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Interacting supergravity in ten dimensions: The role of the six-index gauge field
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We construct the, interaction of supergravity with Yang-Mills supersymmetry in 10 dimensions. The formulation is

only possible with the use of a six-index antisymmetric gauge field in place of the familiar two-index field in the

supergravity sector. We are interested in breaking supersymmetry and thus apply the generalized dimensional

reduction. The nonpropagating field strength F „~ » plays a vital role in making the scalar potential nontrivial. It
would be possible to test the predictions of this model once the internal-symmetry group is specified arid solutions of
the potential minima are obtained.

I. INTRODUCTION

Since the foundation of supersymmetry" and ex-
tended supergravity, ' ~ it was hoped that they could
accommodate the present particle phenomenology.
Two models offered some hope. The N=4 super-
symmetric Yang-Mills theory' with its remarkable
finiteness properties unifies a vector, a quartet
of two-component Dirac spinors, and a sextet of
scalars, all in the adjoint representation of the
internal-symmetry group. The physical use of
this theory was problematic essentially due to the
difficulty of spontaneously breaking supersymme-
try. ' It was later realized that this difficulty
could be resolved by coupling supersymmetry
theory to supergravity in 10 dimensions, and then
employing the generalized dimensional reduction. '
However, this last model has not been worked out.
On the other hand, N=8 supergravity, the most
general realization of local supersymmetry (with
only one graviton), is too restrictive, with the
vectors lying in the adjoint representation of
SO(8). Interesting predictions are obtained only
after postulating the dynamical generation of an
SU(8) current and assuming the decoupling of the
higher-spin fields. Even then, it is difficult to
proceed in determining the effective field theory. '0

Thus the only possibility left for investigation
is supergravity (X=1) coupled to matter in 10
dimensions. This model is intimately related to
the spinning-string theory. " The matter multiplet
belongs to the adjoint representation of a Yang-
Mills group which, to start with, is arbitrary.

In four dimensions, before symmetry breaking,
this corresponds to N=4 supergravity coupled to
six vector matter multiplets (the dual spinor model
of closed strings) all interacting with %=4 super-
symmetry Yang-Mills matter (the dual spinor mod-
el of open strings). " The fact that the spin--, fer-
mions also lie in the adjoint representation of the
internal-symmetry group would limit the possible
groups. It was demonstrated" that only SO(¹11)

and the exceptional groups E„E7, and E„can
accommodate in their adjoint representations con-
ventional quark-lepton generations classified by
the SU(5) scheme. '~ There will be four copies of ~

the above multiplets together with the V+A con-
jugates and many other particles. The main test
is to obtain, with the few allowed parameters in
the theory, an adequate breaking mechanism that
keeps only the desired particle spectrum.

Having outlined our motive, we shall address
ourselves in this paper to the construction of the
coupled 10-dimensional supergravity theory, and to
study the general properties of this model. This
will pave the way for any future study along the
above lines.

Free supergravity theory in 10-dimensions has
recently been constructed. " It contains, in par-
ticular, a second-rank antisymmetric tensor. To
couple it to Yang-Mills supersymmetry in 10 di-
mensions we proceed by using the Noether-current
method" order by order in the gravitational coup-
ling k. This program, surprisingly, runs into
difficulty. We find a term in the supersymmetry
variation of the action that cannot be canceled by
the available field variations in the supergravity
sector. To be more specific, the spoiling term
implies the existence of a sixth-rank antisymmetric
tensor among the supergravity fields.

But we know that a totally antisymmetric six-
index gauge field, A&i &6 has the same number
of physical degrees of freedom as A» in 10

NiAf2
dimensions, given by C', = C', = 28.

This suggests that an alternative form of super-
gravity exists with A„...„,replacing A» . Only
the new form wi'th A&i &6 will couple to super-
symmetry. This is in complete contrast with 11-
dimensional supergravity where the construction
is possible with the three-index field but not with
the six-index field."

The generalized dimensional reduction of this
theory is rather involved and the fields are com-
pletely entangled. The particle spectrum can only
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be deduced correctly after the symmetry breaking.
The field strengths E „„„~„playa. special role in
this model in contributing to the scalar potential, "
making it nontrivial. We did not commit ourselves
to any particular model because the results are
sensitive to the choice of the internal-symmetry
group and the group of internal transformations.
This program needs a separate study.

The plan of this paper is as follows. In Sec. II
we construct pure supergravity in 10 dimensions
using the six-index antisymmetric gauge field.
In Sec. ID we obtain the coupling to Yang-Mills
supersymmetry (up to quartic fermionic terms).
In Sec. IV we perform the generalized dimension-
al reduction on the bosonic fields (the reduction
of the fermionic-bosonic interaction terms is ex-
tremeiy lengthy and it would simplify a great deal
if we first specify the symmetry breaking). We
also determine the scalar potential after substi-
tuting the contributions of I„„„z„.In Sec. V we
give the concl.usion.

II. SUPERGRAVITY IN 10 DIMENSIONS
PATH THE SIX-INDEX POTENTIAL

Supergravity in 10 dimensions was constructed
with the following fields": the 10 bien, the Major-

l

ana-Weyl gravitino, a Majorana-Weyl spinor, a
scalar, and an antisymmetric tensor.

As we have discussed in the Introduction, it is
essential. to formulate supergravity theory again
with the six-index gauge field AQy ~6 repla, cing

„, in order to be able to couple it to Yang-
MyM2&

Mil. ls supersymmetry.
We first write down the most general expressions

for the variation of the fields e"„, Q, A„,...B,, p„,
and g. We then vary the linearized Lagrangian

Supersymmetry invariance then rules out a possible
term, for 6A„,...„,, of the form Zr„",...„,g„and
fixes the coefficients of all other terms in. a func-
tion of a single con.stant. This, in turn, is deter-
mined by requiring the field transformations to
form a representation of the supersymmetry alge-
bra.

The order-by-order construction determines the
Lagrangian to be

~=-4~. «(&)+2 ~, exp(»4)&, ,&" '"'+ ("S„e)(—S"y) ——e„r™D, e,+—'Xr&D„V

ikV
exP(2$ y) [&I& (r BB&'' llf7 42/B& rkrB ~ B&&gv7Ã) @ + i~2@ (r&v/& ~ ~ ~ /7 7~By rBB.../7) ]2x8t N N

(2.1)

where

V =dete~ (2.2)

and all, quartic terms are absorbed in the supercovariant quantities. We note that we made use of the pre-
vious formulation of this theory" in grouping the terms in the form appearing in (2.1).

The gravitational connection obtained from the equations of motion is
t

0~(e& se) +-4 -4„r' „»B@B+iM2Xr "~»BeB+gXr„»BX+2(i„rsvp» - 4„r»eB+ @Br „e»)

iv'2
2 ( cere'4)&- @Br»BX) (2.3)

while the supercovariant form of it is

~0M»B( ) +
4 2(~'BrB+» @Br»'4+@BrB+») + &rB»B X+

2
(2eB [»~'B]X +B»BX)

ik iv2
I

The gauge field A.„...„ is subject to the Abelian
gauge transformations

(2.5)

and the field strength invariant under (2.5) is

M&"'~7 ~or +~
The Lagrangian (2.1) is invariant under the super-
symmetry transformations

5e~ = -ik EI' 4@,
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eX,

sA„, , „,= —si axp( —s«}(tx',„, „,«

6+2 gl }v(}X } t

(2.7)

mechanism.
The generators of the internal-symmetry gauge

group 8 obey the algebra

[X,,X)]= —iC, ,» X», (3.1)

where the structure constants C, ,~ are real and
completely antisymmetric, and X are normalized
such that

1
+—exp(kg)(31"„"1 ""7—76"11"'""7)~F Tr(X,.X)) = 5,.q

. (3.2)

The vector and spinor matrices are defined by

D„ye+, exp(ky)(1 "1""7~)F„,...„. A =A~. & = &'X. (3.3)

The supercovariant field strength Il~, ...~ appear-
ing in (2.1) and (2.7) is given by

212F ... =F~l...tl7 —~2exp(- k(t})II @[}2I

and the Majorana spinor ~ is also subject to the
Weyl condition

(3.4)

We then have for the field strength and spinor co-
variant derivative

Also,

D„t(}8„4 ~+4„)t. (2.9)

G„=s„A —s~„+zg[A„A„],
D t(. =s A. + 'g[A

The supersymmetric Lagrangian reads'

g —y Tr &6 NE+ gI MD

(3.5)

(3.6)
The Majorana spinors 0„, X, and E are also sub-

ject to the Weyl condition,

yllxix six yll X
—

~ ylle

yll 1Iol'1. . . I'9 (yll)2 —I
(2.10)

(2.11)

The two conditions can be imposed simultaneously
only in space-times of dimensions 10 modulo 8.

To conclude this section, we note that the La-
grangian (2.1) is e(luivalent, on the mass shell and

after duality transformations are performed, to the

Lagrangian involving the gauge field A„,„,.

and is invariant under the supersymmetry trans-
formations

5A~ =
M q2

(I »ftse) G
1

(3.7)

Promoting the transformations (3.7) from global
to local, by making the spinor a space-time de-
pendent e(X), a new term IV~8~& appears in the
variation of the action. This term can be elimin-
ated by adding to the action the interaction term"

III. COUPLING TO YANG-MILLS SUPERSYMMETRY
IN 10 DIMENSIONS Tr(yi }2I NP xIt G ) (3.8}

Yang-Mills supersymmetry in 10 dimensions
has a very. simple structure. It consists of a
vector and a Majorana-Weyl spinor, both in the
adjoint representation of the group. In four di-
mensions this corresponds to N =4 supersymmetry,
a theory whose P function vanishes at the three-
loop level" (and may vanish to all orders}. In this
theory it is very difficult to break supersymmetry, '
and it appears that the most natural way to gener-
ate the breaking is by coupling the theory to super-
gravity (in 10 dimensions). The flat-space limit
of the spontaneously broken theory (k-0) would

not be invariant under supersymmetry transforma-
tions because the variation of the Goldstone spinor
fields is proportional to 4 '.' Thus the coupling
to supergravity is crucial to generate the breaking

This would make the action supersymmetric at
order 4'. At order k, all terms of the form
G'4a in the variation of the action cancel, except
the term

NP Q RNy ~ ~ «Me'" '~i"~1" ~ '4, Tr(GNsG oz) .
(3.9)

This term would be impossible to cancel if we
did not have the six-index gauge potential at hand.
By using it we can cancel (3.9) by adding to the
Lagrangian the interaction term

, exp(kp)A~ ...„,Tr(G~pGq~)e~s~l "9. "'i'
(3.10)
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The variation of AM, ...M, given in (2.7) involves also
the spinor y and would thus generate a new term
from (3.10) that can be canceled by adding to the
Lagrangian the interaction term

Variations of the form XEBEC would cancel out
completely if we add the following term to the La-
grangian:

(3.11)
,
exp(k p) Tr(XI'M~' "M71)FM (3.14}

Finally, the variation of (3.11) will leave one un-
canceled term:

ey Tr(GMpG~) . (3.12)

Evidently, this would cancel if the scalar field Q
couples nonpolynomially to the Yang-Mills kinetic
term, in the form

--,' V exp(-up) Tr(G„~""). (3.13)

This, in turn, will fix the coupling of the scalar
field Q with matter and in the transformation rules.

In principle, we can continue our procedure to
determine all quartic terms (of order k') in the
action, and cubic terms in the transformation
rules, and the modification of 5%„and 5g by ~.
This presumably can be done by finding the super-
covariant field strength G» and covariant deriva-
tive D~~. However, we shall riot dwell on this
laborious calculation here because quartic terms
in the action will hardly affect any physical results
that might be obtained from this model (except
when quantum loop calculations are concerned).
Our results, up to cubic terms in the transforma-
tions and quartic terms in the action, are

5A„=~ exp(2k/) eI'M&,

6& = exp(--,'k g)(I™M&)G~,
~+'

Z .„., = V Tr --,' exp(-uy)G„~""+ —4'"(&„~+fg[A„,&j+-,'~„„,1»~)

(3.15)

gpN j.~ ~ )If7yy4x7! Ng ~ ~ N7 (3.16)

/

Later we shall need an equivalent form of the term

""'""'AM, "M.»(GMPGgM) (3.17)

ig
2&&7!'

' 'F .",T»p Go~-
3 AoAs I

(3.19)

IV. REDUCTION TO FOUR DIMENSIONS

We are now ready to reduce the theory down to
four dimensions. We shall use the generalized
dimensional reduction as prescribed by Scherk
and Schwarz. ' All fields depend on the internal
coordinates in such a way that the final action is

involving only the field strength E~,...„,. This can
be achieved by noting that

gMPgRMy. ~ Mg Tr(G G )NP QR

2i= 2e"Pg»i ™6Tre AN P QR 3 g si
(3.18}

Thus, up to atotal divergence, (3.17) is equivalent to

y independent. The- details of reducing the differ-
ent fields are given in Ref. 7, except for the six-
index gauge field. Here we shall be as brief as
possible.

The results for ordinary dimensional reduction
(or the absence of symmetry breaking) are easy
to predict. One must get N=4 supergravity inter-
acting with six vector multiplets from the super-
gravity sector all interacting with N= 4 Yang-Mil. ls
supersymmetry from the matter sector. However,
in the case of spontaneous breakdown of symmetry,
the spectrum depends on the particular breaking
under consideration. Therefore, our main aim is
to determine the scalar potential of the theory.
Breaking the symmetry and obtaining the particle
spectrum for a particular internal group H de-
serves a separate study.

Our notation differs slightly from that of Ref. 7.
We use early capital Latin letters for tangent space
indices (A, B, C, . . . ) and late Latin letters for the
curved indices (M, N, P, . . .) in the 10-dimensional
space. For space-time indices taking four-values,
late Greek letters are used in the curved case
( p, , v, p, . . . ) and late Latin letters in the flat case
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(m, n, P, . . .). For internal indices taking six-val-
ues, early Greek letters are used in the curved
case (n, P, p, . . . ) and early Latin letters in the flat
case (a, b, c, . . .). The general coordinates x" con-
sist of space-time coordinates g" and internal co-
ordinates y . For convenience, we shall use car-
etted indices for the components of the 10-dimen-
sional fields, and noncaretted indices for the four-
dimensional rescaled fields,

%e can extract a Lie group 6 of six generators
out of the general coordinate transformations whose
infinitesimal parameters P(x, y) are given by

$ "(x,y) = $"(x),

& (x, y) = [U'(y)];&'(x) . (4.1)

er" (X y) -(&)-1iser(X),

e';(x, y) =(6) "'2h (A™(x)e'(x))

e"-(x y) =0

e'.(x,y) = (6) '~ '[U(y-) ]2ez(x),

(4.3)

The structure constants of the group, determined
from the commutator of two internal transforma-
tions, are

f",=(U ') "(U '-),"(s,.-U'. s..U; —) . (4.2)

A general rule for the dependence of the fields
on the internal coordinates is that every field with
a lower internal Greek index must be accompanied
by a U(y) factor and every upper internal Greek
index by a U 1(y). For example, in a special
gauge, the 10-bien is written as

es
gpss p~rs v&

h z=-e'q ez=e'5, ~ z,
(4 f)

and Il „ is the gauge field strength of the group 6:
F~„=B„A„—B„A~ —2hf ~ A2 A„" . (4.8)

The covariant derivatives D,h ~ and D„h ~ can be
deduced from

(4.9)

The structure constants f"
2 provide some degrees

of freedom to the model. Maximally, they can
describe the group So(4) -SU(2) && SU(2).

We note that a 10-dimensional space-time is a
special case in which the Weyl scale factor 5 is
absorbed completely and do not appear in (4.6).
The last term in (4.6) is the first contribution to
the total scalar potential.

B. The scalar field

We simply set

y(x, y) = y(x),

and the kinetic term would reduce to

(4.10)

gMNS ye y
— gvvS yS

V e
N N 2 0 v (4.11)

C. The six-index antisymmetric gauge field

The gauge field A„, „,transforms under Abelian
and general coordinate transformations:

where

6 =det(e'}, e =det(e,") .

Then

V=det(eM) =(6) "'8

(4.4)

(4.5)

M1 ~ ~ ~ M2 I'M1 M2 ~ M2 \ I'M1 ~ N I Mr. ~ M2]

+ Ps (4.12)

The y dependence of the A fields is specified
according to the general rule we stated:

Now we shall give the resulting contributions of the
bosonic terms in the Lagrangians (2.1) and (3.16),
in terms of the four-dimensional components.

Q] ~ ~ ~

A
Py ~ ~

A
gyo ~ ~

A A A
Pe P, ~ ~ Ng ai

„- - -, = U '(y) U,2(y)A„,...„;(x), (4.13)

„;.;....- (x,y) = U:1(y) U:,'(y)A. , „,.......;(x),

A. The gravity sector

The curvature reduces to

g(a„h)( PDQ

where

,f"2(2f 2~+f q,r.h .h22 )h"",
16k

(4.6)

4k' 4)g', VR(ur) = - R (2~)4—~"'g"'h 2F,„Fv2,

and so on.
The x-dependent A fields transforms noncovar-

iantly under $ transformations. To find the fields
that transform covariantly, we define the tangent-
space form

A~, ...~ (x) =—6 " e"„1 ' e"„&AM,...M,(x, y} . (4.14)

Then the desired fields are
A' &x -=e 1 e"2A ...„,„..., (x),
A I ri r2 e I2~, ~, g4A1~2~1~ ~ ~ +4(X) = e„eV n1 e 4 r2 121 4

(4.15)
and so on.
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The expressions (4.15) imply

gl
e ~ ~ ~ e e ~ ~ ~ e6 1 6

A' ... =A„... +/Ac A
1 1 5 1

We deduce then that

el"'eg —D~ Ael '"eg 15J [ele2A~

Ff „... =2D[~ A„' ) l... 5-. 2kF&glp'2Ael'''eg ~

ul p 2e] ~ ~ ~ e4 u] u2el e4 [g] p 2]el' ' ~ e5
(4.16)

El =3D A'
Pl 0'3el e4 (Pl 02P3]01' ~ ~ e4

6AE 5 A'6~E[~lf 2Af 3]al ~ ~ e5 y

(4.19)

=A +6@A 4A
+1~2+3ele2e3 ~1+2~3el e2e3 E&1 &2&31el'"e4

Similarly, we define the tangent-space field
strength

(4.1V)

EI =4D A'&1"'f 4el' ' ~ e3 [» &2&3&4~el' ''@3

The covariant derivatives in (4.19) are defined with
respect to the group G:

and

= erl ' ' ' er4 e'1 '
~ ~ 0 p4e ~ 0 ~ e el

FI
&1" & el "e4 u3 el

e'3 Ee3 rl ~ ~ ~ r4al ~ a3

(4.18)
e4 r ~ ~ ~ r3a 0 ~ oa1 1 4

D A' =8 A' (4
&1 &2&3el' ' ' e4 +1 ~2~3el' "e4

+4(12k)f"q»qA~ A„' „

.20)

and so on. Therefore, the reduced kinetic term is

exp(2k/)F„F"~'""7= 5"'exp(2k/)(-5F' ...„... F„"...~~ i...~~ g"&" ' g '"'h & ' ' ' ' h ' '
0 4

+ 5E' o@1»» ' ' ' g&3&3Atel ek ~ ~ ~ Qe4e4
&].'''f 3el"'e4»'''&3el'''e4~

—3S' E'. ~ ~ ~ ~»~ig"2"2helel . he5e5
&1f"2 el' ' ' e5 +1+2el" ' e5

+ FI FI ~ gllll ho» s», ~ ~ ho6$6) (4.21)el'" e6 ~ el'" eg

D. The Yang-Mills sector
I

We also define the tangent-space field strength

This part has the invariance under the gauge
group G gauged by A„and the Yang-Mills group II
gauged by A'„.

The y dependence is given by

1 (4 Nl hl2

and the components

/$
Gp p =8~ ef» G„lr2 ~

(4.24)

A»-(x, y) =A'„(x),

A»s(x, y) = U~(y)A»~(x),
(4.22)

G14 —er eQ Qgi

The results of these definitions are

(4.25)

just as we did in the previous subsection C, we
define the vector A„" which is covariant under the

transformations: G~'„= (»»pA„'+gC,'~A»A„—2kf $.8A'„A8), (4.26)

G.",= - (f », —gC,',A„'A',). .

e e
(4.23) The reduced Yang-Mills kinetic term gives

——exp(-kQ) Tr(G„„G"")=e5» exp( kp)[=~G'„'„G-""»+2h g»'"G'„» G'„'

4h h (f ~»»A„' gC»» A&A~»»)(f +»» A» gC» A&". A~~ )]

The last term in (4.2V) is the second contribution to the total scalar potential.

(4.27)

E. The bosonic interaction term

This term is of particular importance because it would make it possible for the nonpropagating field
strength E „„@to give a contribution to the scalar potential and to still further mix the fermionic mass



24 INTERACTING SUPERGRAVITY IN TEN DIMENSIONS: THE. . . 8071

terms.
We were able to write this interaction term in the form (3.19). Taking into account the previous defini-

tions; we obtain

(4.28)

Now we can make use of the fact that A'„„, appears only through its field strength E'„„„... and
because in this case the Bianchi identity e&~P„„„, imposes no restriction on E' „. . . we can con-
slderEp$23as the independent field and solve for its equations of motion. " It appearsquadratically
in (4.21) and linearly in (4.28). The equations of motion imply

E"""= exp—(-2k/) ~ ~'(e a""")a '" 'A~ (3gC,»A~~ A~ —f~ ~ A„')+terms involving the fermions.

(4.29)

Substituting (4.29) back into the Lagrangian gives the following contribution to the scalar potential:
2

3 -- (&) -,' exp(-2k/)h hB™h""A'( 3ZC~q~A~&A~~ f&„-A~~)(
', ZC', ',

~
A—(' .A]A„,) -A]',f 'z, „,)A,', ) . (4.so)

Therefore, the full scalar potential of the theory is

V((f&, h @A')=,f~ [2f„„,+f q,'„,h o,h ']h~'

+4(5)4 exp( kP)h -h (f ~qA» gC)»—A~~ Ag)(f~'. g, Af, gCO,—~,A~~', A~q,')

2

&~ exp(-2k/)h 'h 'h""'(A' (-', gC,»A]A~ f~q„A,-'))( ,' gC, ,&, ~,A—],AI;A~,', AI', f6~;„,A~', )

(4.sl)
minimizing the potential (4.31) in its general form,
with arbitrary f ~„danC, » is not a trivial matter.
We are only interested in solutions such that the
potential is zero at its minimum (implying the van-
ishing of the cosmological constant) and is positive
otherwise. This last requirement will restrict our
freedom in choosing the group G. To see this, we
first write the positive-definite internal metric
h q in the form h ~= exp(2kS) q and expand around
S ~=0:

fg~p= &og+2kS~g+2k S „S„g+~

Then the condition

(4.s2)

v(y=o, s.,=o, .'=o)=, f~(2y.'„+f™,„) o
(4.ss)

would impose severe restrictions of f@ and can
only be satisfied by almost-trivial groups. For
semisimple groups (4.33) is not satisfied.

Therefore, we have to find the class of groups
satisfying (4.33) and which yields the desired mini-
ma for a specific choice of H.

F. The fermionic contributions

Apart from the resulting fermionic kinetic
terms, the spin-& fields are completely entangled,

I
and in order to obtain meaningful results we have
to obtain the breaking mechanism. This is the
program of our future study.

V. CONCLUSION

We have constructed a super8ymmetric model
which is a candidate for superunification. The the-
ory is supergravity coupled to Yang-Mills super-
symmetry in 10 dimensions. Before symmetry
breaking the spectrum described N =4 supergravity
coupled to N= 4 Yang-Mills matter.

We determine that the theory is only possible to
construct with a six-index antisymmetric gauge
field. The resulting spectrum in general depends
on the breaking mechanism. Therefore, it is im-
portant to study the scalar potential, which we find
to be nontrivial. A special role is played by the
nonpropagating field strength E „„„+.

A1though the internal-symmetry group II is arbi-
trary, the property that the spin-& fermions lie in
the adjoint representation H would limit our choice
to one of the groups'3 SO(N~ 11) and the exception-
al groups E„E„E8.Moreover, we are con-
strained by the requirements of a non-negative po-
tential and the vanishing of the cosmological con-
stant.
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%e hope to return to this project in a future pub-
lication.
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