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We explicitly construct a closed system of differential equations describing the electromagnetic and gravitational
interactions among bodies to first order in the coupling constants, retaining terms up to order ¢ ~2 The Breit-and
Barker and O’Connell Hamiltonians are recovered by means of a coordinate transformation. The method used

throws light on the meaning of these coordinates.

I. INTRODUCTION

As far as we know predictive relativistic mech-
anics (PRM) has been able to give a satisfactory
account of a great variety of interactions among
structureless particles within the framework of
perturbation theory. It is therefore tempting to
try to build a framework able to describe the in-
teractions among particles possessing an internal
structure taking as a background PRM. In the
preceding paper,! hereafter referred to as I, we
have given a systematic way of constructing a set
of dynamical equations, up to first order in the
coupling constants for objects possessing an in-
ternal structure, the energy, center-of-mass po-
sition, and spin of each system, defined as if each
were an isolated system. The time evolution of
these quantities due to the interactions was then
calculated using PRM. The system of differential
equations thus obtained becomes closed under the
assumption of finite multipolar structure for the
interacting objects if we provide the equations of
motion for the multipolar moments used.

The next logical step is to test these dynamical
equations by studying specific interactions. On
one hand, this will give a test for the definitions
of center of mass and spin given in I and, on the
other hand, it could give information about the
possibility of building a classical, as opposed to
quantum, model for spinning particles. This is
the reason why the electromagnetic and gravita-
tional interactions have been chosen first. The
quantized version of the electromagnetic theory
is the best tested of the known interactions and in
the domain of gravitational interactions the post-
Newtonian effects for spinning bodies will prob-
ably be measured in the near future by satellite
experiments or from the observation of astrophy-
sical objects such as the pulsar PSR 1913 +16.

We have limited our study to the simpler case.
We have assumed rigid-body behavior and nearly
spherical distribution for each subsystem. The
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calculations have only been carried out up to order
c"2. For the electromagnetic interaction this has
resulted, of course, in a great simplification in
the calculations, but on the other hand it has al-
lowed a direct comparison with the Breit Hamil-
tonian. The case of the gravitational interaction
is a different one. Within the framework of PRM
the only candidate for this interaction is the Ein-
stein-Infeld-Hoffmann Lagrangian, which contains
only terms up to ¢ 2.

As the multipolar moments are defined in the
rest system of each body, in order to get covar-
iant expressions for them, the transformation re-
lating the relative coordinates in the observer
frame and the rest frame must be studied. This
is done in Sec. II where the basic assumptions on
the finite multipolar structure we use are also in-
troduced.

In order to avoid unnecessary calculations it is
useful to study the structure of the dynamical
equations when expanded up to terms of order c-2.
This is done in Sec. III.

These are all the tools needed in order to find
the equations for the electromagnetic interaction,
which are derived in Sec. IV. To this order the
mass can be taken as constant and the equation
giving the time derivative of the spin agrees with
the equation of Bargmann, Michel, and Tel-
egdi. The system is closed assuming [1; =g;(Q;/
M,)S, and the equations giving the acceleration
of the center of mass contains terms derived from
the Darwin Lagrangian plus spin-orbit and spin-
spin coupling terms.

The equations for the gravitational interaction
are obtained in Sec. V. The mass can also be
taken as constant and our equation for the spin
contains the same terms as the equation of Cho
and Hari Dass? and of Barker and O’Connell,® plus
an extra term that introduces a change in the mag-
nitude of the spin. The equation for the acceler-
ation of the center of mass coincides with the one
given by Pirani® for a gyroscope orbiting a mas-
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sive body if we take the limit V,=0.

Section VI is devoted to a further study of the
equations giving the acceleration of the center of
mass. We investigate the possibility of deriving
them from a Lagrangian. The result we find is
that these equations cannot be derived from a
Lagrangian, but it can be seen that if instead of
the center of mass we use the center of spin, then
its acceleration is given by an equation derivable
from a Lagrangian in both cases. If one performs
a Legendre transformation on these Lagrangians
one finds the classical version of the Breit Hamil-
tonian in the case of the electromagnetic interac-
tion and the Hamiltonian of Barker and O’Connell®
for the gravitational interaction.

The meaning of the different sets of equations
and the higher-order corrections are discussed in
the conclusions, in Sec. VII.

II. MULTIPOLAR EXPANSION

In the equations of motion for bodies of finite
size, given in I, a multipolar expansion must be
introduced in the functions A and A. This multi-
polar expansion is performed around the center of
mass of the bodies, 5(’1 and 532 and the multipolar
moments are defined in the rest system of each
body.

Let us now introduce the notations that will be
used in the sequel. Given a system of particles
whose positions and velocities at £=0 in a given
system of reference are x, and v,, respectively,
the positions and velocities of these particles at
the instant # =0 in another system of reference
moving with velocity V, with respect to the former
are given as functions of x, and v, by the relations

- ." . -1 _ 1.
st (R ), =,
' (2.1)

. =[V,-¥
Va +V1[ ;,12 (y=-1) —y]
a— (1 _ vl N ;a) ’
in the case of a system of free particles. In this

case the center of mass in its rest frame is given
by

-

(2.2)

5(.1 'Vl

X{ 2)(1 + Vlz

(y=-1)V,. (2.3)

From these expressions the relation between T,
=%;-X and 7,=%, - X, can easily be calculated.

In the general case of interacting particles, in
order to compute the analog of (2.1), (2.2), and
(2. 3) the knowledge of the world line of the par-
ticles is needed. In our case, however, as the re-
lation between_ T, angl. Ta iS needed only to write
the functions A and A as functions of the multi-

polar moments, and as these functions are of
first order in the coupling constants, only the
zeroth-order terms of these relations are needed,
which are given by (2.1)-(2.3).

Since in the remaining part of this paper the
calculations will only be performed up to order
c-2, we shall give these relations only up to this

’
order,

- - 1, + =, - -

Xh =X, +—c-§(xa V)V - 3%V,), (2.4)
N

X=X, +2—cz(Xl 'VI)V1 . (2.5)

Therefore we have

- - 1 o == 1 . -
Te=T, —ﬁ(ra . Vl)Vl - ? (I‘a . Vl)Wa
1 > = .-
- ?(Xl V)W (2.6)
and

- 1 -~ >\ 1 - -
Tp=Ty— %E(I‘A <V,)V, —?(I'A “V,)Wa
1 = = . .
“c_z(xz'vz)WA 2.7

for the relative positions of systems 1 and 2, W,
and W, being ¥, - V, and v, - V,, respectively.

One of the basic assumptions used in this work
is that each subsystem behaves as a rigid body,
therefore a slight correction of (2.6) and (2.7)
must be introduced. This can easily be seen by
studying the meaning of the term c‘z(}-fJL : Vl)\'n’,,.
This term is the correction due to the action of
the relative velocity W, along the time ¢*(X, - V,);
as this time is long in general, the mean value of
W, must be used. For a solid body this mean value
is zero, therefore, in our case the last term on
the right-hand sides of Egs. (2.6) and (2.7) vani-
shes and the relations we must use are

-

e 1. =
- V)V, —-C—z-(r,, - V,)Va, (2.8)

1 = == 1 + = .
A= A““Z?(I‘A'VZ)VZ—?(I'A'VZ)WA. (2.9)

The rigid-body assumption coupled with spheri-
cal symmetry gives also

d=

5, =€"T, =0, 2101=0 (2.10)
and
: . ii . .
Dii=Ds&i J:dfi)t =eeqriwi +riwi)=0.
This relation implies the antisymmetry of
M =eqeqviwd = S, (v bwd — v {wi) . (2.11)
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Therefore, defining

ﬁl =€aea;axwu ; (2. 12)
M} can be written as
M =56y, . (2.13)

If small departures from spherical symmetry
are allowed we can use
Dii=Ddti +e'y” ,
where € is a small parameter. Then we shall have

Mii=181%p, +0() .

ai_ .,

i {I'Ii(iixvi)"’(vji'v:')‘_;i'l'

And the equation for the center of mass becomes

2%, Vi
ddtzt = (1 +2 )Mt-l(Pz "f‘K;)

P X51
M;

1 3 == ==
+c§’A‘4‘i[(Ki -Vi)Vi - HiX; -

Therefore ip order fo find (3 1)-(3.3) the ex-
pressions of J;, P , K,, and K; must be computed
up to order c2, whereas H;, H;, B, , and J, must
be computed only to order zero. We shall now
write these expressions for specific interactions.

IV. ELECTROMAGNETIC INTERACTION

The first step to find the dynamical equations for
electromagnetically interacting bodies is the cal-

]

+(B; -V WV, -

The terms of order ec 2 will be neglected.

Static moments of order higher than the dipolar.
and kinetic moments of order higher than M/ will
be neglected.

1. EQUATIONS UP TO ORDER ¢~
Let us now write down the Egs. (8.8), (8.9), and

(8.10) of I retaining only terms up to order c-2
We find for the mass

dM,_ -2
7 (H; -V - (3.1)
The equation for the spin becomes
- 0 Vi2\ s >
Vi)Pl]—é—[Pl (thvt)]vi J+<1 +§‘(§‘2‘)(Ji XiXPi)
(3.2

(Vq ')—E,)ﬁ‘ +ji X%i - Zf}iVi +(B; V)V, - 2Vi2§i] .

(3.3)

'culation of H;, P, y ji, and K;. This can be made,
of course, using the integral equations given in I
for these quantities to find them up to first order
in the coupling constants, and then performing a
v/c expansion. However, in this case we can use
an equivalent and even shorter procedure because
we have the Darwin Lagrangian at our disposal.
In any case the result is

' ol
H, =e¢ macz+-—e Mavs + Fe'et ——
Xaaqr
Colur v (Kow Vo) Koa * Var)
+c.z{%€amava4+4€a€a a€a [Vu Ve =( aa ;2( aa a ]}, (41)
aa’ aa’
= - 1 Colof~ Rpa * Var
P, =c"mVat53 [e R R (v,,, + -1 x,,.,.)], (4.2)
2¢2 Xaa X "aar
- o - - 1] .= o aa’ Cala~ . Rap Vg 4.3)
J) =€ MaXg X Vg + 55 € Xa XMV Vg TEE€ XX\ Ve 2 Xaar) | > .
2¢ Xaa* aa’
- + 1 - ’ X
K, =€"m.X, +2—5<e"mav.,2x,, +€%" eqen :L> . 4.4)
c Raar
> > > = P .
We must find now K,, P,, J,, and K, up to terms of order ¢’®. This implies the use of the operator
ai(1,2)(3/9vi), where ai(1,2) is given by
A
- e, € 1 (Xqa - Va) -y -
3a(1,2) =205 €4 [1 s (UA — 0 2=2V, V4-3 ——“—"——"-—)]XM = C2(Raa Vo) (Va = Va) }. (4.5)
Ma XaA 22
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To find the multipolar expansion, we must now write X, as }-El + ¥, and then use (2.8) and (2.9) to write
Xo4/%,4% up to terms of order ¢™2, that is,

iA ﬁ ’ —;A ﬁ'(; —;A)ﬁ I‘ I'A -I: 'ﬁ-— FA‘R.-. (R I‘)(R I‘A)
et 3T PR AR 3T T, 43T T, - 16 AR

g (_1 Fo VIV, = G- VIV, Fa V) Wa = (Fa- Vo)Wa
2

R3 ~R8
3 ﬁ * [(Fa N v1)vx - (-I:A N i;g)vz] =3 ﬁ : [(Fa N VI)Wa - (-I:A : vz)\_)V.A] B
2 +
+2 g R+3 o5 R
_ ﬁ(fa - Va)(Fa - Vz) = 3 (Fa - V)(Fa- Vl B (I'A Vo)(Ta: Wo) g
2 R® RS RS

(;a * v1)(.1".4 * {V.u) = :_;_(;a * ﬁ)(;A * ‘72) I §_ (;a ° v1)(-1:11 * ﬁ) =
3 R- v, -
R® 2 R® 2 2 RS

sEeRET) o F VOG- R) _3E VIV R), 3G Va)(Ve-B).
R® R® °72 R® 472 R® :

&

(o V)G R) -, (- V)i ) 15 (R-F)[(Fa- Va)(V, - R) +2(F4 - Vo) (s - B)]
R® 4 R® Tty R

-3

15(R F[F, - V)V, - R) +2(F, - V)W, - R)] =
2 1 = R), (4.6)

where R= X X
Let us now compute Kl,

= 2" MV, - 2,(1,2) %,

5 K,
K, =ai(1,2)3 g
a

From (4.6)

v1 MR]

Kf—c'Z[Qlez X{+Q;

where @, =¢c¢,, @,=¢"e4. Using now (2.13) and (2.10)
1 2

VI» Q_thxm) 4.7

.. - C-Z(QIQZ Xl + 2 R3

For fl we have

o Xoa * Va)2 - - -
P =¢%* e“eA{[l + 21 (UA — 2V, V4 - M)];{m +CH(Kqn - ValVa }

XaA XaA

Using (4.6), (2.13), and (2.10) we find, after a straightforward but somewhat long calculation,

> Iy 7 —"_. 2 B R-VIV
P= Qk?z{[l +21—62(sz -2V,-V,-3 (Ekzlg)—)]R +c?(R- Vl)Vz}

L 3 . BxV) U= RxV)- VXL VXU, 3 = = RX
+ca[_§Q_~R5_”_1 ‘“‘Q1'_——'LL—2R+ Qz R3“1+Q1 R3“2__Q1(R_V)_I?‘£g_

SO0 ) g 15 R-T)®R-Tp) 3(RXM1)XN2+§(§X_112)X.II1]

4 RS y R7 4 RS 4 RS (4.8)



24 INTERACTION AMONG SYSTEMS OF FINITE SIZE IN.... II.... 3107

where V V V
For J we have

J =€"MaXa X 8a(1,2) + e  $mavs?X, X 34(1, 2)

+e ma[Va . ia(l s 2)])?41 X Va}

X, %81, 2)“"
which gives
-2 QZ Yy v 1/D . "\
Ji =X, xP, +c? 2% [2(R-V)EL, -+ R D)V,
> = o 1
+3R- T )V, - 3(V, “'1)R]+‘>czRa

- 3(R-TIRX 3T X7, R =
X[%(ulxuz) ® - F)EXF) 3 (FXTy) R]_

4 R? T4 R?
(4.9)

From H, we get

"€alar

l

-2 a a a a

C°H, =¢ m —5 € MgV, €€
1 a 262 ¢ a 2(,‘2 Xaar

Therefore,

- -

- a A€afa
zH—Cz . 3 Xaa ' Va,

aA

which gives

-leQZ
R3

CH, =c R-V,. (4.10)
Using these quantities we can calculate V;

through the relation

- B R 1 [ig .e .+ Bx§
= —_— + X + ——

Vl 0-21{1 +1‘41 MlCz [HJ.XI Vl Jl Ml

+ (5(.1 : ‘71)§1 - (—ﬁ1 : Vl))_zl]
(4.11)

This gives

dz)i_Qleﬁ ¢
at* ~ M, B ° MR

c®M R® R? R
~ Q== 3R-V)
+W{V’<ﬂl*m"xsﬁ§ al
3 = e L e e
s | R A, + (R0 + (1, - TR -

c?4M ,R®

If now we assume [i; =g:(Q;/M;)S; this system be-
comes closed. As can easily be seen, Eq. (4.18)
agrees with the Bargmann-Michel-Telegdi equa-
tion.®

<t

P, o Q2 = by Qg
+ -—
1 C_2H1’ (4 I RaR [2 S] (4.12)

. To complete the procedure we must calculate

-

K,, which can easily seen to be

2 R®
(4.13)

¢"2H, which is given by

i e [VV, L E-DIE-TY

cH, = leQa[ PRt 78 1, (4.14)
c'zﬁl which is given by

a3 V R-V

CZPI: leQz[ﬁE—S-—RTR], (4.15)
and c‘zi which is given by

3 - V, xR
3, :c"“[xlxp1 +Q,Q, %;B—]- (4.16)

With these quantities we can now calculate the
equations of motion which have the following ex-
pressions:

aM,
=0, (4.17)
a8, __ 1 Q@ (V,xR)x§ 0 (VxR) % 1
dt ~ 28 M, R® 207 ¥2 R®
1 ~ - 3[(lx1) - RIR
*?ﬁ[%(“lxuz"z“l—ﬁ‘—]
RLE) ] .19
and
R-Vo?| = = .=
3 RZZ)]—(R-Vl)V}
7]
g_@_* -’:l g(ﬁXV) 1=
)—Ml ®RXS)| -3¢
SRR ) ] (4.19)
Rz M .

V. GRAVITATIONAL INTERACTION

Using the Einstein-Infeld-Hoffmann Lagrangian
in the same way we have used the Darwin Lagran-
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gian in the preceding section, we shall construct a
set of dynamical equations which give account of
the gravitational interaction among bodies of finite
size up to order ¢ 2. As the hypotheses and pro-
cedure will be the same used before for the elec-
tromagnetic interaction we shall not insist on
them again. The calculation of H;, P;, J;, and K;
gives

G a0 MaMa

H, =€"mqc® +e$mqau,” — €%
2 Xaar

3 2 7
V2 = T(Vy Vo)
Yoz [2 a 4( a

1 (xaa' N Ga).(iaal N Ga') ]}
7 <.z | 5.1)

Xaa’

- - 2 Ge'my
— e + -2 U_“ -
P, =¢ m,,v,,[l C (2 2 Fom )]

G aa,mam.

MM
+c {e Mot v, + Gele® ——%

- € Ruar * Vo) Xgar
ZC Yawr ( aa a aa’ » (5 . 2)
I, ="M X, XV,
2
- Va s Mg gr +
+c 2" mg —2——x,,><va+Ge°e" %X,
Xaa
- 1(§ v Vo) Xaar
X [3vu ?Va' 2 = a2 aa ) (5 . 3)
Xaar
T v Gemg
KJ.:E MaXat C [6 maxa( 2 _EE_)]- (54)

To compute now the functions A we need 2,(1,2)
which is given by
1
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A -

- € M AXgA

2,(1,2)= —G———'——au
XaA

A
N 2 - -
+G [—v — 2042 +4v, -V
:quAS{ a A a A

§( sﬁ . iaA—-)z] X
+2 xaAz XaA
+ (Ga - GA)[(‘IG., - 36‘4) M iaA]
- (5.5)

Here as the X, dependence of the Newtonian
part of (5.5) is the same as that of the Coulombian
force we can use again (4.6).

We find now

K, = 2%"m[V, - 3,(1,2) %, , (5.6)
and, as for the gravitational interaction
Si =T +0(c?) 6.7
we have
> G R-V M, RxS§
K = —?(MIMZ X+ 22 =3 ‘) (5.8)
For ﬁl we must compute
B, =€"maiy(1,2) + ¢ 2[maV, - 34(1,2)V,
+ 3mqvs°aq(1,2)]
G My »
=M 2,(1,2), (5.9)

which gives

- =

5 M - - R-V,)2\= - -
PI:-GAI{;MZR G -2{ = 2[(-—§-V12—2V22+4V1'V2+%(—R¥2)—)R+3(R YV - (R-Vl)Vz]
- x" —bx Il—b . . —DX—> ‘0 - —’.—b —bx«b
- 4M, Vstsz—%szRasl 6M, (RX;? SZ]R+6M2——[(R ;’2 Sl +6M1———~——(V R;E;R Sy)
G A ERE) &AL =
can, @ RI){(“R 5)_48Sg o ;15)s2_3(R ;:) R R})egsz R) = } (5.10)
For jl we find the expression
FOS V-R)S 7 xS) xR BRx8,)xV x§)xV S %8
lexlxpl+Gc—2(3M2_(Y_~II:T)S_1__2M2(VX;13XR_1‘/212(R 23 v2+%M2(R 213) v_, 1R3s2
8ix8,) Rl ®-§)@xE |
+3 (B8Rl S)@RxS) 5.11)
And for ¢*2H, we have
1 1 MM
-2 __.a - _a 2 _ 2 a_a' Wqltlag
¢PH, =€"mq +5 5 € mata 262666 v (5.12)
Therefore,
C?H, = -G %A e i’;‘;’cm-x’z,, (5.13)
a.

which gives
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~27] -2 Vl
¢*H, =-Gc?°M M, R (5.14)
We can also calculate VI using these expressions in (4.11). The result is
- P, G M,RxS
1 4 T T2 5.15
Vi c®H, 2c*M, R® (5.15)
To find the dynamical equations we must calculate the A functions. We have
3 ] BVo VVg BDRT:], M[Vx8 & V) »]
K, =-G¢ Z{Mle[ R31V1+ R31 X, -3 75 X, 22 7 L+3 75 VES (5.16)
2 - VeV, RVR-Y,
C 2H1=—GC 21‘411‘42[ Rsl "'3( ;2(5 1)] 1) (5.17)
¢ 7P, = _Gc'leMz[;/; -3 R' V R], (5.18)
23 —c'z[X x B, - GM,M, VRXR] (5.19)
Using these functions the equations of motion can easily be written down. The result is
am, _ (5.20)
ar - ’
ds - M,= = - REx®x5)] =
T {3M v R)Sl+[252+—-2—2 L XR+2MRX V +3 =55 X8, (5.21)
2% B M 3 (R-V,))= Vx§
Tﬁ)é":'GMZ?F*GC 2{—% (—V12—2V22+4V1- Vo+g g2 | R+ V[(47, - 37) Bl [~ 4 05
oMy VX8, M, RV)ERXE) [BxV)-8JR M, [(ExV) §]R
“°M, R® "°M, R® R® M, RS
(V-R(®xS,) .58 (R-5)8, . (R-8)8 (R- 5)(R- s)
6 2r _ 2 1 - 1 i1 2
+ =° 3MR5R 3 MR 3 R +15 MR .
(5.22)

These equations can be compared with those giv-
en by Pirani,* Corinaldesi and Papapetrou,” and
Barker and O’Connell.® As can easily be seen,
they reduce to the Pirani equations in the limit
V,=0.

The equation for the spin is, however, different
from those of Cho and Hari Dass® and of Barker
and O’Connell.® The spin-precession term is iden-
tical with the term given by these authors, but we
find a new term —3M,Gc3(V R)Sl/R3 proportional
to the spin that is responsible for a change in the
magnitude of the spin.

The spin vector we have used was chosen attend-
ing to its transformation properties. A change in
its definition in order to construct a new spin vec-
tor with constant magnitude, cannot be made with-
out altering its transformation properties, and

must therefore be discarded. We shall comment
on this in the conclusions.

V1. LAGRANGIAN FORM OF THE EQUATIONS
OF MOTION

We shall now investigate the possibility of de-
riving Egs. (4.19) and (5.22) from a Lagrangian.

The expression (4.19) for the acceleration of the
center of mass of a charged body can be divided
in two parts: one that does not contain the mag-
netic moments, which can be derived from the
Darwin Lagrangian (hereafter abbreviated as £py),
and another that does contain the magnetic mo-
ments. Multiplying (4.19) by M, we can write it in
the form
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\ 3 RV B byt )
(me) me +c? = x (Q1P2+Q2H1) 2% R +Q2“1)+ [ Ql 2 sz' 1% R
-2 Q1Q2 ‘-f.x S 3 Q]_Qz g
-c M, B +2 M, B RX S,
3 - - - e - - > - R
+W[(R. “1)”2+(R. P'z)lil"'(“f “-2)R _5—_£1L(2_R’& R] (6.1)
where
- Y - 0L
Pipw= "ng and me=?£l .
1
An easy calculation then proves that
o V[SR" aR,( )] [T4TE =W[(“1' MR+ (R pp)u, + (R-ul)u2—5—“*-—r—‘f2— R (6.2)
M1 R (@it @] =ols o x )= (R V) x ( ), (6.3)
il = X(QuHo+ Qa1 |= 562 Ra X Q1H2+Q2P‘1 R-V Rsx QI“Z"'QZI‘LI .
~(1 V \2 V Rx (@1 + Q1)
- V(EC— [RX (Q1“2+Qz/-‘-1)]) 202 Rs X (Q1“2+Q2“1)+ [ I?s',luz Dty ] (6.4)
and
a 1 9,9, ﬁx§1)_ 1 0,Q, {;X§1 3 Q9 = T §X§1 »
dt( M, B)E M, B &M, (R*V) =% (6.5)
Using these expressions (6.1) can be written in the form
d (= 1 R 1 @@, Ex§)_ = = 1 Ve [Rx(@i,+Q.u)
E(Plnw 2 5.2 3X(Q1'~L2+Q2“1)+ QI:'JZ R ) FIDW+V{ 202 I;sz Q2 1]
1198 a/f1
+ o sk?(ii)“?“%]} : (6.6)
Defining now a function L as
, 1 Ve [RX(Qi,+Q,0,) o 8 (1
L=‘LDW 202 é 2 2“1]+4c SR aRs R “I“; ’
I
(6.6) can be written in the form Coulomb force term, that is, the Newtonian terms.
Therefore if a Lagrangian exists in this coordinate
d (8L + 1 @9 Rx S1) system it must be possible to put the expression
dit\av, 2 M, R 8X
L3 m,0V, + 1 Q’Qz —T—RXS> =0(Coulomb)
Therefore it is manifestly evident that (6.1) cannot dt R
be written in Lagrangian form. Let us now try a (6.8)
change of coordinates in order to see if in the new in Lagrangian form.
coordinates the equation of motion can be put in From (6.7),
Lagrangian form. - % a 0. 7 x 5
We try a transformation of the type Vi=Zi+ 55 QM? 7T (6.9)
X = '2’ a V X Sl (6.7) Therefore the left-hand side of (6.8) has the form
C e M‘ d Q,Q, Zx8§
a X
. . ol = 1%2 1
where a is a free dimensionless parameter. K dt[(z + 1) o, 77 ] . (6.10)

these coordinates are used the changes will only
affect the time derivative of the velocity and the The change in the Coulomb term is given by
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a [V,x 52]‘)

M, T 2% M

Therefore a Lagrangian exists for a=-1, that is,

S':"BDW-E% QIQZ [(gl_l)y_l_:_(?ﬁll - (gz—l)

z® M,
£:8; 9,05 _1_[ (Z-8)(Z§) +,]
* 4c® M1M2 VA 3 72 S]_ S, .

Performing now a Legendre transformation and
taking g,=g,=2 we find

1 o 1
H= Hnw+2 2 A?zgzsp (ZXS].)"ZC2 M?zQZ%Pz (szz)
+ 3 itgalB @x8) - B (Ex8)]

1 @, [s.2 .(Z228)(2-8)
+C—2W—3[Sl S, - ————4-——] (6.12)

where Hpy stands for the Darwin Hamiltonian and
P, and P, are the canonical momentums derived
from (6.11) by the usual procedure. This expres-
sion coincides up to purely quantum terms and ex-
ternal ones with those given by other authors using
the Bakamjian and Thomas formalism.?!! The ex-
pression (6.12) is the classical version of the
Breit Hamiltoniah derived in QED.

Let us now perform a similar analysis for the
gravitational interaction. Multiplying (5.22) by M,
we can write it in the form

-

d[= G(3 . Zx§, Zx3 - G
C‘E[Pmm*'?(g’Mz Z3 L+2M, 2>]=F1EIH+55

G
ZV azf 328

V,* (Zx8,)
M

is a good Lagrangian coordinate. Ei is precisely
the center of spin defined in L

Using 1,=g,(Q,/M)S,, we can write the equation
of motion for the Z variable using the Lagrangian

2

g, - - g, > o=
+M—§V1-(ZXSQ—M—i-V2~ (ZxSl)]

(6.11)

d =
E[{Pmm}

- G - @ ] 1 .
=Fipm+7z {— V[a—Rr W(RT)SI SZ]
d[., Rx§ -[. R-Fx§)
) e B8

d Rx 3§ - R- (\_I'xﬁ)
"2E[M1 R32] 2v[1t41—-—--——-R3 2]},

(6.13)
where
D _8& pm F - % E1H
1EIH™ 8V==1 ’ 1EIH a)-zl ’

and &£, 5y is the Einstein-Infeld-Hoffmann Lagran-
gian.
Let us try again the change of variables

The changes introduced can be found as before,
and we have

{—ZM [__M] _ZMV[Z (Vsz)]

ZS

iy [vl (ZXSJ] szv[Vz' (ZZ3X§2)]}

{2

As can easily b.e seen, this equation can be derived from the Lagrangian

L= «ﬁsm+—ngl {V [ZX( 2S1+2MISZ>]

Mg+ masl)]} S [32 32< 1) STSs] (6.14)

(2%
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This Lagrangian coincides with the one derived
by Barker and O’Connell® and the equations of mo-
tion coincide, of course, at the corresponding
order.

VII. CONCLUSIONS

The results of the last section make necessary
a reflection about the meaning of the coordinates
X and Q we have been using. .

We have on one hand a variable X possessing a
set of transformation properties under the action
of the Poincaré group that have the same proper-
ties that points of the space have. If is also a
known result that this is the unique variable we can
define possessing these transformation properties.
Therefore we must identify this variable with the
physical center of mass, and Eqs. (4.17)-(4.19) or
(5.20)-(5.22) are the ones to be used for compari-
son with the experimental results, in spite of the
fact that they do not admit a Lagrangian form.

The variable Q, as is evident from its trans-
formation properties, cannot be identified with a
position vector and therefore we cannot use it to
represent the motion of a point in the space in a
covariant way. This variable, however, is useful
as a canonical coordinate, because as we have
seen with its use the equations of motion can be
put in Lagrangian form.

This reminds us strongly of a similar situation
that arises in the theory of structureless interact-
ing particles. It is a well-known result deduced
from the no-interaction theorem®? that the positions
cannot be used as canonical variables, that is, that
the interaction among structureless particles can-
not be put in Lagrangian form using the positions
as canonical variables. The positions can only be
used as Lagrangian variables in expansions in v/c
to lower orders.*?

The situation we are faced with leads us to form-

ulate the conjecture that in the case of spinning
Qg.rticles and at least for long-range interactions,
X cannot be used as a canonical variable in any
case. In a forthcoming paper we shall study the
case of the short-range scalar interactions.

The additional term in the equation of spin in the
case of the gravitational interaction can be due to
the use of a flat-space metric, that therefore does
not take care of the local changes of the basis vec-
tors. This point of view is reinforced by the fact
that this term does not appear in calculations per-
formed within the framework of general relativity.

The formalism we have developed makes it pos-
sible to calculate cross sections for these inter-
actions. This subject will be treated in the third
paper of this work.

As is well known, the Einstein-Infeld-Hoffmann
Lagrangian contains G? terms at order 1/c2. If
one uses the complete Lagrangian these terms
must be treated with special care. However, under
reasonable assumptions which are equivalent to the
use of the Plebanski “good” 0 functions, the re-
sults of Barker and O’Connell are recovered. No
other special difficulties are encountered in this
case, because the relations giving ¢, and ¢, in '
terms of r, and W, remain unchanged if only c?
terms are retained.
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