propagators can, analogously to (2.7), be
written as

S„(p)= dx, f(~lx, )C„(x„.. . , x„)., (3.1)

where x,. =k,./p are the scaled magnitudes of the
momenta k, flowing through each of the photon
lines and P is the external momentum. In C, all
the angular integrations of the k, have been per-
formed. Repeating the analysis of the Appendix'
for each x, integration gives an (e'/P) ln(e'/P) from
each to obtain the leading logarithms with coeffici-

FIG. 5. A typical diagram that does not contribute
leading or first subleading logarithms.

ent C„(0, . . . , 0) times [-f"'(0)J". C„(0) is propor-
tional to (e')" because of the 2n vertices at the ends
of the photon lines.

The first subleading logarithms arise when one
x& integration —say x&—gives its e'lne' contribu-
tion [n = 1 in (2.8)] with coefficient proportional to
(8/sx&)C„(0, . . . , 0) (which I show to vanish) or

when one photon line contributes only its e' bare
a-dependent part and the remaining n —1 lines
contribute leading logarithms with coefficient
C„,(0).

In general,

(3.2)

dG,P q(z, ) = —,
'

& q4m. (3.3)

Hence one obtains

e'p' 2 "1 1 1

( )' P' P' " "P'

x(P(5 „„~~ ~ & ). (3.4)

Combining (3.4) with each of the -f "'(0)(e'/P)
x in(e'/P) of (2.8) coming from each xz integration
gives the leading-logarithm contribution of

e4 e2 "g j. ].S„""(p) =
48 . »—

~ r,~
r ~ r

x&(5 ~ ~ ~ 5 ) . (3.5)

Instead of attempting to calculate and sum (3.5)
directly, the following trick is used. One ob-
serves that (3.5) is exactly the result of calcula-
ting the same diagram of Fig. 4, but with the mod-
ified Feynman rules of Fig. 6. In these rules, the
photon carries no momentum and there are no

loop integrations. Also, so far, there are no fer-
mion loops since the diagrams of Fig. 4 contain
none. The leading-logarithm contribution to the

where (3' is an arbitrary permutation of the summed
indices o!„.. . , n,„and Q~~„k& is the net sum of the
incoming photon momenta at the firsts' vertices
(N = 1, . . ., 2n - 1),with V„being the set of labels j
'for the photons at these vertices. Writingk& =Px p&,
where'& is aunit vector in the k& direction, one sees
thatx& only occur in the bare fermion propagators
1/(jg+PZ&ez„x&d&), sincetheP zdePendonlyonthe
directions g &. Taking the limit of all x&

- 0 in C„sim-
plifies the fermion propagator s so that the only r e-
maining angular integrations are
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e4
ga =-~ —, Jn p

complete fermion propagator is givenby the sum
of all terms like (3.5), which is the same as the
exact fermion propagator generated by the rules
of Fig. 6, but with all. fermion loops suppressed.
Hence the sum is

SI L(p) d2A -A /2
1 2 1

p'+g$

with normalization

(3.6)

FIG. 6. Modified Feynman rules for the leadirig loga-
rithms.

SLL(p) ~ ( 2 )
I'(- —,

' ) P' (s.ii)

the coefficients of which are those given by the
perturbation theory of (3.5). For negative g', the
series (3.11) has a Borel sum. Writing I'(n- 2)
= f0" dte ' f" ' ", »I = 1, 2. . . , we obtain

tn-3/2
S""(P) =— i. + dfe 'P -( 2~g'~/p')"

P &0 n" I

The scale integrals are standard and with the
normalization (3.7) the result is

SLL(p)= —,e' /" e' " +—— „,erf2/ 2 Ig»l' IP
P' P (2»I)'" 2g

(s.io)

Equation (3.10) is the exact integration of (3.6)
for real g. For small. g it has an asymptotic ex-
pansion in powers of g',

N= d'Ae" '= 2m
'' (3.7)

When (3.6) is expanded in powers of g and the A

integrations performed, it reproduces term by term
the expressions of (3.5). If, instead of the com-
plete propagator, l tried to calculate the fermion
self-energy, the same rules of Fig. 6 wouM apply
but the summation corresponding to (3.6) would be
much more difficult —hence this choice,

One expects the leading logarithm~ to be impor-
tant for small coupling e2«P, so g' given in Fig.
6 is negative and g pure imaginary. Calculating
(3.6) with imaginary g gives extra terms which
do not arise in the perturbative expansion of (3.5).'
Instead, I will evaluate (3.6) assuming g is real
(which leads to some simplifications) and only at
the end recognize the fact that g2 is negative. 'The

consequences of having g complex initially are
discussed in Sec. V.

Equatn (3.6) is evaluated by shifting the A. in-
tegral'by an amount —p/g,

2
SLL (p) =—It d2A& I A 2/2» '/2

1 p', pAd'A
N P' gA'

x exp[- —,
' (A' —2p A/g+ p2/g2)] .

(3.6)
The angular integral gives

SLL(P) 2IM 0/22-
Np

t dA&-A /2 eA2/2+ e-A2/2

Jo
I

(eA2/2 e-A2/2)
Ap

(3.9)

A change of variables to z =t' ' gives

2Ig2ISL"( p) =—1+, dze ' 1+-, z'
P' &7IP' ., P'

=— t+ — - e& ~"& 'erfc1 'tT
'

Jg) 2 2 P
P 2 P P2 Ig I

(s.is)
Note that this is slightly different from a.simple
replacement of g=2 ~g ~

in (3.10)—for a discussion
see Sec. V.

As stated earlier, a diagram such as Fig. 4 with
n dressed photon lines can give a first subleading
logarithm if one of the first derivatives of
C„(x„.. . , x„) at the origin is nonzero or when one
of the photons is bare. They also occur when a
fermion line has been replaced by the exact ferm-
ion propagator of Fig 2(b) and .the corresponding
C(x) function has a nonvanishing first derivative
for zero momentum going through the fermion
line. I show that the mul. tivariable C's have the
same symmetry as the lowest-order single-vari-
able C's of (2.6) and (2.13); hence all the first
derivatives vanish at the origin.

In C of (3.2), x,. only occurs in the bare fermion
propagator I/(»t +pQ, «„x/ jI), so replacingx, . with
-x,. for some i can be compensated for by replac-
ing z,. with —z, The latter can be done since z,.
is integrated over all. directions and P2(z,.) is in-
dependent of the sign of z, Hence C is unchanged
by the change of sign, in x,. and so is an even func-
tion, and the odd derivatives vanish at the origin.
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A similar consideration applies to the generaliza-
tion of the C of (2.13) for the dressed fermion
lines. By the angular integration any x,- -x,
leaves C unchanged and it vanishes when all x,.-o,
because of the+«„„jf, factors in the numerators of
the fermion propagators. This confirms that the
dressed fermions give no leading or first sub-
leading logarithms.

The only, remaining first subleading contribution
to Fig. 4 is when one of the photon lines is bare
and an arbitrary number of dressed photons cross
in all possible ways. The same kind of analysis
applies and the first subleading terms arise when
each of the dressed photons gives its leading
e'lne contribution and the coefficient is deter-
mined by the corresponding C(x) when each of the
momenta of the dressed photons vanish. The C(x)
is defined as before with the angular integration
over the dressed photon momenta performed, but
in addition the complete integration over the bare
photon momentum is done. As a result the same
modified Feynman rules of Fig. 6 apply to the
dressed photons and their vertices but the original
rules apply to the bare photon and its vertices.
After an analogous summation of the modified
rules as for the leading-logarithm case, the result
ls

S, L(p) =—Jt d'Ae " I'

fpg 1
xI — ey(2s)' .p'+g+gg

P„„(k) k„k„1
k2 k4 p'

(3.14)
To find the summed contribution, I again eval-

uate (3.14) exactly assuming real g, pick out the
powers of g' in the asymptotic expansion for small
g (i.e., only those terms which arise from the
modified perturbation theory) and then sum taking
g' negative. The k integral in (3.14) is exactly
that for the .lowest-order fermion self-energy with
external momentum P+gg and the result is given
in (2.2). Hence

Ss~(P) =— d'Ae " ' - „(3.15)N 16 ip+gA i"
which is again evaluated by shifting th'e A integra-
tion by —p/g:

(p) p
i nI2g -dsA & I2 I &le &

j
(3.16)

The angular integration followed by an integration
by parts on the scale integral leads to

-p g dA
- 2 (e 0 g+&-AP g) (erik% e- 0 E)

i ne' p' 2 2 "
2 1 1

Ill P o
' g& P J

ae' p' 2I 2 2 1—2pe~ " ——+—
6& P' E P.o

dAe A2I2(eAD -Ig e APlt)" (3.17)

The scale integral is again standard and results in

o.'e' p' 2 'I'1 ~I, & 1
S»(P) = — —, — — —e ~ " +—erf(P/v2g)16 p'. w g, p

An asymptotic expansion of erfc=1 —erf for small g gives

(3.18)

Qe p Qe~ p 2 1 2 2 g2 g2 g2 fl

S»(P) — —,+- —, — —e ~ I" 1+—,+ —, 1x3x ~ x(2n —1) ——,,sL 16 p& 16 p2 + + p2 p2 p' (3.19)

The only term which has even powers of g is the
first. The remainder is not only odd ing but the
exponential has no expansion in positive powers of
g. What this tells us is that an expansion of (3.14)
or (3.15) in powers ofg is zero term by term
apart from the lowest order. The formal expan-
sion of 1/(P+gg) is only valid when gA (P, so it
is not surprising that extra terms arise when & is
integrated over all space becoming large.

To check the above conclusion, (3.15) is expan-

ded to reproduce the modified perturbative terms,

S (P) =- d'Ae "I'
„,ni Sg" (p+gAl', .,

Q
OO —A A ~ ~ A

16K „o rgb & 62

@It p
5po Qpoi

' ' SPI p'

(3.20)
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~s, (P) =-
16

—.. (3.22)

IV. THE VACUUM POLARIZATION
AND OTHER FERMION LOOPS

To complete the assertions of the previous sec-
tion it remains to check that fermion loops do not
contribute additional logarithms. First, it is con-
venient to consider the leading and first subleading
logarithms in the vacuum polarization.

The leading logarithms are the (e' lne')" terms
for all ps and the first subleading are e' times
these. This is a different definition from that
given in Ref. 6 since it turns out that the current
one is more consistent. These two orders are
perturbatively calculable but the next order of
subleading logarithms is not. For example, in-
sert a dressed fermion propagator of Fig. 2(b) in

place of one of the bare fermions in the lowest-
order vacuum polarization of Fig. 3(a). From the
analysis of Sec. II the coefficient of the fermion's
leading. e' lne' contribution vanishes and the first
nonzero contribution is e' lne coming from the
second derivative of C and f'"(0) Howev. er, the

latter depends on the perturbatively inealeulable
e' and e' fermion self-energy terms. Hence the
e'x e'l.ne' contribution to the vacuum polarization
is incalculable. Note that the perturbatively cal-
culable e'lne' fermion self-energy term arising
from the lowest-order graph of Fig. 3(b) with a
single dressed photon should not be included in the

f function for the dressed fermion in the vacuum
polarization. It is included in the first subleading
logarithm calculation of the vacuum polarization

By the angular integration of & all the odd n terms
vanish, which always happens since there are an
even number of g vertices in the modified pertur-
bative graphs, For the even-n terms the angular
integration gives the totally symmetric tensor in

a„.. . , o.„. Al.so the P derivative is totally sym-
metric in n„. . . , n„, so when contracted the re-
sult is proportional to

sn p—=0 (3.21)
sag, sPg ' ' sip„g 8Py„g P

The vanishing of (3.21} is due to (8'/Sp Sp ) p/p'
being identically zero (p4 0), hence all the even
terms (n&0) of (3.20) are zero, confirming the
previous argument. 'The final summed perturbative
result is just the lowest order

FIG. 7. Part of a typical graph contributing first sub-
leading logarithms to the vacuum polarization.

next, in which an arbitrary, number of dressed
photons are added to the bare fermion propagator.

In Fig. 7 there is an independent loop momen-

tum for each of the dressed photons. When each
momentum becomes small it gives a leading
e2.lne' contribution in the same way as before and

the same modified Feynman rules apply. When

the expansion in the modified perturbation series
is summed the lower fermion leg becomes 1/(g
+gg} and the upper becomes 1/(k +g+gA}. The
fermion loop can then be closed and the remaining
k integration performed to give the first subleading

logarithm vacuum polarization,

llsL(&) d Ae-x /s(
N

d'0 1 I
(2~)' '0+a'+gA 'a+gA) '

(4.1)
Shifting the k integral by -gA shows that it is A.

independent and equals the lowest-order bare re-
sult of (2.1). Then the A integral is trivial and

cancels the normalization N giving

(4.2)

Again one can check that the perturbation series
ing vanishes order by order. An extension of the

gauge invariance arguments of Ref. 5 can be used.
At a given order the dressed photons are removed
but the paired ends still have equal and opposite
momenta going in. Then gauge invariance tells us

that the amplitude (the sum of such diagrams at
the given order) must vanish when these momenta

go to zero. Hence when the dressed photon is re-
inserted its leading-logarithm coefficient corres-
ponding to C(0) vanishes. Alternatively, an argu-
ment of Jackiw can be used. ' The original. modi-
fied perturbation theory corresponds to an expan-
sion of (4.1) in powers of g,

e2 2 d'4 g" 9" 1 1
IIsL( ) doge-~ t2 — „ try rg—

N (2s)' „,n! Sg" "&+4+gA '&+g&

O'Ae " 'A ~ ~ A
( ), „S~ trv

~ ~ Ys~
a=0

(4.3)
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I 1
X try~ y2 —, (4.4}

which clearly vanishes for n ~ I as the sphere of
integration grows to infinity. Hence all except.
the first term vanish.

The above results that there are no leading or
first subleading logarithms in the vacuum polar-
ization (i.e. , it is analytic up to order e ) show
that the anal. ysis of Sec. D and the Appendix works
to higher order than one might have expected It
requires f '"'(0) be finite where f depends on the
exact vacuum polarization through (2.4). One sees
that it is finite through n=3 so there is no feed-
back of further logarithms until higher subleading
order.

Using the insight gained with the vacuum polar-
ization, it is easy to see why fermion loops in di-
agrams such as Fig. 5 also give no additional log-
arithms to the complete fermion propagator. Con-
sider diagrams like Fig. 5 with at least two
dressed photons connecting a fermion loop to the
main propagator. Detach one of the photons from
the fermion propagator so that it carries mo-
mentum q into the fermion loop as in Fig. 8. The
leading-logarithm contribution of the resulting
graph occurs when as many as possible of the
dressed photons carry zero momentum and one of
the photons connecting the fermion loop to the
main propagator carries all the external momen-
tum q. For convenience this distinguished photon
can be treated as bare and is depicted as such in
$'ig. 8, though when the free photon end is reat-
tached to the main fermion line and the q integra-
tion performed to give Fig. 5, we must remember
that this special photon is also dressed.

In Fig. 8, for each dressed photon there is an
independent momentum integration but not for the

For n ~ 2 the k integral is now infrared diver-
gent as 4 - 0 or —q. This however is an artifact
of the fact that the k integration is being done after
the momenta going through the dressed photons are
sent to zero. If the k integration had been done
initially in defining the appropriate C(x) function,
then no such divergences would have arisen [and
also C(0) would be seen to vanish] However, ex-
cept for the lowest-order logarithm which was
examined in Ref. 5, this procedure is difficult.
Instead we can ignore the infrared divergences in

(4.3) (or remove them by dimensional regulariza-
tion) and integrate by parts giving

g2 fl

II2~L(q) =-—Q — d3Ae " ~2A ~ ~ A.

FIG. 8. Analysis of Fig. 5 by breaking one of the
dressed photon lines and selecting one of the remaining
lines (shown as bare) to carry the resulting momentum

distinguished bare photon. When the loop momenta
vanish each dressed photon gives a leading log-
arithm with the modified Feynman rules of Fig. 6

applying. After summation of the rules and a
shift in the fermion loop momentum by -gA. in the
same way as for the vacuum polarization, one sees
that the contribution of the fermion loop is inde-
pendent of A. Hence just the lowest-order term
from a simple fermion loop, attached by one
photon, remains. However the resulting lowest-
order graph is part of a single dressed photon
with momentum q (remember that in a dressed
photon an arbitrary number of simple fermion
loops have been inserted into the bare photon).
When. the free end is reattached and the q integra-
tion done, the resulting graph has already been
included in the dressed photon arches calculated
in Sec. III so there is no further contribution.

The same arguments apply if the fermion loop is
attached to the fermions of the vacuum polariza-
tion or if it is attached to the fermion propagator
by an additional bare photon so as to try to obtain
additional subleading logarithms. Only the lowest-
order nonlogarithmic terms could contribute.

V. COMPLEX g AND NONPERTURBATIVE EFFECTS

In this section, I discuss the case when the cou-
pling g of the modified Feynman rules is taken as
imaginary. To be more general, I evaluate (3.6)
when g =a+ ib is complex. For simplicity assume
a, b&0. The shift in the A. integral used previously
now causes the & integration contour to cross
poles so giving extra pole terms.

Equation (3.6) is equal to p/Np2 times the follow-
ing integral:

I (p2) ~t d3Ae A2(2p' (p+g )
(p+ gA)

I(P2) is rotationally invariant so one can choose
P to lie along say the three directionP =(O, O,P).
Denote by &, the 1,2 vector of A, then
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& +&&"3
I(P ) = d Ae — dA3e 3 3[A ~/

~ (A3)l/3] [A ~/ (A3)1/ 3].

Shifting the A, contour down by Imp/g= —p&/((z'+ 53) from the real axis [i.e., up by pb/(az+ bz)], it
a pole at A, =-P/g —z(A') ' provided (A3)'/' &Pb/((z'+ I/'). After a further real shift so that the net
—P/g, theA, integral becomes

-(A -( /g&3/3 ~ 3/g +3 [A z(A2)1/2 ][A z(A3)1/2 ]
+ 2mz e p( [-p/g —z (A')' ]/2l

2
. A2 1/3 3 0 p y

(5.2)

crosses
shift is

—(~ ('~)

The first integral, which has been rewritten in a
rotationally invariant form, is exactly that which
arose after a shift by real g in (3.8) and the result
(3.10) still applies for compiex g. The second two-
dimensiona, l integral in (5.3) evaluates to

r l &1 =~/l~i'
d2Ae-i l Al P /g

i b= 2z/ g, +, e '~ '/g'g' —— (5.4)P'

giving the final result for complex g,

3 (p)= —1 ——— e~f e t'a —
)

p gg m '/', , ip
LL p2 p 2 (/2g

e-0 /2lrl

For real g [i.e. , I/=Im(g)= 0, ~g~'=g'], (5.5) re-
produces the previous result (3.10) and for pure
imaginary g=ib it gives

3„,(P(= —, 1+(—)
—e' ~ erfc(/ —*')

p (5.6)

Again this is not the simple replacement of g with
ib in (3.10). The first two terms of (5.6) agree
with the Borel sum (3.13) of the perturbative ser-
ies. In addition there is a nonperturbative term
which has no expansion in positive powers of g.
'The significance of the extra terms depends on
how much faith one has in the representation (3.6)
for the sum of the leading logarithms. Since it
was derived on a term-by-term basis from the
logarithms arising perturbatively, only the
summed perturbative series is trustworthy. The
latter has been assumed in the results of Secs. III
and IV. However one may take the point of view
that (3.6) is in some sense an approximation to the
exact functional integral for the fermion prop-
agator when the low-momentum limit of the

inserting this back into (5.2) gives

p A
i(p2) d3A -(A-3/g( /2

gA.

lAl =pb/(a 4y )
e-P /zg d2Ae-i(A(P/g (5 3)

I

dressed photon is taken. 'Then the nonperturbative
result (5.6) may have some validity. If so then
there are further nonperturbative effects.

In Ref. 6 the sum of first subleading logarithms
for the vacuum polarization with imaginary g. was
calculated in a similar way to the derivation of
(5.6). The asymptotic expansion for small g, in
additzon to the perturbative result (for real g) of
(4.2), has terms with only odd powers of g which
cannot arise perturbatively.

One problem arith including nonperturbative
terms is that it leads to a breakdown of the argu-
ments of Sec. IV that no additional logarithms
arise. In particular, the lowest-order nonper-
turbative logarithm in the vacuum polarizatj:on
(proportional to g-see Ref. 6) invalidates the an-
alysis of Sec. II and the Appendix at the orders re-
quired. So additional logarithms feed into all
orders of the complete fermion propagator and the
simple methods of analysis presented here break
down.

VI. CONCLUSION

S(p) =p 1+
2

rf
~2~ ~

16
r

+ further subleading logarithms

with g' = (ez/48(/') In(ez/P) and

(6.1)

11,(P) = — P, (P)

+ further subleading 1oga.rithms, (6.2)

where the further subleading logarithms are terms
proportional (e') (g')" for all n- 0 and zzz= 2, 3, . . . .
They are in general not calculable perturbatively
as explained, for example, for the m=2, n= 1
term of the vacuum polarization at the beginning

The techniques described in this paper apply
equally well to calculating the logarithms in other
amplitudes. For those considered here —the com-
plete fermion propagator and vacuum polariza-
tion —the results are very simple provided one
only considers logarithms that arise "perturbative-
ly." At the leading and first subleading order all
the logarithms vanish except for the leading
fermion propagator. The results are
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of Sec. IV.
Note that if the fermion has nonzero mass, then

the first incalculable e'- lne' term in the vacuum
polarization would be absent. 'The first nonzero
logarithm would be e"lne' from the masslessness
of the photon since all the second subleading log-
arithm (m= 2) contributions of the dressed photon
can be shown to vanish by similar arguments to
those in Sec. IV. However a fermion mass would
induce the photon to gain a gauge-invariant mass
as explained in Ref. 5, removing all perturbative
infrared divergences and coupling-constant log-
arithms.

C(x) of (2.6)j, the first term of (Al) can be ex-
panded as

J
r

(n)ChC(x)f( )~)=Q C'"'(0) —
i J dxx f(h/x) .

0 n~o 0

(A2)

Changing variables to y = A/x in the latter integral
gives

f r. yn+1 f oo

dxC(x)f()(/x)=Q C" (0) ) „, f(y).
0 n~o

(A3)

Integrating the y integral by parts r 2 times re-
sults in
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yf( ) p ( )' ( -y«)(

-( )( J d7()~v))'""(7), (A4)

d~C x X~ = dye x Xx
0 0

d~C x
r

(Al)

Assuming C(x) is analytic about x = 0 and r is
smaller than its radius of convergence tr & 1 for

APPENDIX

To evaluate (2.7) split up the range of integration
at an arbitrary point x into small-x and a large-x
integrals. Naturally the final result should be in-
dependent of z:

where it is assumed that the derivatives of f vanish
at infinite argument. Writing the last integral of
(A4) as

]
g 0

dy(lny)f'""'(y), (As)
0

one can expand the derivatives of f about the origin
to express (A4) entirely in terms of perturbative
information apart from the first integral on the
right of (A5),

r g( ) P ( ) ' im-1 g f((+j) (0) (I )P y(n+1+j) (P)

1 j+1 1 & 1 OO

+
( g f(""'~)(0)—.

(
. — 1ng —.

~

—
(

dy(lny)f("")(y)

1 dy(lny)f("+" (y) (In~)f'""(0)
(n+1) I .

Qf(m)(0)gmm ).g ( )' Q f ( )&

,.() (m —i) l .„,2 (m -n —1) ( (m —n —1)
(A6)

The g,., (n —i)./(m —i) l in this expression is well defined for n - m. For n &m, the correct factor is
g,., (n -i)l/(m -i)l, which is identical to the sum up to n if (m —i)! is interpreted as I'(m —i+1) for
negative argument. When (A6) is substituted back into (A3) with z =)(/r, this completes the analysis of the
first term of (A1).

In the second term on the right of (Al), f can be expanded about the origin of its argument giving

(A7)
r m 0 Pl' r X

As it stands (A7) is already perturbatively calculable since C(x) is known exactly and the x integrals are
convergent hence calculable. Also the required logarithms and perturbatively noncalculable terms are al-
ready present in (A6). However, in order to present the elegant result of (2.8) and show the independence
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of r, I proceed to analyze (AV) further. The integral on the right-hand side of (AV) is entirely analogous
to the left side of (A6) so

(k+j) ) (k+n+ 1) &

j l (k+1)n!

(n+ 1) l~ (k+j}! (k —1}l(k —1) (n+k)! (k —1) '

Equation (A10) corresponds to the sum referred to after (A6) when n ~ m and (A11) when n&m. Kith
these (A6) becomes

(A11)

J dy „,2 =
(

— dy(lny)f'""'(y) —In()&/r) f'"+"(0)()
y"' (n + 1)'

dk „= ! — dh(lnx)C' '(x)- (lnr)C' "(0)
m —1!.

98 oo

+ p C'"'(0)r" "p —g ~ 1 (A8)
(n —i)' „.„(n -m+1)'(n —m+1) ™~

For m = 0, (A8) does not apply but instead one has

d&C & = d~C ~ — C&.} O (A9)

As for (A6), the same kind of interPretation is given to Q", o (m —2 —i)./(n —i) l in (A8) when m 2)n.
A»o when m —2& 0, (i.e., m =1) the sum is taken as zero to give the correct results. Because of the log
arithmic singularity at x = 1 in C(x) of (2.6), the integrations by parts leading to (A8) are in fact invalid
since I have already required r& 1 for (A2). As a consequence the logarithmic integrais of the derivatives
of C in the first term of (A8) are divergent. They should be regulated in some fashion which is done at the
end of the Appendix. For now I will proceed formally assuming (A8) is all right. The analysis of the sec
ond term of (A1) is completed by the substitution of (A8) into (AV).

Before collecting the results to show the r independence of (A1), I make some simplification of (A6) and

(A8) using the following results which are easily proved by induction on n:

and (A8) becomes

OC&

f(a+))(0)g I. . g f(m) (0)
()&/r}" '(n + 1)!

,~ (&
(n+1-i) .„,„„. (n —m+1)ml

(A6')

dx =
&

dx(lnx)C& &(h)- (jnr)C( -"(0)l C(x)
(m —1)!

+C(m-1)(P) g + g C(n)(P)
,.o (m —1 —i) „.0,„, (m -n -1)nl „

Equation (A8') is substituted into (AV) and the double sum reordered, then collecting terms gives

r
((0 x"" 00

dkC (x)f~
— = P

&

—C'"'(0) dy(lny) f'""'(y) —In()(/r) C '"'(0)f'""'(0)
(x „., nl (n+1)!

(&o

f'"+&&(P) dx(inx)C'"+ '(x) —(Inr)f'"'»(P) C&»(0)
0

OO n+1
C "'(0))&."" g & &( }

(X/r) (n+1)l f&„.,&( )g 1
n! (n+1)! . o ~„(m n-1) m-l,. &i

n l (n+1) l p f&"&(0))&. r"-""(m —1) l

„,, +„(m —1)lm! (m n —1)n! . -
00 tn-1

gf - (0) C .-"(0)g —+ f(0) dxC(x) g C'"'(0)

(A8')

The logarithmic r dependence in the first term of (A12) clearly cancels to give the first three terms of the
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sum in (2.8). The remaining sums over s of (A12) cancel for m ~ 1 leaving the m = 0 term to give

C&N&(()) yn 1 f(0)(y/y)~-x(/+1) (

„., ~t(~+1)t ( s 1)O(

which cancels the very last term in (A12). The remaining terms are r independent and combine to give the
result (2.8).

To regularize the divergent logarithmic C integral, assuming C has a logarithmic singularity at x =s, I
repeat the analysis, but in (A1) the upper limit of the first term is r& s and the lower limit of the second
is r'&s. The correction, which is the integral from r to r', is regular and vanishes as r, r'- s. In ord-
er to derive the same result (AS) as r, r' - s, one needs to make the following replacement in the formu-
las:

J
~0 r

dx(lnx)C, '~'(x)- lim dx(lnx)C'"'(x)+ dx(lnx)C'~'(x) + (lns)[C'" ~'(r')-C'" '(r)]
0 r~g - 0

—g (m —2-i)ls" ~+"[C"'(r') -C"'(y)]
$¹0

(A13)

the right side of which is convergent. Integrating the right-hand side of (A13) by parts m times also gives
the simpler expression

dx(lnx)C'~ '(x)- lim — dx -(In@)C'" "(0)+g (m —2-i) l a" ""'C"'(0)C (x)
0 0~0 ~ 4 x $¹0

where the C(x) integral is now regular at x=s.

(A14)
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