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Einstein s gravitation is derived as an induced effect due to quantum fluctuations of
matter fields, including gauge bosons. It is found that the contribution from gauge bosons

gives antigravity, while those from scalar and spinor particles give attractive gravity.

I. INTRODUCTION

Pregeometry' is the theoretical scheme to derive
Einstein s gravitation (geometrodynamics) as an ef-

fective theory induced from more fundamental in-

gredients. The most remarkable idea is due to
Sakharov, who identified Einstein's gravitational
action with that of the quantum fluctuation of
matter. On the other hand, many composite
models of gravitons were proposed, none of which,
however, could so clearly induce Einstein's action,
because of lack of general covariance. In previous

papers, realizing Sakharov's idea, we presented
the field-theoretical formulation of pregeometry,
where the spacetime metric (hence, gravitons also)

appears as a composite of fundamental matter, and
the Einstein action is derived. Starting with the
matter Lagrangian on a curved space, we extracted
the divergent quantum fluctuations, which were in-

terpreted as gravitational action. The divergence
was cut oA' generally covariantly. The fundamental
matter was taken as scalar and spinor particles,
and they were called the scalar and spinor pre-
geometries. The purpose of this paper is to extend
our previous work so as to include fundamental

gauge fields and to investigate their implications.
We call it, for short, gauge-boson pregeometry.

Recently, Adler proposed the further refined

program of "induced gravity, " where a dynamical
breakdown of the scale invariance is expected to in-

duce the finite Einstein action without using a
naive cutoff. In this case the fundamental matter
should be spinor particles or gauge bosons, but not
scalars. Here again the gauge-boson pregeometry
is important. Unfortunately, no model has yet
been found to realize this program without some
rough approximations.

One of the motivations for the gauge-boson pre-
geometry is to find the sign in front of the induced
Einstein action, i.e., whether the gravity is attrac-

tive or not. We showed in previous papers ' that
the scalar and spinor pregeometries give attractive
gravity. If the photon, weak bosons, gluons,
and/or many gauge bosons conjectured in the
grand unification models are fundamental, it is im-
portant to determine their contributions to the
gravitational action. Another motivation arises
from subquark models with subcolor. In the ulti-
mate subquark model, the subquarks should com-
pose the basic constituents of everything including
quarks, leptons, gauge bosons, and even gravitons,
the last of which requires pregeometry. The
subquarks are usually taken as spinor or scalar par-
ticles. Some people, however, consider subcolor
gauge symmetry and subgluons, mainly, expecting
confinement of subquarks. The existence of such
fundarriental gauge bosons, i.e., subgluons, requires
a reliable formulation of gauge-boson pregeometry.

There is another reason for introducing subcolor
in the context of the subquark pregeometry. It is
the saturation problem of the G-a relation, the re-
lation between the Newtonian gravitational con-
stant 6 and the fine-structure constant u, which
reads

1 2 12~
NGm;

where Q; and m; are the charge and mass of the
ith fundamental fermion and X is the number of
fundamental fermions. ' This is a straightforward
consequence of pregeometry combined with pre-
QED (i.e., the composite model of the photon
which induces quantum electrodynamic" ). If we
take the photon and the graviton as composites of
the fundamental quarks and leptons, instead of
subquarks, and if we have six generations of quarks
and leptons, relation (1) is approximately saturat-
ed. ' In the subquark model, however, it is far
from satisfactory, since the right-hand side of Eq.
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(1.1) is too small. The realistic subquark model
which reproduces the standard model of leptons
and quarks with the %einberg-Salam and color
gauge symmetries is given in Ref. 13, where the
leptons, quarks, and gauge bosons are all composed
of three types of subquarks, the weak subquarks

w; (i =1,2), the color subquarks c; (i =0, 1,2, 3),
and the horizontal subquarks h; (i =1,2, . . ., No,
NG is the number of generations). Though the
charge assignment for these subquarks is not
unique, the relation'

sin 0~ = X ( the number of2 = 1

4 Q
2

weak isodoublets) (1.2)

in ths same model and the experimental value
sin 8 = 0.23+0.02 (Ref. 14) fix the value of

g,.g; to be 1.1+0.1, and if we take No )3 (i.e.,
N&9), and m; ) 10 TeV, we get the right-hand
side of Eq. (1.1), to be (8, while the left-hand
side is 137. If the subquarks belong to an N„-piet
of subcolor, the right-hand side is multiplied by

To be consistent, we should take N„) 17.
In Sec. II, we introduce a new method of

momentum cutoA; "the scale cutoA'. "The scalar,
spinor, and gauge-boson pregeomentry is formulat-
ed in Sec. III. And finally Sec. IV is devoted to
some discussions.

II. SCALE CUTOFF

A~(n)= f A(p)p" 'dp . (2.2)

In the calculation below, the following formula is
particularly useful. For the typical term in Feyn-
rnan amplitudes

A (n) =I ——f(n),
2

with some regular function f (n), the scale-cutoff
amplitude (in four-dimensional spacetime) becomes

(2.3)

Ap(4) = —,f(0)A —f (2)A + —,f (4)lnA

+0(A') . (2.4)

Thus we can extract not only the logarithmic
divergence but also the quartic and quadratic ones.
Now it is possible to formulate the gauge-boson
pregeometry. Needless to say, it is also applicable
to the scalar and the spinor pregeometry. - The fol-
lowing section is devoted to them.

curvature tensor, respectively. ) In order to circum-
vent these difHculties, we modify the dimensional
regularization method to include an explicit cutoff
parameter. First, for any Feynman amplitude

(n) in n dimensions, we define the "scale parame-
ter representation" A(p) as the inverse Mellin
transform of A (n),

A(n) =I A(p. )p" 'dp, . (2.1)

Then, the scale-cutoff amplitude A ~(n) is defined

by

The quantum fluctuation of matter involves
severe ultraviolet divergence. It is this divergent
term that is effectively identified with the gravita-
tional action. Therefore, the momentum cutoA'

plays an important role, unlike in the renormaliz-
able theory. The precise results depend on the
mechanism determining how the physical cutoff
takes place, which should ultimately be checked by
experiment. The cutoff mechanism should be sub-
ject to the condition of general covariance in order
to give the covariant form of the gravitational ac-
tion. For example, for the scalar and spinor pre-
geornetry, the Pauli-Villars regulator method was
successful. ' For the gauge-boson pregeometry,
however, it is of no use, since the gauge bosons are
massless. Dimensional regularization is also inade-
quate, bemuse it gives no quadratically divergent
term which is to give the Einstein action. (In gen-
eral, the quartically, quadratically, and logarithmi-
cally divergent terms give the cosmological term,
the Einstein action, and the term quadratic in the

III. PREGEOMETRY

Though the scalar and spinor pregeometries were
formulated in Refs. 3 and 4, here we reconsider
them, since we use a new cutoff procedure. After
that we will turn to gauge-boson pregeometry.

A. Scalar pregeometry

In the scalar pregeometry, the graviton is com-
posed of the fundamental scalar particles. The
basic Lagrangian is that for the scalar fields
P' (i = 1, . . . ,No) on a curved space':

~o= , & g[g"—~„4—'~.0' m'(4')'I—, (3.1)

where m; is the mass of P', the repeated index i

implies summation over it, g"' is an auxiliary field,
and g =(detg"") '. Note that the metric is merely
auxiliary without its own kinetic term. It is to be
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interpreted as composite, when the kinetic term is
induced through quantum fluctuations.

The effective Lagrangian Wz due to the quan-
tum fluctuation is given by

exp i f~0 d x =f fdP'exp i f~od~x

(3.2!
Performing the path integration, we get

fWo d x= —QTr 1n(a„&—gg""a„
2

where Tr stands for trace operation with respect to
spacetime index x. Then we expand the logarithm
into the power series in the weak field h"'= g"'
—q"" [ri""=diag(1, —1, —1, —1)]. The term with
the lth power of h" corresponds to the scalar loop
diagram with / external graviton lines attached.
Then we perform the integration over the loop
momentum in n-dimensional space (see Appendix).
Finally, we extract the divergent parts by using the
formula (2.4). The result is

—m V' —g), (3.3)

Wo ——gV —g —,A — m A + m; lnA
8m' 64m

-A2 — m;2lnA2 R+ ~lnA (R +2Rq R"")+O(A )
1 2 1 2 2 1

48m 192&' ' 3840~'
(3.4)

where

R =g""Rq, , (3.5)

have no reason to identify the cutoff scale A with
the Pauli-Villars regulator mass M.

B. Spinor pregeometry

rIr , g-(apgr. —+—arg~. a.g—(3.7)

The first term in the square brackets in Eq. (3.4)
corresponds to the cosmological term which can be
renormalized (see Refs. 3 and 4). The second term
is the induced Einstein Lagrangian. As long as we
take A pg m;, the sign of this term is positive and
it gives attractive gravity. The third term gives a
small correction to Einstein s gravity. The numeri-
cal results are slightly different from those with the
Pauli-Villars cutoff. It is not surprising, since we

Now we consider the case where the fundamen-
tal particles are spinors. The basic Lagrangian is
that for the spinor fields P~ (j =1, ,X»2) on a
curved space specified with vierbein e ",'

(dete ) 'P——(ie""ykD& —mj )P, (3.8)

where D& is the covariant derivative (following the
notations in Ref. 3). Note that e"" is auxiliary
and to be interpreted as composite when the kinetic
term is induced. The effective Lagrangian I.']g2 1s

given by

exp i f~;;,de =f fdq'dg Jexp i f&„zd x (3.9)

Performing the path integration, we get

fW~~zd x = —i+Tr ln[(dete ") '(ie "&ykD& mj )], — (3.10)

where Tr stands for trace operation with respect to the space-time index x and the y matrix. A procedure
similar to the scalar pregeometry leads to (see Appendix)
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~1/2 Q+ g
eff 1 1P2+ ~ 2+2 pl 41n+2 + A2 ~ 2lng2 R

1 1

4~ ' 48~ 96~'

I
1nA (R —3R „R"")+0(A )

960m
(3.11)

where R and R» are given by Eqs. (3.5) and (3.6) with g"'= e""ei'. Each term in Eq. (3.11) is interpreted
as in Eq. (3.4). The positive sign of the second term indicates that the spinor pregeometry also gives attrac-
tive gravitation.

C. Gauge-boson pregeometry

Now we turn to the main theme of this paper. The basic Lagrangian for gauge-boson pregeometry is that
for a gauge field A& (a = 1,. . .,1V, ) on a curved space, '

g»g pPFQ/0 (3.12)

with

(3.13)

where s is the gauge coupling constant, f' ' is the structure constant of the gauge group, and the metric g"'
is again an auxiliary field to be interpreted as a composite.

The eA'ective Lagrangian W& due to the quantum fluctuations of the gauge field is given by

exp i JW~ d x =f JdApdc dc exp i f (W&+~Gp+~pp)d x (3.14)

where WGF is the gauge-fixing term and WFp is the Faddeev-Popov ghost Lagrangian:

Pop ————,&—g (g&'&„A') (Feynman gauge) (3.15)

with

(3.16)

and

y & A,ptv= 2 g (~pgpv+ ~vgpp ~pfpv) (3.17)

~pp=& ggl'"B„c' (B—,c' ilrf' 'A„c')—.

Performing the path integration in Eq. (3.14), we get

(3.18)

with

~ef7 ~eA'+ ~eA' (3.19)

fWGd x= X)Tr ln[B~V —g —(g""gP g& gP +gl'Pg"—)9

+& gg r".iJ g ~ar —a~~ & gg r'—r,', —

—&—g g i'r~~gr'r"„+o(~)] (3.20)
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where WG corresponds to the series of the gauge-
boson-loop diagrams with external graviton lines

attached, while WFp corresponds to those of the
ghost loops. A procedure similar to that in sub-

section A leads to the results (see Appendix)

.~G =&i&—g — A R ——
2

lnA
1920m

X (3R —14R„„R""), (3.22)

~Fp=&i &—g ——,A — A R — lnAeff & 4

24m' 1920@2

and, hence,

X (R'+2R„„r~ ) (3.23)

and

IWppd~x = iE—i Tr ln(B&V' —ggi'"i)„) +O(ir),

(3.21)

with R and Rz defined by Eqs. (3.5) and (3.6).
Notice the negative sign of the A 8 term in Eq.
(3.24), which implies that the gauge-boson pre-
geometry alone leads to antigravity.

In Table I, we compare the results from the vari-
ous cutoff procedures, (i) dimensional regulariza-
tion, (ii) Pauli-Villars regularization, and (iii) scale
cutoff. The parameters a, b, c, and d in Table I are
defined by

~' =v —g [ a+ bR+ c (R +dR„„R"")]. (3.25)

The calculations with (i) for the scalar, spinor, and

gauge-boson loops are given in Refs. 16, 17, and

18, respectively, though their purpose is not pre-
geometry. The calculations with (ii) are in our pre-
vious papers, Refs. 3 and 4. Those with (iii) are in

this paper. Note that (i) does not give a and b,
while (ii) is not applicable to gauge-boson pre-
geometry. Qualitatively, the results coincide with
each other, but not precisely.

IV. DISCUSSIONS

jef ~ / p4 P2g l P2
8m 480m The Lagrangian of the Einstein gravity is

X (R —3R„„R"") (3.24)
&—gR,1

16+G
(4.1)

TABLE I. The results from various cutoff procedures are compared. The coefficients

a, b, c, and d are defined in Eq. (3.25). @=2/(4—n ). M is the mass of the Pauli-Villars re-

gulator.

Cutoff Pregeometry Ref.

Dimensional

regularization

Pauli-Villars

regularization

Scalar

Spinor

Gauge boson

Scalar

Spinor

Gauge boson

M4

128m

M4

M
384m

3840'

960m

480ir

lnM"

3840m

—lnM
960m'

—3

16

17

Scale

cutoff

Scalar

Spinor
W4

4

A

48m

A
'

48m

InA

3840m

lnA

960~
—3

This paper

This paper

Gauge boson
W4

2
lnA

480m
This paper
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where 6 is the Newtonian gravitational constant.
Comparing it with the combined results of the
scalar, spinor, and gauge-boson pregeometry, we
get

No N&y2 —2N) A6 3 3
(2)

where Np, N i~z, and N ~ are the numbers of the
fundamental scalar, spinor, and gauge bosons,
respectively. The gravitation is attractive or repul-
sive according to whether Np+N~&2 —6Ni is posi-
tive or not. If there exist fundamental gauge bo-
sons, there must exist six times more scalar or spi-
nor particles to compensate the antigravity due to
gauge bosons. For example, for the combined
theory of the quantum chromodynamics and the
steinberg-Salam model, with NG generations
of leptons and quarks and a complex isodoublet of

15
Higgs scalar, Np ——4, N ~ ~2

———, NG, and Ni ——12,
and in order to make the induced gravity attrac-
tive, NG & 10; for the grand unified model with
SU(5) with 24 and 5 (complex) Higgs scalar,
NG p 15; for the case of SO(10) with 45+ 10+16
(complex) Higgs scalars, NG & 23. These seem to
me somewhat tremendous. A way to avoid them is
to take gauge bosons as composites" "so as oot
to contribute to Eq. (4.2). In the subquark model'~

illustrated in Sec. I with subgluons of SU (N„),

6(N„—1)
NG& —6.

SC

If NG&17, as is given in Sec. I, then NG&96,
which seems again too large. The subgluons may
again be composite, or may be absent, with a glo-
bal subcolor symmetry.

Then, combining the results in Eq. (4.2) with
that from pre-QED, "we get the G-o, relation in
the presence of No scalar particles, N»2 spinor
particles, and Ni gauge bosons:

(4.3)

~counter (4.5)

QQt gtln[G m ( ~ No+, Nt~2
CX 37T

—2Nt ) '], (44)

1

where g; = 1 for spinors and g; =—„ for scalars, and

gauge bosons are taken as neutral. The main
change in Eq. (4.4) from Eq. (1.1) is only in the
logarithm, so that it does not cause any essential
change in the numerical results given above.

The quartically divergent parts in W' is the
cosmological term. It can be renormalized by sub-
traction of the counterterm like

where c is a constant.
As is illustrated in Ref. 4, in the scalar and spi-

nor pregeometry, such terms naturally come out
from the more basic Lagrangians written only with
the fundamental fields. ' Another possibility, how-

ever, is that the quartic divergences cancel each
other without subtracting the counterterms. The
condition is, from Eqs. (3.4), (3.11), and (3.24),

Np —N&/2 —2N] =0 (4.6)

Np+Ni~2 —6Ni ——0 .

The solution to Eqs. (4.6) and (4.7) is

Np. N)g2. Ni ——4:2:1 .

The cancellation conditions for the logarithmic
divergence are

(4.7)

(4.8)

Np —4N ]g2
—SN ] =0

Np +6N i y2 + 12N ) =0 .

(4.9)

(4.10)
r

The only compatible solution for these is the ab-
surd one

Np ——Nig2 ——Ni ——0 .

In conclusion, we have formulated pregeometry
including fundamental gauge boson, using the new
method of scale cutoff, and found that the quan-
tum fluctuations of gauge bosons give rise to an-

tigravity. To keep the total induced gravity attrac-
tive, we need too many fundamental scalars and
spinors. It seems to me rather favorable to take
the gauge bosons as composite. "

After completion of this work, we received a re-

port from Fradkin and Tseytlin, ' who calculated
the same quantities as we did, i.e., the contribution
to gravitational action from the quantum fluctua-
tions of matter. Their purpose is different from
ours, to investigate asymptotic freedom of gravita-
tion. Their method of cutoff, the proper-time
regularization, is also different from ours, giving
different results.
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where we consider the case where A » m;. Simi-
larly, if we assume intrinsic (and nonquantum) Ein-
stein action, apart from the pregeometry view-

points, the cancellation condition of the quadratic
divergence is given by
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A. Scalar pregeometry

The expansion of the logarithm in Eq. (3,3) is given in the Appendix of Ref. 4. The n-dimensional
representation of Wo reads (in momentum space)

hdx. m." h—
0

2

I ." 2h
n —2n —4 h2

4 i (2) + 4

L;"~—~ ' (1—2x)~(p„h~~)~ —[1 (n +—2)x (1 x)]pz—p„h" h

—,——x(1—x) p h +m; 1 ——h

1 ——L;" ~ ~ [x(1 x)(p pp—h~~ —,p h) ———,m; h] +O(h ) (A 1)

with h=h x, h~z~ h""h„„,a——nd L; =m; —x(1—x)p~.

B. Spinor pregeometry

The expansion of the logarithm in Eq. (3.10) is given in Ref. 3. The n-dimensional representation of Wt~q
reads (in momentum space)

eff 1 n,~in=+
2(2~)n/2

r ——

&& J dx m;"(q) —y ) ——,L;" [ (n —2)y—(~)+(n —2)q ]

pg —2L;"~ ' [m; —+x(l —x)p ]qr~z~+ — +(n —4)x(1 —x) (p&y"")

——+ (2n +4)x (1 —x ) p„p„+"y

—2(n —2)+ p —(2n +2)x(1—x)p q)
3n —2 2 2. 2

+— ——L "" '(
4 x( —x)(1—» [)'p&(pt"" ' )+2'p,(ppm"" )4 PV 2(p,p.m"—")']—

+m; [
—x(1—x)p ~ +(—,

'
x) [(p&Q") +2(P—+PA )P

—3P'm ] I) +O(q'), (A2)



3080 KEIICHI AKAMA 24

wlmre Q"=el' r—i" =
2

h""+O(h ), y=q& x, y~2~ ——Q p», and L;=m; x—(1—x)p .

C. Vector pregeometry

We expand Eq. (3.20) as

WG ———N) Trin(Dg~ +U~ )+const = ——N, g —Treff 1 i 1 1

2 2, I 0 +|:onst,

(A4)

with

(A5)

Eacb term in Eq. (A3) corresponds to gauge-boson-loop diagrams. Performing the loop-momentum integra-
tion, we get (in n-dimensional momentum space)

W'rr=N, (4n) «nf—
2

n(n —4)
h

n
h

n 16n+—16h2 &„&2
8 16 32

+—„L" [n (n+4)h~2~+ , (n 6—n 4—n+1—6)h ]

L"ix(1—x)[(n+2)p h~zi+2n(p„h"") —,(n —8)p„—p„h""h+ , (n 4n ——4)p h ]

+. L "~ '[3p h~z~+(n —2)(p&h"") —(n 4)p&p„h""h—+ —,(n —8)p h ]

+—„n(n —2)L "~' 'x'(1 —x)' p h~, ~
(n 2)p—'p„p h""h+— p h'+n(p„p„h"")'

——,~ (n 2)L "~ x (1 x)[p (p„—h"') —,p p„p,h""h]+—O(—h3) (A6)

with h =h x, h~2~ ——h"'h&„, and L =A, —x(1—x)p, and A, is taken as zero after scale cutoff. The WFp is
—2 times the result of the scalar pregeometry [up to O(~)].

We apply the formula (2.4) to Eqs. (Al), (A2), and (A6), and get linear combinations of the following
forms (up to a constant term):

1 hi —h + —h' —(h—~",)'—2(h~ )'+2hI' h (h )' (h P )' ——2h & h r +(h )'
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2(h ~ ) +(h ) —2(h & ) —2h 1' ph " +(h ) (A7)

which are the weak-field expansions of &—g, V —gR, v —gR2, Y—gR R"", respectively, up to O(hi).
Then, because of general covariance of the calculations, we uniquely get tEe final results (3.4), (3.11), (3.22),

and (3.23).
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