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Geodetic precession in a Kerr field
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An exact calculation is presented for the geodetic precessional frequency of a gyroscope moving in an equatorial

circular orbit in a Kerr field.

I. INTRODUCTION

The precession of a freely falling gyroscope
following a circular orbit in Schwarzschild space
time was calculated to the lowest order of approxi-
mation by Schiff. ' An exact value of such a pre-
cessional frequency has recently been calculated
by Sakina and Chiba. ' Since the earth is a rotating
body, it would be more appropriate to calculate the
exact precessional frequency in a Kerr space-
time. In this paper, we present an exact calcula-
tion for an equatorial circular orbit in a Kerr
field.

II. DETAILED CALCULATIONS

The equation of the parallel propagator g'&,
generating parallel vector fields along a curve

x'=.x'(~) in a Riemannian manifold of n dimen-
sions is' 4

bg&0 dg jo ( dX~ ~5u dg

Equation (1) has been solved by Sakina and Chiba'
for a circular orbit in the Schwarzschild space-
time and an exact value of the precessional fre-
quency obtained using the concept of the parallel
propagator. In this paper, Eq. (1) has been solved
for an equatorial circular orbit in a Kerr field and
a generalized value of the precessional frequency
obtained which reduces to the value for the Schwarz-
schild space-time in. the absence of rotation.

In Kerr space-time the metric form is

ds' 2dy
y +g cos g y 2gpgy. +g

2 2 ~ 2 8
y2 + +2 eOS2 g x'+ a' eos'0

where a is the angular momentum per unit mass.
The circular orbit lying in the equatorial plane

with an affine parameter 7 is given by

~ Q+LPlt ~R —LQr=ro ~
e=

2 ~ 0= PR+Q2)lr ~
t PR+Q2

where

b =m/r. ,

I'=1 —2b,

Q =2ab,

Q —y 2+ g2+2g2$ .
z and L are constants related to the energy and

l

angular momentum, respectively, of an orbiting
body and are'

1 —2b+ah'~ /r,
(1 —3b+2ab'~'/r )' '

+r b'"(1+2ab"'/r +a'/r ')
(1 —3b+ 2ab'~'/r, )'~'

where the upper sign refers to corotation and the
lower sign to eounterrotation of the orbiting body.

The equation of the parallel propagator (1) is
split as follows making use of (2) and (3):

dg 'q, gq+ LP, eR —LQ
"pR+q' 4' pR+Q2 ~ ~o

, qq+LP, qR —LQ, (4)'4pR+q' '4 pR+q' g "'
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Ag
dr

dg3y t' 3 4.Q+ LP 3 qR —Lq)
+~~ 31 PR+ q2 41 PR+ Q2~Ig 1&

dg4y„ / 4 iq+ LP 4 gR —Lql~,
( )

~~ "pR+q' 4' pR+Q2)g "

where x'= r, x' = 8, x' = P, and x' = f and j= 1, 2, 3,
4. In order to find g',. we differentiate (4), sub-
stitute (6) and (7) in the result, and obtain finally

d' '
3A+ ~2g1 0

d7'

where

(&Q+ LP) ~r1 r3 r1 r4 8 (eR —LQ) Ir1 r3 r1 r4
(PR+ q2)2 & 33 31 34 31I (PR+ q2)2 & 43 41 44 41I

(&Q+ LP)(cR —LQ) (r;,r;, + r,',r,', + r', ,r4„+ r,',r4„) .

cosa'' A.——sinew
Q

B——sinaT
Q

0 1 0 0
C 2E . 2OV' 2E . 2a.V'

——sino'~ 0 1+ sin' ——sin'—
Q 2 0. 2

D 2G . atv'——sina7' 0 -==—sin' — 1+—sin'—
Q Q 2 Q 2

which reduces to the value in the Schwarzschild
space-time in the absence of rotation.

Here

gq +LP, cR —LQ" PR+Q' " PR+Q''

eq+LP, eR —L Q
PR Q' " PR Q

eq+LP, , &R —I Q" PR+O' " PR+Q

eq+LP 4 eR —LQ
31 PR+Q2 41 PR+Q 2

Equations (8) and (5}may be solved easily to ob-
tain g'I and g' . . The values of the other compo-

50
nents of the parallel propagator are calculated by
substituting the value of g'1 in (6) and (7}. Thus
the parallel propagator on the timelike circular
orbit is given by

(eq+LP) 3, (eq+LP)(eR —LQ)
31 33 (PR + Q2)2 31 43 (PR + q2}2

r3 r1(eq+LP}(« —Lq) r, r, (cR —LQ)'
(PR + Q2}2 41 43(PR + q2)2 y

r (eq +LP)' r, r, (eq +LP)( eR —LQ)
(PR + q2)2 31 44 (PR 4 q2)2

+r ~ r1(&q+LP)(«- Lq), , (~R- Lq)'
41 34 (PR + Q2}2 41 44(PR + Q2)2

g r4 r1(~q+LP)' 4 r, (&Q+LP)(ER —LQ)
(PR + Q2)2 31 43 (PR+ Q2)2

, r. r, (~q+LP}(~R - Lq). . . (~R Lq)'-
(PR + q2)2 41 43(PR + q2)2 4

«r1(~q+LP) r, r, (~Q+LP)(eR -Lq)
34(PR 4. q2)2 31 44 (PR + q2)2

r, r, (cq+LP}(~R—LQ) r, , (eR —Lq)'
(PR+Q2)2 41 44(PR + q2)2

%e now consider, with the use of this parallel
propagator, the geodetic precession of a gyro-
scope in free fall which moves along a timelike
circular orbit. We shall identify the affine
parameter with the proper time.

Now, the comoving frame {e,"[and its dual basis
attached to the gyroscope are given by

A,

a
e&

-—S~ e&, w =t zw .
The transformation matrices S& and t'~ are as
follows:

( g2 1/2
i1 —2b+—,

&o

0

0 0
fo

g2 l/2 l/2
0 C 1 —2b+ 2 D 1-2b+go; Fp

0 1 —2b+—2 boa 1 —2b+—2 rom
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1
0

1 —2b+ —,

1 p

-A
0

1-2b+ — —,

0-D 1-2b+
0

1 —2b+, a

1 —2b+ 2 yo

(12)

The parallel propagator in the comoving frame
is then

cos QT 0 sin &7

0 1 0 0

—sana& 0 cosT

0 0 0

(13)

point along the orbit, the angle between S p and S
is given in this case by

S oS

Since nv'~= 2wn(PR+ Q')/(cq+ LP) we get

6& =++7'p+ 2nm, n= 0,+1,+2.

-D 1-2b+ y
0

C 1-2b+ ——y '
2 P

S'+
~b-

(r,'+ a'+ 2a'b) (eq+ LP)
(1 - 2b) (aR -Lq)

The following relation holds for the spin vector
S' of the gyroscope which is defined to remain
orthogonal to the velocity vector (dx'/dT) [i.e. ,
S,. (dx'/d&) = 0J:

x, +a'+2a b (&Q+LP)
(1 —2b) (eR —LQ)

The S' component of the spin vector in the comov-
ing frame is given by

Also a.s u(PR+ Q')/(eq+ LP) -1, 6,- 0 and we
have 6„& 0, so that

(pR+ q')
(eq+ LP)

Hence the geodetic processional frequency of
the gyroscope on an equatorial circular orbit
in a Kerr space-time is

~6 ('EQ + LP)
7 (PR+ q')

and its direction is in the e", direction. 'This
value of the precessional frequency reduces, to
first order in a, to the value

using (ll) and (14). With S u(o. =1,2, 3) as the spin
vector at the point P, (r = 0) on the circular orbit
and S as the parallel. transport of S p at the point

P [v' = rz 2w (PR +——Q ')/(a Q + LP )J,

where the gyroscope returns to the initia, l spatial

0
(19)

For a= 0, it is equal to the value
~ ~A, ~( obtained

by Sakina and Chiba. ' A further approximation
leads to Schiff's formula'

TABLE I. We give the values of ([BJ[ and Kerr correction [to first order in a according to Eq. (19)] for the Earth,
the Sun, and a typical neutron star. The circular orbit has been assumed to be very close to the equatorial surface of
each astrophysical object.

Object

Earth
Sun

Neutron
star

Mass of
the object

5.98 x10 g
1.99 x 1033 g

1.39 x1033 g

Period of
rotation

of the
object

1d
25d

10 3 sec

Hadius
of circular

orbit

6.38 x10 cm
6.96 x10 cm

9.6 x105 cm

(in gravitational unit)

8.27 x10-'3
6.27x10 20

7.35 x10

Kerr correction according to Eq. (19)
(in gravitational unit)

+6 74 x10 25

~8.22x10 "
p1.67 x10 8
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