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A general formalism is developed to deal with electromagnetic waves in a metric of the form
—ds' = g~ dx~dx" = —dt' + X,'. A, '(t)(dx')'. The propagation problem is reduced to the integration of a second-

order differential equation determining. the time evolution of the F„„tensor. The observable electric and magnetic

fields are obtained referring F „ to a suitable orthonormal tetrad and are shown to consist of a superposition of

spectral components, each labeled by a set of parameters k, and transverse to a time-varying direction specified by

k,. /A, .(t). The ratio between energy and spin angular momentum for a single spectral component is found to be

(ktkt )'", which in the WKB limit is the angular frequency of the waves. The high-frequency solutions for the fields

are used to discuss the possible effects of anisotropy in the expansion of the universe after decoupling on polarization

and intensity distributions of the microwave background. Exact solutions are given for waves propagating along the

coordinate axes of the general Kasner spacetimes and along any direction in the flat Kasner spacetime. Propagation

out of the singularity is seen to alter considerably amplitude and phase relationships between the fields. Waveforms

traveling along the coordinate axes without a backward tail are constructed.

INTRODUCTION

Electromagnetic wave propagation in gravita-
tional fields has been studied for several reasons.
Many astrophysical situations (pulsars, guasars,
collapsing stars) involve strong electromagnetic
and gravitational fields in interaction. The inter-
pretation of the observed characteristics of the
microwave background requires an understanding
of the effect of a cosmological metric on electro-
magnetic waves. The characteristics of the
electromagnetic radiation scattered by a black
hole could furnish an indirect way of detecting
the presence of these collapsed objects. The
predictions of geometrical optics in curved space-
time led to some famous tests of Einstein's theory
of gravitation. An understanding of the electro-
magnetic-gravitational coupling beyond the
geometrical optics limit could lead to further
tests, while providing additional insight into the
theory.

The electromagnetic -gravitational interaction
is described by the Einstein-Maxwell equations,
which take into account the effect of the electro-
magnetic stress-energy tensor on the geometry
of spacetime. If this effect is disregarded, . one
is led to a useful approximation, in which the
electromagnetic field is considered to propagate
in a given background metric without affecting
it. The problem is then reduced to solving Max-
well's equations in a given curved spacetime.

This approach is followed in the present work.
The background metric is assumed to be of the
form -ds' g~„dr~dr" = —dt'+B,'.,A. ,'(t)(dx')',
where the A. , are given non-negative functions of
time. These models describe anisotropically
expanding universes which are homogeneous,

spatially flat, and admit no rotational matter.
They are usually referred to as the diagonal
Bianehi type-I models. Several exact solutions
of Einstein's equations of this form have been
found. "' They have the interesting property that
the expansion rates generally become isotropic
at large times, and are therefore compatible
with the present-day high degree of large-scale
isotropy of the Hubble expansion.

Previous studies of electromagnetic wave

propagation in these spa. ces have been carried
out in the framework of geometrical optics. ' '
They were motivated by the interest in the possible
effects of anisotropy in the expansion rates of
the universe on the polarization characteristics
of the microwave background.

This paper consists of three sections and two
appendices. In Sec. I a general formalism is
developed to deal with the electromagnetic field
in a diagonal Bianchi type-I metric. The observ-
able electric and magnetic fields are shown to
consist in general of a superposition of spectral
components, each labeled by a set of parameters
k, and transverse to the time-varying direction
k, /A, (t). Expressions for the total energy, total
momentum, and total spin angular momentum
of the electromagnetic fieM are obtained. A very
simple relationship is found to hold for the ratio
between magnitude of spin angular momentum and

energy of every spectral component, namely, it
equals the reciprocal of a quantity kp, which in
the high-frequency limit is the angular frequency
of the waves.

In Sec. II the high-frequency solutions for the
fields are given. In agreement with Caderni et
al. ,

' it is shown that the polarization vector of
a given wave undergoes parallel transport on top
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of a two-dimensional sphere of constant curvature
as the direction of propagation changes due to
anisotropy in the expansion. The high-frequency
fields are then used to relate observations of
intensity and polarization distributions made at
two different times by means of a receiver
comoving with the background metric. The im-
plications of these results for the microwave
background are discussed. A simple estimate of
the errors thus introduced is obtained in Appendix
B, on the basis of the higher-order corrections
to the fields given in Appendix A.

In Sec. III the Kasner spacetimes, ' for which
&,.(f) =t ( with Z'(.P,. =Z, P,.' =1 are considered.
They are exact solutions of Einstein's equations
with no sources. Electromagnetic waves in Kasner
spacetimes have been the subject of a previous
work by Goorjian, ' who obtained the asymptotic
behavior of the stress-energy tensor near the
singularity for waves propagating along the co-
ordinate axes. In the present work exact solu-
tions are obtained for waves propagating in any
direction in the flat Kasner model, for which

P, =P, =0 and P, =1, and for waves propagating
along the coordinate axes of the general Kasner
models. It is shown that propagation out of the
time singularity alters in a significant way
amplitude and phase relationships between the
field components, thus rendering an early polar-
ization state of the field inaccessible to an observ-
er at late times. It is shown that suitable rela-
tions between the initial distributions of the field
components lead to waveforms traveling in a
definite direction along the coordinate axes of the
Kasner models without- a backward tail.

()IF)u(( — g&819F'1
2l -g (1.3)

in order to make the duality of Maxwell's equations
explicit.

We restrict our attention to homogeneous
cosmological models described by diagonal
metrics of the form [A,.(t) ~ 0]

(1.4)

which are a particular case of the Bianchi type-I
spaces. These nonstationary and spatially flat
metrics can be used to describe a universe
undergoing anisotropie expansion.

The translational invariance of the metric given
in E(I. (1.4) makes it convenient to introduce the
spatial Fourier transforms of the components of
the electromagnetic field tensor, defined by

(1.6c)

(1.6d)

where d'k = dk, dk2dk, . E(luations (1.1) and (1.2)
then reduce to

(1.6a)

(1.6b)

I. GENERAL FORMALISM

In the absence of sources, electromagnetic
waves propagating in a gravitational field are
described by the covariant Maxwell equations

(*F) ~ ~=0. . (1.2)

The. choice of f'~ and (~f)~' as field variables
serves the purpose of stressing the analogy
between E(is. (1.6) and their flat-space counter-
parts. In flat space f" and (*f)"are just the
spatial Fourier transforms of the Cartesian
components of the E and B fields, respectively.

The evident symmetry of E(ls. (1.6) allows
considerable simplification if the quantities

(1.7)

We use the following conventions: g &
has

signature +2, g=det(g z), the Minkowskian
metric (7 z =diag(-1, 1,1,1), E'»' =1, and &», =1.
Semicolons denote eovariant derivatives, Greek
indices run from zero to three, Latin indices
run from one to three, and repeated indices are
summed over.

In E(I. (1.1), F ~ denotes the electromagnetic
field tensor, and E(I. (1.2) is written in terms
of the dual-field tensor

are introduced. In flat space S',. are just field
amplitudes for circularly polarized waves.
E(luations (1.6a)-(1.6d) then decouple into two
al'most identical sets involving either S& or S&.

Further simplification is achieved by introducing
the variables

S;= cos5 cosgS;+ cos6 sintS; —sin6S~

(1.6)

S;= —aint'S(+cos(S;,
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kk kbsk
dt

and

ds',' =kcS'+kaS'
dt

(1.10)

where

where the angles 5 and $ are defined by

(k„k„k,) =k(sin6 cos$, sin5 sing, cos6) . (1.9)

Equations (1.6a) and (1.6b) are then automatical-
ly satisfied and Eqs. (1.6e) and (1.6d) yield

cedure must be applied locally, as it involves
the components of the g„„tensor, which can
depend on the four spacetime coordinates. In
our case, however, the independence of the
metric coefficients given in Eq. (1.4) on x' makes
it possible to obtain tetrad components with the
use of the same orthonormal tetrad throughout
space at any instant of time.

One is therefore led to identify the Cartesian
components E"' of the electric field with I' "'"'
and the Cartesian components I3'' of the magnetic
field with (*E)")@'.With the help of Eqs. (1.5)
one then gets

" d3k
E '"'" A (t)f"

(2+)3 l {l)

I& =& [A,'(t) eos'g +A, '(t)sin'g],1 and

3

(2 )3 l &l)'
e&)&.&&) A (t)(gy)&&)~

(1.12)

Because of Eqs. (1.6a) and (1.6b), the spectral
components of E and B corresponding to ky k2,
and k, are orthogonal to the time-varying direc-
tion specified by k&,.&=k,.jA,.(t). It is therefore
convenient to introduce the time-varying unit
vectors

1c =& [Al'(t)cos'6 cos3$ +A33(t)eos35 sin3$

+A, '(t) sin36] .

e„=sin8 cos{t)e&»+sin8 sin&t)e&»+eos8e, »,
e, = cos8 cosine &» + cos8 sin{t e &»

—sin8e&» „

e6 = —singe&»+cos{t)e&»,

where the angles 8 and P are defined by

(sin8 cosp, sin8 sin{&&), cos8)

, sin5 cos$ sin5 sin) cos5
A. , '

A2
' A3

and

sin35 cos3$ sin'5 sin3( cos35~ ~

~ ~

1 2 3

In this way e„ is always along the time-varying
direction specified by k&,. &. One can now write
the fields E and B of Eq. (1.12) using the (e3, e )
basis. The manipulations proceed through the
use of Eqs. (1.7), (1.8), (1.10), (1.11), (1.14),
and (1.15). The result is remarkably simple,
namely,

GPk e
2( )&/4 (2 )3 kl/3 ( 6 6) {)

--—(S'-S )e
1 d
k dt

(1.16)

In order to proceed further in the analysis, a
digression about basis vectors is necessary. As
emphasized by Mo, ' a metric g„.„defines natural
covariant unit vectors e„, with contravariant
components e„=6„, and natural contravariant
unit vectors e~, with covariant components e"
=5", such that, for example, e„~e„=g„,. Every
tensor results from the contraction of contra-
variant indices with covariant basis vectors and
of covariant indices with contravariant basis
vectors. All this is in close analogy with tensors
in flat space. The difference lies in the condition
e„~e„=g„„ascompared with e„~e„=q„„valid
in flat space referred to Cartesian coordinates.

The absence of off-diagonal terms in the metric
given in Eq. (1.4) makes the natural basis vectors
orthogonal, but the lengths of the spatial basis
vectors e, vary in time according to e, e, =A,.'(t).
Therefore, owing to the time variation of the
basis vectors, tensor components do not carry
full information about the fields. This difficulty
is easily removed in our case by introducing the
tetrad basis vectors e«) =e, and e&,. &

=e&/A, (t), .
such that e&„, e&„,=g„„, and by expressing tensors
in terms of their components with respect to the

e&„, basis. In what follows tetrad indices will be
denoted by enclosing them within parentheses.
The raising and lowering of tetrad indices is done
with the matrices g ~ and q„z, respectively, and
the tetrad components of a tensor are defined as
its projections into the vectors that form the
tetrad. For example T=T e e~ =T' " 'e&, e&»,
where T' "~'=e„' 'e„'~'T"". In general this pro-
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d'k e&'~"

2( )), /4 (2 )3 blf2 P ( 6 &)) (&

1 d———(S'+S )ekdr

Reality of the fields then demands that

SG( —k,.) =SG (k() . (1.17)

Moreover, as St does not appear in Eqs. (1.16),
it is convenient to derive from Eqs. (1.10) second-
order equations for S;:

k'p, '+kb —— S; = 0. (1.18)

The general propagation problem has thus been
reduc'ed to the integration of Eq. (1.18) for S; and

S,, subject to the condition (1.1'I). The fields
appear as superpositions of spectral components,
each transverse to a time-varying direction
(8, Q). The two quantities S5 and S~ satisfy dif-
ferent equations, unless one or more of the k, 's
is equal to zero or A, (t) A, (t). If any two scale
factors are equal, relabeling of the coordinate
axes allows one to use two variables S,' that
satisfy the same differential equation.

The time evolution of the direction (8, Q) is
determined by Eqs. (1.14) and (1.15). A wave
propagating along a coordinate axis will keep
propagating along that coordinate axis. A wave
propagating in a coordinate plane will keep prop-
agating in that coordinate plane, but will tilt
toward the axis with smaller Hubble constant
H, =dA, /A, .dt. A wave propagating outside the
coordinate planes will tilt toward the one coordi-
nate axis whose Hubble constant is the smallest.

The tetrad components of the stress-energy
tensor for the electromagnetic field

can be simply expressed in terms of the quantities
g"'=E'~'+iB'~' and their complex conjugates. One
finds

v'- "d'x, (1.23)

where d'x =dx'dx'dx'. It correctly behaves as
a scalar under spatial rotations. Use of Eqs.
(1.16) and (1.20) yields

"d3k p—(S'S'*+S-S-+)
16v ~ (2~)', b

1 dS&) dS5+ dS&& dS&)+&

k'b dt dt dt dt )
(1.24)

The total energy of the electromagnetic field is
not constant in time owing to the exchange of en-
ergy between the electromagnetic and the gravi-
tational fields.

At any instant of time, the total momentum of
the electromagnetic field is obtained integrating
v' —gT" throughout space:

P' = T"v' -gd'x. (1.25)

P =
J

r(o""e v'-gd'x (1.26)

Equations (1.16) and (1.21) then yield

1 dk kg

4~ (2v)' ' A (t)

where

()&(k,)=, Im. ~S;
1 &,dS', +

(1.27)

(1.28)

is constant in time on account of Eq. (1.18); The
result expressed by Eq. (1.27) is remarkably
simple, namely, P&'&(x:1/A, . Therefore, the
total momentum of the electromagnetic field in
general tends to align itself with the coordinate
axis with smallest Hubble constant.

At any instant of time, one can identify the
total angular momentum of the electromagnetic
field with

Even though P' is not in general a tensor, it
behaves as a vector under spatial rotations. Use
of the orthonormal tetrad leads to

y (o) (o) —
~ (g)~ (y)g1

8m

~(o) (/) (A)~~ (l )=1
8~i'~"'

(1.20)

(1.21)

L~ = 2V' -gq~) J'

where

J' = (x'T -x"T")v'-gd x

(1.29)

(1.30)

p(j&(&) — [ (g &i&g (~)+ +g U &wg (&&)

8w

+g () )g(& &y6JA] (1.22)

At any instant of time, the total energy of the
electromagnetic field is obtained integrating
v' gT" throughout space:—

J' defines a tensor under spatial rotations and

L~ is the associated pseudovector angular mo-
mentum. Use of the orthonomal tetrad leads to

L L (g)e
(y)

x(a&(gu)/ (&) @(~&/ U&)~e . q gdsx

(1.31)
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The integral in Eq. (1.31) can be evaluated by .

means of Eqs. (1.16). In analogy with the usual
procedure for classical electromagnetic waves
in flat space, one obtains the total spin angular
momentum o of the electromagnetic field by
retaining for each wave of the spectrum the com-
ponent of the angular momentum parallel to the
direction of propagation e„. After some algebra
one gets

(S+P+y S S 2 )

0 1

kg.
(1.33)

where the "plus" sign applies to waves generated
by S6 and the "minus" sign applies to waves
generated by S~. This result is in complete
analogy with the corresponding one for circularly
polarized waves in flat space: kp. is the time
component of the wave vector k as obtained for
example by solving the eikonal equation for the
metric given in Eq. (1.4). In flat space k)l is the
frequency of the circularly polarized waves
generated by S,' and S,. In what follows waves
generated by S~ will be referred to as + waves
and waves generated by S6 will be referred to
as —waves.

In order to proceed further with the physical
interpretation of the waves, it is of interest to
consider in some detail a single spectraI, com-
ponent of the fields. Denoting by E' and B' the
fields generated by S', and by E and B the fields
generated by S2, it follows from Eqs. (1.16) that
one can write

and

~e +iB~ -e -& &»»4S~]a,S
~g

1 dS6
kg 1/2( )l /4

(1.34)

where it is understood that the E and B fields are
obtained taking the real and imaginary parts of
the right-hand sides.

In analogy with flat space, it is convenient to
write the general solution of Eq. (1.18) as

1 dS2 dSg* dSg dS22'

k'5 5 dt dt dt dt
(1.32)

According to Eq. (1.32), S; and S, correspond to
waves giving contributions of opposite sign to the
spin angular momentum. In particular, if one
restricts his attention to a single spectral com-
ponent, comparison with Eq. (1.24) shows that

Sa —Q+y++ Qa y~g (1.35)

The two complex-conjugate solutions in Eq. (1.35)
are the analogs of the exponentials e '"' and e'"'
of flat space. The analogy is indeed supported by
further results. Equations (1.34), with the help
of the normalization condition

yk (l.36)

for y', yield

(Ic'I'- Ic'I')k"'.4' 4 -g (1.37)

(1.38)

can be readily given an interpretation in terms
of the "frequency" kp, of the radiation and of the
effective scale factor in the e„direction, propor-
tional to I/p. Furthermore, if one denotes by
g' the phase of y', one can show that

dP' kb
dt ly'I' ' (1.39)

where use has been made of Eq. (1.36). As 5 is
positive, the phases g' are monotonically de-
creasing functions of time, just as -+t is.

Equations (1.33), (1.37), and (1.39) provide the
physical interpretation for S6 and S2. S2(k,.)
generates a wave with positive helicity carrying
power along k«& and a wave with negative helicity
carrying power along -k«&. S,(k, ) generates a
wave with negative helicity carrying power along
k&, , and a wave with positive helicity carrying
power along -k&,. &.

The phase delay &' between the 8 and Q com-
ponents of either the electric or the magnetic
fields of waves generated by y' or y (C; =0) can
be evaluated from Eqs. (1.34) and (1.36). One
finds

2k'
'

(d/df) I
y'I' (1.40)

According to Eq. (1.40), the phase delay is in
general not constant in time and differs from
+v/2, which is the phase delay for circularly
polarized waves in flat space. Moreover, the

The two complex-conjugate solutions in Eq. (1.35)
are therefore amplitudes for waves carrying
power in the direction of k"' and in the direction
of -k"', respectively, without interfering with
each other. This result is just what would be
obtained for two circularly polarized waves prop-
agating in opposite directions in flat space. The
power flux through an element of area transverse
to k"' and marked by comoving objects (objects
with constant x') can also be obtained from Eq.
(1.3'I). The result,

~'(Ic; I'- Ic; I'),
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phase delay depends on the spin angular momen-
tum, being different in general for waves gen-
erated by y' or y . The deviation of the phase
delay from m/2 is due to the anisotropy in the
expansion rates, and is absent in an isotropically
expanding universe [A,.(t) =R(t)j. In this case Eqs.
(1.18) reduce to

d'S~ 1 dR dS~6 k'
dt 8 dt dt R

(1.41)

and are exactly solved by

t

t dv , . ' dv &

S,'=C;exp —ik
J &( )

+C;exp ik

(1.42)

It is possible to find a simple expression for the
time derivative of A. . Making use of Eqs. (2.3) and
(1.14) one can prove that

dx dQ—= —cosg
dt dh

' (2 4)

A. is therefore a purely geometrical parameter,
independent of k, whose evolution is determined
by the time rate of change of the azimuthal angle
P of the direction of propagation of a given wave.

The expressions for the fields, obtained from
Eq. (1.34), are

Z/2
&~+iBe'=, „~,[C;exp(iq vA. )

( -g)
+C; exp(i 7+ix')]

This simple result is just what one expects on
the basis of the conformal invariance of Maxwell's
equations. It also holds for an axisymmetric
universe (4, A, ) for waves pr'opagating along
the symmetry axis, provided R(v) is replaced
by A, (r) in Eq. (1.42).

II. HIGH-FREQUENCY WAVES. APPLICATION
TO THE MICROWAVE BACKGROUND

E~ +i&~ =+, „~, [Cf exp(iq viz)L-g)
—C; exp(i7 +iX)],

where

f't

g -kjx~ -k I p dt

(2.5)

As remarked in Sec. I, 8,' and S, satisfy in
general differ ent equations. The %KB solutions
of Eqs. (1.18) provide direct insight into this
point. Moreover, they are of practical interest,
as they give an accurate description of the free
propagation of the microwave background after
decoupling, owing to the high frequency of the
radiation and to the long time scale of the cosmic
evolution.

If the new variable x = J b dt is introduced and

Eqs. (1.18) are rewritten in the more convenient
form

'+ +k —— $~=0, (2.1)

the general solution in the %KB approximation is
found to be

(y 1/2 t
s'=c'~ — exp —a un wit)Q lip

+C, — exp jk p dt+A, (2 2)

where

S d~a
2p,

( 1 dA, , 1 dAg= cos6 cos g sing d v I
— ' —— ' A, 'b NI

(2.3)

(2.6)

v'=k g +k

It is seen from Eq. (2.5) and (2.6) that in the
WKB limit 8,' generates a left circularly polarized
wave propagating along k«& and a right circularly
polarized wave propagating along -k&, , The field
vectors of both waves, as seen from the e„direc-
tion, undergo a counterclockwise rotation with
respect to the (ee, e~) basis with angular velocity
kp +dA/dt. In the same way, S~ generates a right
circularly polarized wave propagating along k«&
and a left circularly polarized wave propagating
along -k«&. The field vectors of both waves, as
seen from the e„direction, undergo a clockwise
rotation with respect to the (e~, e~) basis with
angular velocity kp -dX/dt.

As time goes by, the direction of propagation
changes, and the unit vectors e~ and e~, with
respect to which the previous angular velocities
were measured, change as well. They rotate
clockwise, as seen from the e„direction, with
an angular velocity dA/dt with respect to the local
fixed (ee, e~) frame. It follows that, with respect
to the local fixed (ee, e~) frame, the field vectors
of a + wave rotate counterclockwise and the field
vectors of a —wave rotate clockwise with the
same angular velocity =kp, as seen from the
e„direction. This is a sensible result in the light
of Eq. (1.33). It also follows from the previous
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discussion that the superposition of two waves of
equal amplitudes, phases and directions of prop-
agation, and characterized by opposite states of
circular polarization yields a wave with electric
and magnetic field vectors that do not rotate with
respect to the local fixed (e~, e~) frame. Conse-
quently, as time goes by, the directions of the
field vectors are parallel transported on top of
the celestial sphere. More quantitatively, Eqs.
(2.5) for &~ and E~, where for definiteness C; is
taken to be zero, lead to introduce the two
quantities me =C;exp(+iX) and m~ = +iC; exp(wiX),
which can be identified with the 8 and P compo-
nents of a constant length polarization vector.
Equation (2.4) then implies that m~ and m' satisfy
the parallel transport equations in a tetrad frame
on top of a sphere, as previously recognized by
Caderni et al. ' on the basis of a perturbative
treatment of the parallel transport equations of
geometrical optics.

The fields given in Eqs. (2.5) can now be used
to relate observations of intensity and polarization
distributions made at two different times by means
of a receiver comoving with the background metric
given in Eq. (1.4). A simple estimate of the
errors introduced by using the WEB fields (2.5) is
given in Appendix B. It is shown there that the

evolution laws for intensity and polarization to be
derived in this section apply with a high degree
of accuracy to the free propagation of the micro-
wave background after decoupling.

Consider first the problem of evolving an
intensity distribution. To this end the receiver
can be thought of as recording the time-averaged
power carried by all the waves approaching it
within a narrow cone d 0 about a direction (8, Q)
and within a narrow frequency interval d+ about
a frequency . The averaging is done over a time
interval long compared to the mean period of the
waves, but short compared to the time scale of
evolution of the background metric.

The most general wave propagating along -k&,.
&

is a superposition of a + wave and a —wave

[C,'=0 in Eqs. (2.5)]. According to Eq. (1.21), it
carries the time-averaged power

(2.7)

The power received by the instrument per unit
solid angle and per unit frequency is then obtained
multiplying the expression given in Eq. (2.7) by
the Jacobian of the transformation from (cos5, $, k)
to (cos8, P, ~). The result is

a I c', ~'+ ~c, ~

d Qd~ 4v [A,'sin'8 cos'Q +A, ' sin'8 sin'/ +A, ' cos'8]'~' ' (2.8)

where use has been made of

~ =kg

=k(A. ,' sin'8 cos'Q +A, sin'8 sin'Q +A, 'cos'8) '~',

v' = &@(v,
' sin'8 cos'p +v, ' sin'8 sin'Q

+ v, ' cos'8)'~'

where v,. A,.(t)/A, .(t'). One finally finds

(2.11)

(2 9) (v, sin 8 cos Q +v, sin 8 sin Q
dI'& dI', .

which follows from Eqs. (1.14) and (1.15).

Intensity distributions at two different times
can be related by writing Eq. (2.8) for t and t',
and eliminating the factors ( IC; I'+ IC, I') from
the two by requiring that (8, $, &u) and (O', P', ~')
be observation angles and angular frequencies
corresponding to equal values of (5, $, k) at t and
t', respectively. The relations between (8, P, &)
and (8', Q', &u'), obtained using Eq. (1.14) for both
t and t' and Eq. (2.9), are

+v ' cos'8) '~' (2.12)

cos8' = v, cos8(v, ' sin'8 cos'P

+v,' sin'8 sin'P + v, ' cos'8) ' ',
cosP' =v, cosP(v, 'cos'P +v, ' sin'P) '~', (2.10)

sing' =v, sing(v, cos'Q+v, sin'Q) ' ',
and

where d P,/d 0 d~ and d P;/d A d~ denote the
intensity distributions at times t and t, respec-
tively, and the barred braces indicate that the
arguments of dP;/d Qd~ have to be transformed
according to Eqs. (2.10) and (2.11).

In the particular case of initially isotropic
radiation, Eq. (2.12) yields a result previously
obtained by Thorne" by analyzing the effect of
anisotropic expansion on blackbody radiation.

As an example of the use of Eq. (2.12), consider
an axisymmetric universe (A, =A, ) and assume
the intensity distribution after decoupling to be'
dP;/dQd&u =1+& sin'8'. Equation (2.12), with
t —t'-1/H, where H denotes the mean Hubble
constant, LRFI/H =(H, H, )/H «1 and R(t-) denotes
the average scale factor, then gives
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dP) R(t')~ s 3b H
(2.13)

Therefore, as is known, "anisotropic expansion
introduces an additional quadrupole term in the
intensity.

C.onsider now the problem of evolving a polar-
ization distribution. For any two orthogonal
directions e„and e, in a plane transverse to a
direction (8, Q), the degree of linear polarization
D„„can be defined as the difference between the
fractions of the time-averaged power per unit
solid angle and per unit frequency received by
instruments accepting only waves linearly polar-
ized along e„and along e„, respectively,

)Pu-P„(
u. v

8 V

(2.14)

As in general different choices for the set of
axes (e„,e„) correspond to different values for
D„„an actual observation is better described
in terms of the maximum value attained by D„„
as the set of axes is rotated in all possible ways
in the transverse plane. This quantity can be
properly referred to as the degree of linear
po].ar ization D.

The most general wave propagating along -kr,-,
is a superposition of a + wave and a -wave
[C;=0 in Eqs. (2.5)]. One then finds

2I C,'C I

Lc, )'+ jc, [

(2.15)

Following steps similar to the ones that led to
Eq. (2.12) then yields

Dq= IID] ], (2.16)

where D, and D; denot'e the values of the degree
of linear polarization at t and t', respectively,
and the effect of the barred braces is defined
below Eq. (2.12).

Therefore, to this order, radiation with no
linear polarization (D =0) does not aquire any
linear polarization under anisotropic expansion.
An initial polarization, however, is altered in
its angular dependence according to Eqs. (2.10)
and in its frequency distribution according to
Eq. (2.11). It follows from Eq. (2.16) that the
change in the degree of linear polarization amounts
only to a redistribution of its initial values in
angle and frequency. Therefore, the maximum
linear polarization is conserved in time. Con-
sequently, one can infer that, as long as anisot-
ropic expansion is the dominant mechanism, the
present experimental upper bound on the degree
of linear polarization of the microwave back-
ground, "if applicable over the whole spectrum
and for all directions, implies the same upper

bound on the polarization after decoupling.
As an example of the use of Eq. (2.16), consider

again the axisymmetric model universe mentioned
above and assume that after last scattering D,.
=& sin'8' (Ref. 3). One then finds

D, =e sin'8 1 — cos'8) . (2.17)

tan&' = 2k&
1 dA. , 1 dA,

A3 dt A, , dt
(2.18)

The maximum deviation of 6' from +7r/2 is thus
determined by the ratio between the angular
anisotropy of.the expansion rates and the fre-
quency of the radiation, and vanishes along the
axis of symmetry, as expected from the results
obtained at the end of Sec. I.

The corrections to the energy content of a
spectral component of the electromagnetic field

In contrast with the result obtained for the
intensity distribution in Eq. (2.13), the effect of
anisotropic expansion on the polarization is
negligible, as it involves the product of & and
4H/H. This result is quite general and reflects
the absence in Eq. (2.16) of the angle-dependent
factor of Eq. (2.12). One can therefore conclude
that a small anisotropy in the expansion rates of
the universe after decoupling could only have a
negligible effect on the polarization distribution
of the microwave background.

So far this section has dealt with the interpreta-
tion of the properties of the lowest-order WKB
solutions of Eqs. (2.1). The effects derived from
the fields given in Eqs. (2.5) are to be regarded
as geometrical optics effects, as they could also
be derived in the framework of geometrical
optics from the parallel transport equations for
the polarization vector and from the propagation
equation for the scalar amplitude. More accurate
solutions of Eqs. (2.1) are of interest, as they
illuminate the nature of the electromagnetic-
gravitational coupling beyond the geometrical
optics limit. They also provide a means of esti-
mating the size of the corrections to the lowest-
order results presented so far. This is done in
Appendix B. As is well known, "the WKB pro-
cedure can be carried further to yield successive
terms of the asymptotic representations of the
high-frequency solutions of Eqs. (2.1). The
relevant equations and the expressions for S,' are
given in Appendix A.

As remarked in Sec. I, the phase delay between
the 8 and P components of either the electric or
the magnetic fields of waves generated by y' or
y differs in general from +v/2. To lowest order
ly'I =5/p, , and for an axisymmetric model (A,
=A, ), Eq. (1.40) yields
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generated by y" (or y'*) can be obtained by means
of the expressions for S', given in Appendix A and
of E&ls. (1.20) and (1.34). The result is

1 ' dz'
)4)& I~ gy

2
yg

-(1 db 1 dp't2
+

b dt p, dt&
(2.19)

where T &»«& is given by E&I. (1.37) with C; =0
(or C; =0). Therefore, unlike the situation for
plane waves in flat space, total energy and total
momentum do not coincide. Moreover, the
lowest-order nonvanishing correction to T(p)(p),
of order (b, H j&o)', is always positive for an
anisotropic model. For an isotropic model, en-
ergy and momentum coincide for every spectral
component since, due to the conformal invariance
of Maxwell's equations, the lowest-order %KB
fields are in this case the exact solutions (1.42)
of E&ls. (2.1).

III. WAVES IN KASNER SPACETIMES

(3.4)

For 6 =0, && the general solution of E&I. (3.4) is

S;= C; exp(- ik lnt) + C;. exp(ik lnt) . (3 5)

In this case, E&ls. (3.5), (1.34), (1.20), and (1.21)
yield

-(Ic~ I'+ Ic'I')1
4+t2 1 2

expanding universe for which the volume element
increases like 4 —g =t. Two eases need be dis-
tinguished. If P, =P, =0 and P, =1 the spacetime
is actually flat, as a simple coordinate trans-
formation brings the metric to the Minkowskian
form. '4 In all other cases the spacetime is curved
and the model represents a universe expanding
along two axes and contracting along the third
one.

Consider first the flat Kasner universe, which
corresponds to P, =P, =0 and P, =1. In this case
E&ls. (1.18) reduce to

and (3 6)
Exact solutions for electromagnetic perturba-

tions in a given spacetime of the form (1.4)
provide an interesting and complete example of
the effect of anisotropy on electromagnetic fields
and, .illustrate the formalism developed in Sec. I.

The Kasner spacetimes'" are a convenient
choice. They are described by the class of
metrics

de 2 = dt2 +t221(d/&)2 +t222(d/2)2

where

+f223(d~3)2 (3.1)

P1+P2+P3-P1 +P2 +P3 —1 (3.2)

-u 1+ut'(") 1+u+u ""' 1+u+u

u (1+u)
P, ( )-1

(3.3)

They are exact solutions of Einstein's equations
in empty space and are of the form (1.4). They
are also asymptotic solutions of Einstein's equa-
tions near the time singularity in the presence
of a, homogeneous matter distribution.

The ranges of the three quantities P„p„and
P, are most conveniently described by means of
the Khalatnikov-Lifshitz parametrization, accord-
ing to which

T = (IC'I'- Ic'I').1
4 t2 1 2

These simple results are just what one expects
on the basis of the remarks made at the end of
Sec. I. For any direction outside the x' axis
(640, &&), E&ls. (3.4) are exactly solved by

8' = C'e"'~'H"'(kt sin6) +C'e ~ 'H."'(kt sin6) .

(3.7)

Here H,"„' and H,"„' denote Hankel functions of the
first and second kind with purely imaginary order,
v =4 cos6 and the exponential factors have been
introduced in order that the two solutions be
complex conjugates of each other. Equations
(1.34) then yield

E~ + Z~+ -
tZ e&2y2&(C~e~3I2H &2 & y C3e-~3/2H &z &)8 tI) 1 jv 2 gt»

(3.8)

E' +zB' =wsi n6' e&"2~( Ce~ 'H."' +C'e ~~'H "').4 1 &tp 2 gP

where primes denote derivatives with respect to
the full argument of the Hankel functions, which-
has been omitted for brevity. It then follows
from E&ls. (1.20) and (1.21) that

V1T

r ""&= ( I C; I'+ IC; I')(& ' IH"' I'+ sin26 IH" ' I')

where u & 1. This choice corresponds to 3 P1
~& 0~&P ~( —~&P

2

For any choice of P„p„and P, within their
specified ranges, the metric (3.1) represents an

and

+ (interference terms)

(Ic'I'- Ic'I'»'*'1
2~2$2g. 1 2

(3.9)
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Inl p
I Pl sinh N, „

(3.12)

As 8 —~, apart from interference terms,

(3.10)

The agreement between this result and E&I. (2.19),
which gives the high-frequency behavior of T"" ',
is a consequence of a general property of the
Kasner spacetimes. It is due to the fact that the
Hubble constants decrease in time as 1/t. This
is in fact enough to ensure that, for sufficiently
large times, the WKB solutions of Sec. II give a
very accurate description of the fields.

In order to examine more in detail the behavior
of the fields, it is convenient to set for definite-
ness C', =0. The most general Ee and E~ fields
then result from the superposition of a + wave
and a —wave. Letting o. = (C', + C, ) exp(-v«/2)
and p =(C, —C;) exp(-v«/2), with c&= ~n

~

e'&n and
p=~p~e'@8, one can write

Ee = p, ~u ~M, „cos(k&x'+g, „+&&It )

(3.11)

E~ =sin5
~ p ~N, „co(ks&x~+y,„+Q«),

where M, „and «„denote modulus and phase of
H,"„', and N, „and g, „denote modulus and phase
of H,"„'. The behavior of the fields is then suitably
described in terms of the two functions R and 4,
where

1=-—stan
~

. +P
2 I,sinhgv

(3.16)

a - kt~in(kt)
~

and (3.17)

The previous results illustrate the eQect of
anisotropy on electromagnetic waves. In particu-
lar, the time dependence of the two quantities
A and 4 implies that propagation from early times
affects in a significant way the polarization of
electromagnetic waves. An early polarization
state is thus inaccessible to an observer at late
times.

Consider now the general Kasner spacetimes,
for which P» P» and P, lie within the ranges
specified below E&I. (3.3) and the combination

p, =p, =0, p3=1 is excluded. In this case Eqs.
(1.18) are extremely complicated for k«& lying
outside the coordinate axes. If k«& lies along a
coordinate axis, however, they reduce to a rather
tractable form. For definiteness, take k&&& lying
along the x' axis. The cases of k«, lying along
the x' and x axes can be treated similarly. E&lua-
tions (1.18) then become

In the (x', x') plane v e&luals zero. The asymptot-
ic behavior of 8 and 4 as t-~ is still described
by E&Is. (3.14), while as t-0

is the ratio between the moduli of E~ and E» and
d'S6 1-2p, dS&

(3.18)

+=«. «+& (3.13)

is the phase difference between E~ and E . As
g ~ 00

and are exactly solved by

and

Inl
l tk I kk't ttin'k)

(3.14)

S, = C,t H &2I &&-»I 1

(~)+C;t H&, t'& k-
&1 -Pj. (3.19)

-r 1
+d)

2 2kt sin5

The ratio 8 and the phase difference 4 approach
constant values as t -~, as expected for WKB
waves. As t-0 the behavior is rather compli-
cated, and outside the (x', x') plane (5 c «/2)

I c& I cosh«v+ cos[2vln(kt sin5) —26r]
I P I cosh«v —cos[2v ln(kt sin6) - 2er]

(3.15)

where 8~ denotes the phase of the I' function
1"(iv). As t-0 the phase difference 4 undergoes
an infinite number of oscillations between the two
values

and

E'+iB' = —t ~&e"" (C'H"'+C~V&")3 3 1 V

E,' +iB2k =mt ~ke'~" (CH" &+C~+„",'),
(3.20)

where v=p, /(1 —p, ) ranges between 0 and —,
' on

account of E&I. (3.3) and the arguments of the
Hankel functions have been omitted for brevity.
One then finds

where H' ' and H"' denote Hankel functions of the
first and second kind, respectively. Equations
(1.34) then yield
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z' =
p (Ic~I + Ic I )(IH I

+ IH I )

+(interference terms)

z (o&(» ( P t &+-( (Ic(
I

Ic+I )2(('k

(3.21)

As t —~, apart from interference terms,

(p p )2t 2(&-P& &

x ]. +
8k' (3.22)

again in agreement with the high-frequency
behavior of T('»" described by Eq. (2.19).

In order to examine more in detail the behavior
of the fieMs, it is convenient to set for definite-
ness C; =0. The most general E, and E, fields
then result from the superposition of a + wave
and a —wave. Letting (&(=C;+C, and p=C; —C,
with (& = (a I

e' ~ and p =
( p [

e'08, one can write

E, =t ~& Io' IM„cos(kx'+(I&„+Q )

and

E, = —t ~&
I p IM„, cos(kx'+ (l&, , +@),

(3.23)

l ot I Mv

Ipl M, &

(3.24)

is the ratio between the moduli of E, and E„and

4-1 4e p&&

is the phase difference between E, and E,.
As t~

2 2Inl 1 (p, -p, )t, u
IP I . 16k'

and

(3.25)

(3.26)

where M„and g„denote modulus and phase of
ff„"& and M„, and p„, denote modulus and phase of
H„",'. The behavior of the fields is then suitably
described in terms of the two functions R and 4,
where

A few comments are in order here. As t-0,
E3 is suppr essed with respect to E„and the
phase difference between E, and E, tends to a
constant value. Therefore, as the singularity is
approached, at any point in space the electric
field (and the magnetic field, also) aligns itself
with the x' axis. Similar arguments lead to the
conclusion that both for waves with k(,. ) lying along
the x2 axis and for waves with k&,.&

lying along
the x' axis, the electric field (and the mag-
netic field, also) aligns itself with the x' axis
as the singularity is approached. It follows that,
near the singularity, the stress-energy tensor of
the electromagnetic field is generally dominated
by its diagonal elements. It describes a tension
along the field lines and a pressure perpendicular
to the field lines, acting in a way that tends to
make the expansion rates isotroyic. Moreover,
since the modulus of H„"' is an even function of
v and is monotonically increasing with l vl, "for
waves along the ~' axis M„gM„,. Therefore, R
is always less than the value I n I/ I PI which it
approaches as t-~. The phase difference 4
between the E, and E, components of the electric
field increases monotonieally in time, and the
overall phase accumulated as a consequence of
the propagation out of the singularity is (—,

' —v) v,
which, for the allowed range of v, is constrained
to lie between 0 and ((/2. Again, propagation in
a strongly anisotropie gravitational field is seen
to alter in a non-negligible way phase and am-
plitude relationships between the field components.

The fields given in Eq. (3.20) can now be used
to construct waveforms traveling along the x'
axis. For this purpose k must be regarded as
a Fourier transform parameter and must be
allowed to run from - to +. As the Hankel
functions are analytic in the complex plane cut
along the negative real axis, an ambiguity results
in the definition of II"' and H "for real negative
values of their arguments. A way out of this dif-
ficulty is defining

(k) 0),
(3.28)

2 2k

The ratio between the moduli and the phase dif-
ference approach constant values as t-~, as
expected for WKB waves. As t -0

r(v) k

IPI 1'(1 —v) 2(1-P,)

Introducing, in analogy with Sec. I, the notation
0 'J ' = E'~ '+i B ~~ ', one ean write

g "'(x' t) =t ~& e(~~dk(C, f(t)+C,f*(t)].
«09

(3.29)
Equations (3.28) and (1.34) then imply that

4-&r(v-1)+(Po —P0.

(3.27)
f0 +00

& "'(x', t) =t & e""'dk[C,g(t)+C, g*(t)j,J -0O

(3.30)
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where

&, & (
):)'"

) (k&0),
(3.31)

The choice (3.28) for f (t) is a convenient one, as
the function bears a close similarity to the ex-
ponential exp(-ikt) of flat space electrodynamics.
Indeed, comparison with the well-known flat space
case, in which exp(-ikt) would be associated with
waveforms traveling toward g' =+~, suggests
that a similar property may hold for f(t). It is
therefore interesting to construct the most gener-
al waveform corresponding to C2= 0. This re-
quires a definite relationship between the initial
amplitudes of g "' and g' ', so that

+OO

C, =— 8 "&(&,r)e &"dg
2« f(&)

ficient to conclude that K; and K'2 vanish identically
for x' —$& b —a. The two propagators can also be
written

1 (7)'~
H, (x'-g;t, ~) =-.

~

—
P

5(x' g+ai(t) 'a)
+&i(x'-)+a -b)P, (x'-g;a, b)

and (3.36)

1 5If (x —g t r) = — 5(x' —)+a -b)o.2 a

+q(x' —)+a -b)P, (x' —$;a b)

In E&ls. (3.36) 5 denotes Dirac's 5 function, q
denotes the step function [i.e. , q(u) =0 for u& 0

and q(u) =1 for uy0],

I P] +M

8 &"(~,~)e "&d(.
2«g(v') (3.32)

E&luations (3.29), (3.30), and (3.32) then yield

~ )Py&"'(x', t) =
—,

~ J
&"&(h, r)nfl(x' 5;t, v')-d$

Q ~ ~ +~
2 5) 2 b&

(3.33)
PgJ&"(2 t) = — 0&'&(~ ~)Z'(x'-~ ~ t ~)dg,

~00

where the two propagators are written for con-
venience in the form

e&&){x&-&&f (t)
Sx 2«i k g(7)

(3.34)

bx J 2«i k g(r)'

On account of the analytic properties of the
Hankel functions, "the integrals in Eqs. (3.34)
can be regarded as contour integrals in the
complex k plane:

s " dk e&»&"' &&H&(kb)

sx .„2«' k H,",'(ka)
(3.35)

Sx 2&&i k H (ka)
'

In E&Is. (3.35) the contour y runs along the real
axis of the complex k plane below the cut and is
indented below the origin, b =kt' ~&/(1-p, ) an&&

a = k~' &'&/(1 —p,). The fact that all the zeros of
the Hankel functions of the second kind lie above
the real axis of the complex k plane" is then suf-

(3.38)

Pg

& "'(x', t) =
—, J & "'(5,~)i~.(x' h; t,&)A—,

with

&& dk e'"'" &' H"'(kb)
ex „, 2~i k H"&(k )

&& dk e' &" &&& H&"(kb)
)

&&x "„,2~i k H„'"(ka)

(3.39)

and where the contour y' runs along the real axis
of the complex k plane above the cut and is
indented above the origin. The fact that all the

Thy field distributions corresponding to E, and

E, therefore involve a pulse of variable amplitude
centered at x' = g +b -a and a structure for x') g

+b -a. It is worthwhile to remark that no back-
ward tail is present.

In the same way it is possible to show that the
case C, =0 corresponds to waveforms traveling
toward x' =-~. In this case
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zeros of the Hankel functions of the first kind lie
below the real axis of the complex k plane" is
then sufficient to conclude that K, and E, vanish
identically for x' —g&a —b. It then follows that
the field distributions corresponding to E, and

X, involve a pulse of variable amplitude centered
at x' =

g +a - b and a structure for x' & g +a b-
Again, no backward tail is present.

The generalization of these results to waves
propagating along the other coordinate axes is
straightforward, as these cases involve Hankel
functions as well, the main difference lying in
the range of values for the index v.

CONCLUSIONS

A general formalism has been developed to deal
with electromagnetic waves propagating in a back-
ground metric of the form -ds'= dt'+g-,',A (t)
x (dx')'. The general solution of the propagation
problem has been reduced to the integration of
two linear second-order differential equations
for the variables Sz which determine the time
evolution of the E„„tensor. These equations are
in general different. They can be chosen to coin-
cide for an axisymmetric model and, for an iso-
tropic model, are exactly solvable in terms of
simple trigonometric functions, as one would ex-
pect on the basis of the conformal invariance of
Maxwell's equations. The electric and magnetic
fields E and B, as measured by an observer co-
moving with the background metric (x' = constant),
have been obtained from the F„„tensor by use of
an orthonormal tetrad. The E and 8 fields are
shown to be superpositions of spectral compon-
ents, each labeled by given values of k, , trans-
verse to the time-varying direction specified by
k,/A, , and expressible in the form of simple com-
binations of S~ and their time. derivatives.

Expressions for the total energy, total momen-
tum, and total spin angular momentum of the
electromagetic field have been obtained in terms
of the contributions of the various spectral com-
ponents, which involve bilinear combinations of
S~ and dS&/dt.

For each spectral component the ratio of the
corresponding contributions to the energy and to
the spin angular momentum equals Ag, which in
the WKB limit is just the frequency of the waves.
This result is in close analogy with the familiar
flat-space one, to which it reduces if the metric
coefficients are independent of time.

It has been shown that S|';(k,) generates a wave
with positive helicity carrying power along k «&I

and a wave with negative helicity carrying power
along -k«&. S&(k, ) generates a wave with negative
helicity carrying power along k„& and a wave with
positive helicity carrying power along -0„,.

In the high-frequency limit, S~ and 5~ generate
circularly polarized waves. Their satisfying dif-
ferent equations has been shown to be connected
to the time-varying nature of the unit vectors to
which the fields are referred. On the basis of
these considerations, it has been concluded that
the polarization vector for a given wave satisf ies
the parallel transport equations on top of the ce-
lestial sphere. This result had been previously
derived by Caderni et p$. ' from the parallel trans-
port equations of geometrical optics.

The high-frequency fields have been used to re-
late observations of intensity and polarization
distributions made at two different times by means
of a receiver comoving with the background me-
tric. These results have been shown to describe
with a high degree of accuracy possible effects of

1

anisotropic expansion after decoupling on polari-
zation and intensity characteristics of the micro-
wave background. In agreement with previous
analyses, " it is seen that anisotropic metrics of
the form discussed in this paper introduce a
quadrupole term in the intensity distribution.
Moreover, the maximum degree of linear polari-
zation is conserved in time. One is therefore led
to infer that the present experimental upper bound
on the degree of linear polarization of the micro-
wave background, "if applicable over the whole
spectrum and for all angles, implies that after
last scattering the radiation was unpolarized at
least to one part in 3000, if the large-scale evolu-
tion of the universe is well described by a metric
of the form considered in this paper.

In the high-frequency limit, energy density and
momentum density of a spectral component of the
electromagnetic field are shown to be equal only
in the lowest-order approximation. The first cor-
rection to the energy density has been found ex-
plicitly and seen to be always positive.

The formalism has been used to study the be-
havior of electromagnetic fields in Kasner space-
times. Exact solutions have been found for waves
propagating in any direction in the flat Kasner
model and along the coordinate axes of the general
Kasner models. As t- ~, the solutions are well
described by their WKB approximations, while
near the singularity new and rather complicated
effects arise. The fields move away from the
most rapidly compressing direction, leading to a
stress-energy tensor that tends to make the ex-
pansion rates isotropic. Moreover, the phase dif-
ference between two field components can vary con-
siderably in time. Propagation out of the Kasner
singularity therefore alters in a considerable way
amplitude and phase relationships for the waves.
Nonetheless, it has been shown that suitable. rela-
tions between the initial distributions of the field
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components lead to waveforms traveling along the
coordinate axes of the Kasner models without a
backward tail, a result in close similarity with the
usual flat-space one.
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APPENDIX A

The asymptotic representations of S~ in the
high-frequency limit can be obtained by intro-
ducing in Eq. (2.1-) the formal expansion"

1 2 . 1
kp -v»4H» —[(&H), &H', H&H]l» —2(&H", ~ ~ )

(A6)

where JI denotes the average Hubble constant,~ denotes the typical angular anisotropy of the
Hubble expansion, and primes denote time deri-
vatives. For sufficiently large , the conditions
(A6) are necessarily satisfied.

APPENDIX B

The size of the errors introduced by using the
lowest-order WEB fields to describe the free
propagation of the microwave background after
decoupling can be estimated by evaluating the
magnitude of the first neglected term in the
asymptotic series (Al). For this purpose it is
sufficient to consider an axisymmetric model
(A, =A, ) and to compare with unity the quantity

I
ii~, l/k introduced in Eq. (A4), which can be put

in the convenient form

S2 S3S& =exp yS +S +—'+ —'+. ~ . I0 1 y y2 )
(A1)

(Bl)
and by solving for S„S„.. . , recursively. The
result for S~, accurate up to terms in 1/k' in the
amplitude and up to terms in 1/k in the phase, is
found to be

where t„denotes the time of decoupling and $0 de-
notes the present time. In order to obtain a simple
numerical estimate it is sufficient to consider
waves propagating in the symmetry plane (5 =v/2)
of a. dust universe, for which

where

t

xexp(ip d i p+
—i pe, )e,

) 2/3
x,(t) =A.,(t) =

—, I

0

t&l" 2~@, t ~
&,(t) = —

I

toj 3 Ho tj'
(B2)

dz&"
2&4. +——

I
«.

2p, dt) „

(A3)
where nHo/Ho denotes the present value of the
fractional angular anisotropy of the Hubble ex-
pansion. Present experimental values imply
that both for the Il, and the JI» cases
I(WHO/H, )(t,/t, )l«1. The second term in Eq. (Bl)
is therefore negligible and

As is well known, the validity of the asymptotic
representation (A2) rests on the conditions

1 WHO Into

6(uo t Ho it~
(B3)

I».l»ls, l »kl&. I»k—.I&.l,
1 1

(A6)

with the further requirement that the absolute
value of the first neglected term be always much
less than one. Analysis of (A2), (A3), and (A4)
reveals that the conditions (A5) amount to

Not surprisingly, this result agrees with the
estimate of the first-order corrections to geome-
trical optics previously given by Anile and Breuer'
and indicates that the WEB fields (2.5) describe
with a high degree of accuracy the free propaga-
tion of the microwave background after decoupling.
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