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We consider the question of the uniqueness of the Feynman propagator, or equivalently

of the initial vacuum state, in a cosmological model with an initial singularity. After dis-

cussing the relationship of the propagator to positive-frequency solutions of the field

equation and to physical quantities, we turn to the particular example of the linearly ex-

panding universe. The Feynrnan propagator in this model was obtained by Chitre and

Hartle. %'e show that the boundary conditions they used are not sufficient to determine

the propagator uniquely. This is done by displaying a family of propagators obeying the

same boundary conditions. %e then explore methods of strengthening the boundary con-

ditions by considering the temperature and chemical potential of the created particles, the

massless limit of the propagator, and the square integrability of the analytically continued

kernel associated with the propagator. %'e show that the requirement of square integra-

bility is sufficient to determine the Feynman propagator uniquely and that the resulting

propagator is that of Chitre and Hartle. %'e write the square-integrability condition in a.
way applicable to general open spacetimes. Another approach we consider is the use of
conditions such as consistency with the Einstein equations to determine the temperature

and chemical potential characterizing the high-momentum part of the spectrum of creat-

ed particles.

I. INTRODUCTION

Quantum field theory in curved spacetime is
beset with a number of difficulties which do not
appear in Minkowski space. Chief among these
diAiculties is that in the absence of special sym-
metries there is no natural definition of the vacuum
state. Equivalently, one can say that there is no
natural way to choose a preferred set of positive-
frequency solutions of the field equation or to
uniquely specify the Feynman propagator. In fact,
when an "in" region and an "out" region exist in
which there is suAicient symmetry to enable one to
specify positive-frequency solutions, then one finds
in general that a solution of the field equation
which is positive frequency in the in region is a su-

perposition of positive and negative frequencies in
the out region. If the system is in the state which
corresponds to the unique vacuum in the in region,
then there generally are particles present in the out
region. T'hus, the gravitational field or the
geometry of spacetime creates particles. '

When no in region having suAicient symmetry
exists, as in the case of a cosmological metric hav-

ing an initial singularity, one may ask if there
nevertheless exists a preferred state which can serve

as the in vacuum state. In this paper we will be
concerned with that problem, particularly with the
approach to its solution which focuses on the
Feynman propagator. We make no judgment as to
whether the actual universe had a cosmological
singularity, but do feel that the consequences of
singular as well as nonsingular models are worth
investigating.

For our present purposes, it is suAicient to work
with a spatially flat Robertson-Walker metric. We
will first show how the Feynman propagator of a
scalar field is related to the choice of an in basis of
positive- and negative-frequency solutions and to
observables such as the density of particles in the
out region. We then turn specifically to the exam-

ple of the conformally coupled scalar field in the
linearly expanding universe which was considered
in the important work of Chitre and Hartle. They

imposed boundary conditions on the kernel of the
Feynman propagator by first analytically continu-
ing to the domain in which the metric has the
Riemannian signature (+ + + + ) and then us-

ing a natural generalization of the Euclidean flat-
spacetime boundary conditions. By exhibiting a
family of propagators which satisfy those same
boundary conditions, we show that they are not
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suAicient to determine the Feynman propagator
uniquely. Finally, we consider the question of' how
the boundary conditions can be strengthened so as
to single out one propagator. We replace the con-
dition that in the Riemannian domain the kernel of
the propagator vanishes at infinity by the condition
that the kernel be square integrable. This leads
uniquely to the propagator originally found by Chi-
tre and Hartle. The new condition of square in-

tegrability can be written in a coordinate-indepen-
dent form apphcable to general open spacetimes.
An alternative approach to determining a unique
propagator is to use other conditions such as con-
sistency with the Einstein equations to determine
the temperature and chemical-potential parameters
which characterize the spectrum of created parti-
cles.

II. PROPAGATOR, BASIS FUNCTIONS,
AND BOGOLIUBOV COEFFICIENTS

In a spatially Aat Robertson-Walker universe
with line element

ds = dt +a (t)—(dx +dy +dz ),
(2.1)

f'q+'(x)=(2n. ) ~ exp(ik x)P»(t),

f-'„'(x)=(2m. )
~ exp(ik x)P»(t),

and P»(t) is a solution of

(2.4)

(2.5)

a '—a —+a k +m +gR P»(t)=0.2d
dt dt

(2.6)

It is necessary to impose the Wronskian condition

q»dq» ddt y»dy»ddt = ia -', — —(2.7)

so that as a consequence of the canonical commu-
tation relations of the field p and its conjugate

consider a neutral scalar field P of mass m satisfy-

ing the equation

( 9„7"+m—+-(R)P(x)=0,
where ( is an arbitrary constant, R is the scalar
curvature, and V& denotes the covariant derivative.
One can write

P= I d k[3»f-„+ (x)+A»f'-„'(x)], (2.3)

where

momentum the operators A-„and A „will satisfy
the usual commutation relations for annihilation
and creation operators. Defining the conserved
Klein-Gordon scalar product

(g,h)= —i J,dr„(g*a~h —h*a~)
=——l f dX~g Bph (2.8)

where X is a spacelike Cauchy hypersurface, one
can verify that

(I»' I»' )= —(I'» ' A' ')=@k-k'»
(2.9)

(f'-„+,f'-k, ')=0 .

Using a particular solution of Eq. (2.6) subject to
the Wronskian condition (2.7), one can construct
the corresponding Pock basis by applying operators
A» to the vacuum state defined by A»

~
0) =0.

The physical interpretation of the quanta corre-
sponding to the A k depends on the choice of the

g», or equivalently of the basis functions f~&+'.

When a (t) is constant or slowly varying, then the
basis functions can be chosen as in special relativi-

ty or by means of the %'KB approximation; the
corresponding quanta will then be the usual physi-
cal particles. If one has an early-time in region
and a late-time out region in which a (t) is constant
or slowly varying, the choice of basis functions cor-
responding to physical particles in each of those re-

gions is. unambiguous. However, the physical basis
in the in region generally does not evolve into the
physically relevant basis in the out region. ' This
implies that particles are created by the expansion
of the universe. As first shown in Ref. 1, the phys-
ically relevant bases at early and late times are re-
lated by a Bogoliubov transformation, and the pro-
bability for pair production can be expressed in
terms of the coefTicients of that transformation. A
case in which the in basis does evolve into the
physically relevant out basis is that of the massless
conformally invariant field (m =0, g= —,). In that
case, particles are not created by the expansion of
the universe and there is an unambiguous set of
basis functions at aH times. '

In a generalized sense, one can define two space-
like Cauchy hypersurfaces, such as those corre-
sponding to different values of t, as the in and out
regions. Except in the case when a hypersurface
lies in a region where a (t) is slowly varying (or
when the massless conformal field is being con-
sidered), it is not clear what set of basis functions
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where

p k+ '(x }= (2n )
~ exp(i k x )Pk ( t), (2.11)

p'k '(x)=(2n. )
~ exp(ik x)1('k*(t), (2.12)

and the functions p'k(t) obey equations analogous
to (2.6) and (2.7}. The out basis can be expressed
in terms of the in basis by

=akf k pkfi-(+) 4 (+) ( —)

f~&', if any, correspond to the physically relevant

quanta on a given hypersurface. As has been
pointed out in the literature, ' ' ' the concept of
particle number in a strong or rapidly varying
gravitational field is ill defined from an operational
viewpoint. Nevertheless, one can use various
mathematical criteria to attempt to single out a
basis f~k' associated with a given hypersurface,
which can then be used to specify initial conditions
associated with that hypersurface. A number of
proposals for doing that have appeared. ' The
problem of finding preferred initial conditions is
especially severe when one considers models with a
cosmological singularity. '"

Suppose that an in basis f k has been specified
as in Eqs. (2.3)—(2.9},and that an out basis p-„-
has been specified. In terms of the out basis, the
field expansion is

P= f dk. [a i,
p'-„+'(x)+a" -„p'-„'(x)], (2.10)

operators by the Bogoliubov transformation

ak ——akAk+pkA

k+pk~p.
(2.14)

(2.15)

where the number of particles appearing in other
modes is not measured. The mean number of par-
ticles in mode k is

(2.16)

The number density of particles in the out region
will be finite if and only if the quantity

d k k is finite. For simplicity, we take the
state of the system to be

~

0 in). The correspond-
ing quantities can readily be calculated when the
state of the system is not the in vacuum but some
other pure or mixed state.

The Feynman propagator can be defined as' "

The vacuum state based on the A-„will be denoted
as ~0 in) and that based on the a-„as

i
0 out}.

In many cosmological models, a (t) is slowly vary-
ing in the out region so that the physically relevant
choice of p k

' and the meaning of the particles in

the out region is clear. If the state of the field is

i
0 in), then one can show that the out region con-

tains pairs of particles of equal and opposite mo-
menta, and that the probability of observing n par-
ticles in mode k is'

(2.13)
i (0 out

~

T [P(x)P(x')]
~

0 in)
(0 out

~

0 in)
(2.17)

=akf g pkfk-( —) ( —) + (+)

where the complex numbers ak, pk satisfy

~
at,

~

—
~ pk

~

=1. The out creation and annihila-
tion operators are related to the corresponding in

where T denotes the time-ordered product. Ex-
pressing the field operators P(x) and P(x') in terms
of the appropriate basis functions and using Eq.
(2.14), one finds

G(x,x')=i f d k(ak) '[8(t —t')p'z+'(x, t)f k+'*(x', t')+6(t' t)p'k "(x',t')f—'k '(x, t)] . (2.18)

Then defining'

Gx h (x)—:—f,dX'"G(x, x')8„'h (x') (2.19)

f d k(ak) 'pk+ (x)(f-„+,h), if x is to future of X',

f d k(ak) 'f-'„'(x)(p-'„', h), if x is to past of X', (2.20)
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one readily .finds that

Gx f-'„+'(x)=(a») 'p-„+'(x), G~ f-'„'(x)=0,
)

' if x is to the future of X' (2.21)

Gxf» (»= —(P»/a»)f(, '(x), Gx f-„'(x)=—f-'„'(x),
G p(+)(x) 0 G ( —)( ) ( ~) (~( )( )

if x is to the past of X'. (2.22)

It follows that, except for a factor of (a») ', the
action of Gx is (1) to take the positive-frequency
part of the in basis f~»' into the positive-frequency

part of the out basis p~ when x is to the future of
X', and (2) to take the negative-frequency part of
the out basis p'„ into the negative-frequency part
of the in basis f'& ' when x is to the past of 2'.
This is analogous to the action of the Feynman
propagator in flat spacetime, which propagates
positive frequencies into the future and negative
frequencies into the past (in flat spacetime a» =1,
P»=—0, and pz and f-„are identical).

Using the previous results one finds without dif-

ficulty that

(P»/a»)*&(k k') = —(p'-„—+',G~ p-'„') .

(2.23)

This equation holds whether X' is to the past or fu-

ture of the spacelike hypersurface X on which the
scalar product is evaluated. The ratio (P»/a»)* is
useful because it appears in Eq. (2.15) for P„(k )

and because'

{n-„out
~

0 in) =(P»/a») " (0 out
~

0 in),

(2.24)

where
~

n-„out) is the state with exactly n „pairs-
present in the out region, each pair having one par-
ticle in mode k and the other in mode —k. Thus,
(P»/a»)* is the relative amplitude for production
of a pair in modes k and —k. That the right-
hand side of Eq. (2.23) is the relative amplitude for
production of a pair can also be inferred intuitively
from the corresponding Feynman diagram, as was
done in Ref. 3 by Chitre and Hartle, who also gave
a derivation based on quantum field theory. Note
that the right-hand side of Eq. (2.23) involves only
the out basis functions and the Feynman propaga-
tor G(x,x'). Therefore, if suitable boundary condi-
tions which determine G(x,x') can be found, then

t

physically relevant amplitudes can be obtained
without explicitly specifying the in basis f~» . The
pair-production amplitude depends on these boun-
dary conditions (or on the choice of an in basis)
and can only be said to describe the production of
real particles when the proper boundary conditions
are imposed.

III. MODEL %'ITH
COSMOLOGICAL SINGULARITY

When a cosmological singularity is present, there
is in general no obvious or natural choice of in
basis f-'„. The same a-mbiguity is evident in the

choice of a Feynman propagator G(x,x'). This
ambiguity is not entirely removed by prescriptions,
such as that of DeWitt, ' ' ' which involve writing
G(x,x') in the proper-time formalism and replac-
ing m by m —ie. The reason, as will be seen in
detail at the end of Sec. IV, is that the physical
spacetime manifold is rendered incomplete by the
singularity so that additional boundary conditions
are required. The metric of Eq. (2.1) with a (t) =t-
(the linearly expanding universe) provides an excel-
lent arena for investigating such questions. We
proceed by writing in this section the most general

l

form the Feynman propagator with g= —, can have

in the linearly expanding universe. Then in the
next two sections, we examine the effect of various
possible boundary conditions in uniquely specifying
G(x,x').

1

With a (t)=t and g= —,, the most general solu-

tion of Eq. (2.6) is '

P»(t) =t '[B»H»'(mt)+C»H»'(mt) J,
(3.1)

where HI,
" and HI,

' are the Hankel functions of
the first and second kind with imaginary index ik,
which satisfy the equation H» "=exp( k~)H'» '—
The constraint on the coeAicients BI, and CI, im-

posed by the Wronskian condition (2.7) is
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I
C»

I
'exp( —k~) —

I
B»

I
'exp«~) =~~4 .

(3.2)

For large t (t » m '), the expansion is sufIiciently
slow that the out basis p~z can be identified by us-

ing the positive-frequency %KB solution of Eq.
(2.6) for 1(j»(t). Using the asymptotic form of the
Hankel functions of large argument, one finds that
g»(t) appearing in Eq. (2.11) is proportional to
H,"» '(mt), so that the out basis is

and

p»+'(x)=n'~ (2t) 'exp( , km—+i/.»)H»'(mt)(2m) ~ exp(ik. x)

p» '(x)=a' (2t) 'exp( —, kn. i—(()»)H—~'( mt)(2m') exp(ik x),

(3.3)

(3.4)

where P» is an arbitrary phase. The most general in basis f~» is given by Eqs. (2.4) and (2.5) with the g»
of Eq. (3.1). The Bogoliubov coefHcients connecting the in and out bases are then given by Eq. (2.13) as

1

a» =2m ' exp( —, km—ig»')—C», P» =2ir ' exp( , kir+i—g»)B» . (3.5)

One must require that f d k exp(km)
~
B»

~
converges, and that the density of particles in the out region is

finite.
The Feynman propagator corresponding to the above out basis [Eqs. (3.3) and (3.4)] and the most general

in basis is given by Eq. (2.18) as

(3.6)

where t) (t() is the larger (smaller) of t and t'. Let us consider the propagators corresponding to several
particular choices of the in basis.

(i) B» =0. This case was considered by Nariai and Azuma. ' (They considered propagators defined using
two in vacuum states, but in this particular case

~

0 in) is the same as
~

0 out). ) With this choice, one has
f~» =p~» . It is always possible mathematically to take the in basis equal to the out basis, but for an ex-
pansion which is static at early and late times such a choice generally gives a basis which does not corre-
spond to the physical basis in either the in or the out region. Therefore, taking the in basis equal to the out
basis cannot be generally valid, although it may be correct for particular expansions in which no particle
creation occurs. One can explicitly evaluate the Fourier integral in Eq. (3.6) with B» =,0 using the known
properties of Hankel functions and their integrals, ' with the result

G' (x x')= (8n) 'm r 'sinh(r)( ——2m cr)' H' (( —2m cr)' ) (3.7)

o = —2 '(t'+ t' —2tt' cosh r), (3.8)

where r =
~

x —x'
~

. Here o is half of the proper distance squared along a spacelike geodesic between x and
x (or minus half of the proper time squared along a timelike geodesic). The calculation leading to Eq. (3.7)
is in Appendix A.

This propagator is also obtained immediately if one, as an approximation, uses only the first term of the
Schwinger-De%itt series' to evaluate the Feynman propagator. Similarly the Gaussian approximation to
the Feynman propagator obtained through evaluation of the path integral by Bekenstein and one of us
(L.P.) gives this propagator. For the present metric, these approximations give an exact solution of the
Green's-function equation.

(ii) Another Feynman propagator, considered first by Chitre and Hartle, has the form

G"'(x,x')=in(2ir) (2tt') ' I exp[ik (x —x')]H~'»'(mt) )J»(mt()d k . (3.9)
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Comparison with Eq. (3.6},using J;k =(H'k'+H, "k')

/2, gives Bke "=Ck, and Eq. (3.2) then yields the
coefficients which determine the in basis of this
propagator:

as

p(k)e —ink( 1 e
—2mk)

and the average number in mode k as

(3.14)

1
3/ e

—kw/2(e 2k'
1 )

—1/2e'1 k
k —

~ me (3.10) (~(1 ) ) (&2@k 1)
—1 (3.15)

3k'/2( 2k' 1 )
—1/2e''9kKe 9 (3.11)

I

kn(e2kn 1)
—1/2e ' '9k ~k

P (e2k' 1)
—1/2& '9k+~k

(3.12)

(3.13)

These give with Eqs. (2..15) and (2.16) the probabil-

ity of detecting n particles in mode k at late times

where PI, is an arbitrary phase. The corresponding
Bogoliubov coefficients are

(3.16)

where kz is the Boltzmann constant.
(iii) Consider now the family of propagators

which have the form

The physical momentum is k/a(t). Therefore,
when the momentum is sufficiently large that the

mass can be neglected, the spectrum, as pointed
out by Chitre and Hartle, resembles that of black-
body radiation of temperature

T = [ktiira(t)]

G' '(x,x')=G' '(x,x')+ e'"'" " 'AH' '(mt )H'k'(mt )d k,
(2m. )3 4«' (3.17)

where A is a complex function of k and m. The
last term is a solution of the homogeneous field
equation (2.2) with g= —,. In the particular cases
A=O and A= 1, Eq. (3.17) gives the propagators of
Eq. (3.7) and Eq. (3.9), respectively. One finds that
the coefficients which determine the in basis are

~ 1

Bk =(~sr/4)e '(
~

A
~

e "—1)

(3.18)

p, = —[ya (t)] 'lng . (3.24)

The possibility of a nonzero chemical potential has
been discussed in the literature. ' For complete-
ness, we note that bemuse the particles of each
created pair are correlated the distribution of parti-
cles at high momenta is truly thermal only if we
assume that those correlations have been destroyed

by other interactions or are not measurable.

Ck=(A ) (3.19)

Then Eqs. (3.5), (2.15), and (2.16) yield

P (I )
~

A
~

2lle —21Tllk(1
~

A
~

e 1T )—
and

(At(it)) =(
~

A
~

e ~"—1)

(3.20)

(3.21)

The quantity A(k, m) can be chosen to correspond
to any desired probability distribution of particles
present at late times. If one takes

(3.22)

IV. BOUNDARY CONDITIONS .

AND FEYNMAN PROPAGATORS

In order to make physical predictions about such
quantities as the particle density at late times, one
must distinguish between the various in bases and
propagators discussed in the previous section by
imposing boundary conditions. Let us first consid-
er the boundary conditions imposed by Chitre and
Hartle. In the Schwinger-DeWitt' ' ' representa-
tion of the Feynman propagator,

with g and y independent of k, then for momenta
large with respect to the mass the distribution will
be thermal, with temperature

G(x,x')=i J (x,s ~x', 0)e ™sds,

(4.1)

T =[ksya(t)]

and chemical potential

(3.23} where m is taken to have an infinitesimal negative
imaginary part. The kernel (x,s

~

x', 0) is a solu-
tion of the Schrodinger equation
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i (x,s ~x', 0)=(—V&V"+.—,R)(x,s ~x', 0)
Bs

(4.2)

tions:
(i) For small values of Q and for X,X' connected

by only one geodesic,

of a fictitious particle moving on a curved four-
dimensional hypersurface (coordinates x") with a
scalar "time" coordinate s. We will use the con-
ventions of Ref. 4, in which the propagator and
kernel are scalars rather than scalar densities. The
kernel satisfies the boundary condition

lim (x,s
~

x', 0) = [—g (x)] '~ 5(x,x'),
s —+0

(4.3)

(X,Q ~x', O) —~(4 Q)-'~'"(X,X )0~0

o (X,X')
X exp

where 6 is defined in terms of the Van
Vleck —Morette determinant as

&(X,X') = [y(X)y(X')]

XDet(a'o/ax ax't'l .

(4.7)

(4.8)

and can be regarded as the probability amplitude
for the fictitious particle to propagate from x'" at
time 0 to x" at time s. Because the physical space-
time is bounded by the singularity, one requires
further boundary conditions to determine
(x,s

i
x', 0).

Motivated by the path-integral representation of
the kernel, Chitre and Hartle rotate the coordinates
x" by an angle ~/2 in the complex plane and write
t =i A, , x'=iX', to obtain the Riemannian metric
y„defined by the line element obtained from Eq.
(2.1) with a =t:

Here o(X,X') is half the proper distance squared
along the geodesic joining 7 and 7'. For the
metric under consideration

and

o = (A, +A,
' —2A, A,

'
cosp) /2 (4.9)

A=p sin p, (4.10)

where p=
~

X—X'
~

. In the original spacetime, o is
given by Eq. (3.8) and

b, (x,x') = —
~

g(x)g(x')
~

dl =dA, +A, [(dX') +(dX ) +(dX ) ]

(4.4) is given by

yDet( —8 o/Bx Bx'~) (4.1 1)

They also rotate s in the complex plane by —m/2,
writing s = —i 0, so that the analytically continued
kernel (with A, —:X ), (X,Q

~

X',0), satisfies the
equation

(X,Q i
X',0) =(V„V" —,R )(X,Q

i
X',0),—

A=r sinh r,
where r =

~

x —x'
~

.
(ii) As the separation between X and X' ap-

proaches infinity

(x Q ix', 0) o.

(4.12)

(4.13)

(4.5)

where V&V" is the covariant Laplacian formed
from the metric y& and coordinates 7", and R is
the scalar curvature of the four-dimensional space
described by Eq. (4.4). The boundary condition
(4.3) is replaced by

lim (X,Q
~

X',0) =gy
' 5(X,X'),

0—+0
(4 6)

where g is a possible phase which can appear due
to the rotations in the complex plane and y is the
determinant of the metric y&„. The kernel
(x,s

~

x', 0) is obtained from (X,Q
~

X',0) by ana-
lytic continuation.

In attempting to uniquely specify (X,Q,
~

X',0)
they impose the following two boundary condi-

(x,s
~

x', 0)' '= b, ' (x x')
(4trs)

. o(x,x')
Xexp i

2$
(4.14)

Using the boundary conditions of Eqs. (4.7) and
(4.13), they arrive at the propagator G"' of Eq.
(3.9). We now show that the analytic continuation
of the kernel corresponding to the propagator 6' '

of Eq. (3.7) also satisfies the boundary conditions
of Eqs. (4.7) and (4.13), so that those boundary
conditions are not sufficient to uniquely determine
the Feynman propagator.

The propagator G' '(x,x') of Eq. (3.7) can be
written in the form of Eq. (4.1) with the kernel' '
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&x,n
~

x,o)"'=,~'"(X,X')
(4irn)'

o(x,x')
Xexp (4.15)

where o. and b, are given by Eqs. (4.9) and (4.10),
respectively. This kernel obviously satisfies the

as can be verified by direct integration. Here o.

and 5 are given by Eqs. (3.8) and (4.12), respective-
ly. In Appendix 8 we show explicitly that this
kernel is an exact solution of the Schrodinger equa-
tion (4.2) for the metric of Eq. (2.1). The analytic
continuation of Eq. (4.14) which satisfies Eq. (4.5)
is

&x, n ~x, o&~'~= &x,n ~x, o)IO~

+Q(x,x', n), (4.16)

boundary condition of Eq. (4.7). Furthermore, 0
or 4 ' becomes large as the separation between 7
and X' increases, so that (X,n

~

X', 0)' ' approaches
zero in accordance with Eq. (4.13). Thus
(X,Q

~

X',0)'o' satisfies both conditions. Analyti-
cally continuing it back to Eq. (4.14) using n =is,
k= —it, and p= —ir, and substituting into Eq.
(4.1), one obtains the propagator 6' '(x,x').

Chitre and Hartle find that the analytic con-
tinuation of the kernel (x,s

~

x', 0)"' corresponding
to the propagator 6"'(x,x') of Eq. (3.9) is

g(X X Q) 'e"P[ —(~ +~' )&4Q] J" d
u, 'coshl(

(2ir) 2M', 'p —~ 2Q

X
[/+i (n.—p)] [/+i (~+p))

(4.17)

They show that the kernel (X,n
~

X',0)"' satisfies
both boundary conditions Eqs. (4.7) and (4.13).
Therefore, both of the kernels (X,n

~

X',0) ' and

(X,n Ix',0)"' [which lead to the propagators
6' '(x,x') and G'"(x,x'), respectively] satisfy the
boundary conditions imposed in Ref. 3, so that
those boundary conditions do not uniquely deter-
mine the Feynman propagator.

One can in fact find a family of kernels which
satisfy those boundary conditions. Because both

(X,n ~x', 0)' ' and (X,n ~x', 0)"' are solutions of
the analytically continued Schrodinger equation
(4.5), it follows that Q(x,x', Q) is also a solution.
Introducing the parameter A, one then obtains the
family of solutions

&x,nix', 0)'"= &x,nix', o)"'

+AQ(x, x', Q), (4.18)

every member of which satisfies the boundary con-
ditions of Eqs. (4.7) and (4.13). When these kernels
are analytically continued and substituted into Eq.
(4.1), they yield the family of propagators
6' '(x,x') of Eq. (3.17) with A independent of k.
Choosing A independent of k corresponds to Eq.
(3.22) with y=2n. Therefore, each member of this
class of Feynman propagators corresponds to a dis-
tribution of particles at late times which is thermal

I

at high momenta and characterized by temperature

T = [kii2ira(t)]

and chemical potential

@=[em(t)] 'ln
~

A
~

.

(4.19)

(4.20)

Let us examine more closely the boundary condi-
tions that are satisfied by the kernels

(X,n
~

X',0)' ' and (X,Q
~

X',0)'" by taking the
limit of each of them as 0 approaches zero

through positive values. The boundary values of
each kernel in the A=O hypersurface completely
determines it as a solution of Eq. (4.5) for Q & 0
[alternatively, one could do the same analysis with
the original Schrodinger equation (4.2) and the ker-
nels defined on the physical spacetime]. However,
it is necessary to include the boundary values cor-
responding to nonphysical values of the analytical-

ly continued time variables A, and A, '. As 0 in-

creases, the eA'ect of the boundary conditions in the
nonphysical region propagate or diffuse into the
physical region and i~fluence the form of the ker-
nels in the physical region. As we shall see, the
boundary conditions at Q=0 of both kernels [and
hence of the entire class in Eq. (4.18)] are the same
in the physical region, but differ in the nonphysical
region. The physical region is the region in which



UNIQUENESS OF THE PROPAGATOR IN SPACETIME WITH. . . 3031

A, (and A, ') is greater than zero. That is because
times to the future of the cosmological singularity
(t &0) were rotated by n l2 in the complex plane,
corresponding to positive values of k.

First consider (X,Q ~X',0)' '. As Q—+0 through
positive values, the kernel is negligible except for 0.

small. As 7 approaches 7', the quantity 6 ap-
proaches unity, and using the Gaussian representa-
tion of the 5 function, one obtains

lim (X,Q
~

X',0)' '=iA, 5(X —X')5(A, —A, '),
0~0+

(4.21)

where the factor of A, '=y '/, as in Eq. (4.6).
The first term of (X,Q

~

X',0)"' in Eq. (4.16) of
course satisfies this boundary condition. The
second term Q is defined in the physical region,
where A, A, '& 0, by Eq. (4.17). For small positive
values of 0 one can evaluate the integral in Eq.
(4.17) by the method of steepest descent, with the
result that

Q
~ —i( 2 g)—

2(qadi)
—3/2(4~Q) —i/2

O 0+

Physical Region

FIG. 1. Initial data for kernels (4.18) in the extended
region.

(A, +A, ')2
)(exp (4.22)

dary value that

lim Q = —im '(p —ir ) (A, A, ') /5(A, +A, ') .
0~0+

This expression can be analytically continued to
define Q throughout the entire (A, , A, ') plane for
small positive 0,. Using the Gaussian representa-
tion of the Dirac 6-function, one obtains the boun-

(4.23)

Thus, (X,Q
~

X',0)"' satisfies the boundary condi-
tion

lim (X,Q ~X',0)"'=iA, '5(X X')5lA, A—, ') in'—(p —m). (AA, '—) './ 5(X+A,'),
Q—+0+

(4.24)

where p=
~

X —X'
~

. This same result can also be
obtained by starting with the representation of
(X,Q

~

X',0)"' in terms of the Bessel function
I„(A,A, '/2Q) which is will defined for all A, and A,

'

[Ref. 3, Eq. (3.11)] and using the large-argument
asymptotic expansion of I„. For the class of ker-
nels defined in Eq. (4.18), the boundary condition
is the same as Eq. (4.24) with the second term on
the right multiplied by A. The boundary condition
at Q=0 on (X,Q

~

X',0)' ' is schematically illus-
trated in Fig. 1 for the A, ,A,

' plane.
The second term of Eq.(4.24) vanishes in the

physical region, so that the kernels obey the same
boundary conditions there. However, in the non-
physical region, the kernels have different boundary
values along the line A, +A, '=0. As 0 increases,

I

this difference eventually propagates into the physi-
cal region. It is now clear why direct evaluation of
the path integral in Ref. 22 gives (x,s

~

x', 0)' '

and not (x,s
~

x', 0)"'. In that reference, a general
spacetime was considered and the boundary condi-
tion of Eq. (4.3) was imposed for al/ values of the
spacetime variables, thereby excluding solutions
such as (x,s

~

x'0)"'. That boundary condition
seems appropriate in the absence of boundaries
such as are implied by the presence of a cosmologi-
cal singularity. When such a singularity is present
one may want to impose further boundary condi-
tions on G(x,x') near the singularity (i.e., when t
or t' vanishes). That can be done by imposing con-
ditions on the kernel along the boundary of the
physical region (Fig. 1) for all non-negative values
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of Q (or s), or equivalently by imposing appropri-
ate conditions on the kernel at 0=0 in the non-

physical region as described above.

In this section we consider three methods by
means of which one may attempt to specify the
Feynman propagator uniquely. The methods in-

volve the rate at which the kernel (X,Q
~

X',0)
vanishes as the separation of the two points ap-
proaches infinity, the massless limit of the kernel,
and specification of a thermal distribution of creat-
ed particles, Iespectlvely.

From Eq. (4.15), one sees that for large p the
kernel (X,Q

~

X',0)' ' vanishes as p
' sinp. There-

fore, f ~

(X,Q ~X',0)' '
~

d X does not converge,
and the kernel (X,Q

~

X',0)' ' has no Fourier
transform. (Its Fourier transform is a distribution
but not a function. ) That is why that kernel was
not obtained by the method of Ref. 3, which made
use of Fourier expansion in plane waves

exp[i lr (X —X')]. One can therefore use the
square integrability of the kernel or the existence of
its Fourier transform as an additional criterion,
which at least in the present case is met by only
one kernel.

To show that only one kernel has a Fourier
transform on the Riemannian domain, we start
with Eq. (3.6), the most general form of the Feyn-
man propagator. Using the relationship between
Hankel and Bessel functions, one can write that ex-
pression as

G(x i) f e&k.(x —x')

(2.v )'2tt'

e 2nkB+

,——1 (e 1) 'H' —';t, (mt) )J;t,(mt&)

+e (e" —1) '
1—,H(P'(mt) )Jt, (mt&) d k . (5.1)

Making use of representations of products of Bessel and Hankel functions (Ref. 21; p. 439), one can write

Eq. (5.1) in the form of Eq. (4.1) with the kernel given by
r

(x,s ~x', 0) =i exp — [2tt'(2n) s] ' d k e'"'" " ' (1—e 2
)

' 1 — I+

Analytically continuing this kernel in the manner of Chitre and Hartle by writing $ = —i Q, t =i A, , x =iX,
k = i lr, one—finds that the second term in the kernel (X,Q

~

X',0) obtained from Eq. (5.2) involves the
function I „(AA,'/2Q), where lr & 0. However, from the integral representation of I„(z) given in Ref. 21, p.
'181, it is clear that the term involving I „(kA/2Q) is dive, rgent. Therefore, the kernel has a well-defined

Fourier transform in the Riemannian domain if and only if Ck ——e Bk. This condition is the one which

gives the propagator G"'(x,x') as discussed in connection with Eq. (3.9). In that case Eq. (5.2) reduces to
r

2 &2

(x,s ~x', 0)"'=
3 exp . f d ke'"'" " 'I

( 2')'2tt's 2$
(5.3)

in agreement with the kernel found by Chitre and
Hartie.

We would like to express the requirement of
square integrability in a way which can be applied
to more general metrics and which is independent
of the choice of coordinates. Let y„denote a
Riemannian metric on a manifold M' which can be
regarded as an analytic continuation of the original
spacetime. Let (X,Q

~

X',0) represent the analytic

f ~
(X,Q

~

X',0)
~

~y'~2d4X is convergent .

This is to hold for each value of 7' for which the
kernel is well defined. Here y is the determinant

(5.4)

t

continuation of the kernel to M' with coordinates
denoted by X. The proposed boundary condition is
that
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Pk ——t '(2k) '~ exp( ik lnt)— (5.6)

to within an arbitrary phase. In this case there is
no particle creation or mixing of positive and nega-
tive frequencies by the expansion. Hence
pP'=f~k+' and ak= 1, so that Eq. (2.18) gives the

Feynman propagator as

G( , x)x=i(2~) I d ke'"'"

Performing the integration, one obtains the distri-
bution

G(x,x') =(4rrtt') '[Sir —ln2tlt')

+i~ '(r ln tlt') '] . —

(5.8)

(If one writes r =lnt, then it is clear that the
metric, the positive-frequency basis functions, and
the Feynman propagator are conformally related to
those in Minkowski spacetime. ) It is natural to

of the Riemannian metric. (It may also be neces-
sary to ignore divergences which may appear from
interior points of integration. ) In addition, one
would of course impose the boundary condition of
Eq (4.7) in the domain corresponding to the physi- .

cally allowed values of the coordinates. For the
metric of Eq. (4.4) the kernel (X,Q

~

g', 0)'" of
Chitre and Hartle is uniquely determined by Eqs.
(4.7) and (5.4). In that case, the factor y'~ =A,
ensures that the integration over A, is convergent,
and one may carry out the integrations either over
the physical domain or over all values of the coor-
dinates without alternating the result. In general,
the least stringent condition is to carry out the in-

tegrations in Eq. (5.4) only over the physical
domain (unless other examples should show that
the stronger condition is necessary).

Next consider the Feynman propagator of the
massless field. For the massless conformal field in

an isotropically expanding universe, there is a na-

tural way to define the positive-frequency solutions
of the wave equation. ' For the metric of Eq. (2.1)

and wave equation (2.2) with g= —, and I =0, the

positive-frequency solutions have the form of Eq.
(2.4) with

a(t)
1(k(t) =—,exp i co(t')dt-

[2to(t)]'

(5.5)

where co(t)=kla(t). With a(t)=t this reduces to

impose the boundary condition that in the limit as
rn ~0 the Feynman propagator of the conformally
coupled field should have the form of Eq. (5.7) or
Eq. (5.8).

' Chitre and Hartle showed in Ref. 3 that the
massless limit of the propagator G "(x,x') is
indeed of the form of Eq. (5.7). On the other hand,
one can show' that G' '(x,x') does not approach
the form of Eq. (5.7) or Eq. (5.8) in the massless
limit. Therefore, the above boundary condition at
m =0 does prefer G"' over O' '. However, that
boundary condition is not sufficient to uniquely
determine the Feynman propagator when m does
not vanish.

,

%e show that by exhibiting a set of
propagators which have the same massless limit as
6'" but differ from G"' when the mass is not
zero. The propagators G~ ' of Eq. (3.17) which
correspond to the kernels of Eq. (4.18), will all

have the same massless limit as G'" if A is taken
to be a function of m such that lim OA(m) =1.
Therefore, we can choose A such that lim oG'
=lim OG'" but G' 'QG'" for m@0.

A third way in which one can attempt to single
out the Feynman propagator is to impose the
boundary condition that the probability distribu-
tion of created particles for large momenta be ther-
mal with a specified temperature T and chemical
potential p. Then the propagator would be that of
Eq. (3.17) with A determined to within an arbi-
trary phase by Eqs. (3.22) —(3.24). The values of T
and p would have to come from other considera-
tions, as for example, dimensional arguments or
consistency with the Einstein equations as in Refs.
25 and 2. In those references, it was shown that
for a wide class of models without a cosmological
singularity an analysis based on in and out regions
gave a spectrum which at high momenta was ther-
mal. The present boundary condition would be a
way of, generalizing that result to models with a
cosmological singularity. In order to make use of
the Einstein equations one would of course have to
work with a general function a (t) as in Sec. II.
This boundary condition is also applicable to spa-
tially closed universes and does not require that the
line element be continued to the Riemannian
domain.

Of the three possible boundary conditions con-
sidered here, the most natural way of strengthening
the boundary conditions on the analytically contin-
ued kernel is the postulate of square integrability.
It is quite interesting that the simple vanishing of
the kernel which yields a unique propagator in flat
spacetime is not sufficient in curved spacetime.
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The conjecture that for a general open spactime the
boundary conditions of Eqs. (4.6) and (S.4) imposed
in the physical region are sufHcient to determine a
unique propagator remains to be proved.

In this paper, we used the relation between in
and out basis functions and Feynman propagators
to write down the most general expression for the
Feynman propagator in the linearly expanding
universe. %e then proved that the direct generali-
zation by Chitre and Hartle of the boundary condi-
tions used in flat spacetime actually admits a large
class of propagators. Each of these propagators
can be characterized by a temperature and a chem-
ical potential. Several alternative boundary condi-
tions were considered for singling out the Feynman
propagator. One possible approach is to determine
the above temperature and chemical potentials by

other considerations, such as the requirement of
consistency with the Einstein equations. Another
approach is to strengthen the boundary conditions
on the analytically continued kernel by requiring
that it be square integrable. That condition is suf-

ficient in the present model to determine the pro-
pagator uniquely.
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APPENDIX A

Let us consider the propagator G (x,x') given by the Fourier integral

G' '(x x')= d ke'"'" " 'H' '(mt )H'"(mt ) .
(2n. )' 4«' e g pl ) @ EPl

Integration over the angles gives

(Al)

G (x,x')= —16, &
dk[e ' "Hk (mt )Hk'(mt )+e'""Ht'k'(mt& )Htk (mt~ )1 .

16mtt'r Br (A2)

ng the symmetry of the p~~d~~t of the Hankel funct

+ 00

G0(,x ) = ' I e '""H,'„"(mt, )H-,'„"(mt, )dk .
16m.tt'r Br

(A3)

The Hankel functions H,"t, '(mr & ) and H k'(mt & ) can be represented by the following expressions (see Ref.
21, p. 180):

(A4)

(AS)

Inserting the latter integral representations into Eq. (A3) and changing the order of integrations, one obtains

G(0)(x x ~) —im [t coshu t' cosh' i+u)]d-+ 00

8Q«'r Br

Evaluation of the above integral depends on the sign of the parameter cr, given by Eq. (3.8). When the
points x and x' are connected by a timelike geodesic, i.e.,

—2o.=—t +t —2tt'coshr gO,

one obtains

(A7)
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t coshv —t'cosh(r +v) =&—2g cosh(v —1v),

along with

t' sinhr
tanhm =

t —t'coshr

In the opposite case, i.e., when —20 &0, one obtains

t coshu —t' cosh(r +u) =v 2g sinh(1v' —u),

where

t —t'coshr
tanhm'=

t'sinhr

Accordingly we can rewrite Eq. (A6) either as

i 8 + I

GO(X ~) e sm —2c—rcoshv du
8m. tt'r ~r

(AS)

(A9)

(A10)

(Al 1)

(A12)

or as

l 8 +
G (x x')= — — e' """"du' for g 0

8mttr ~»
(A13)

Using the integral representations of the Hankel functions of real [Ho '(x)] and imaginary [Eo(x)] argu-
ments as given in Ref. 17, pp. 180 and 183,

H(2)(( 2 2 )1/2) J i( —2m—2v)1/2coshv'd
0

Kl

((2m 2 )1/2) 1 e+t(2m e) / sinhhv'du~
0 Pl CT =

2 e

one finds

(A14)

(A15)

and

,
—H,"'((—2m'g)'")

8m'tt'r gr

m2 sinhr HP'(( 2m cr)' )—
S77 r ( 2m g)/

0.&0

G (x,x')= — Ko((2m g)'/ )
4 tt'r i)r

im sinhr 1~1((2m g)'
Op0.

4n. r (2m g)'
(A17)

Using now the relationship between functions K1(x) and H'1 '(x) (Ref. 26, p 375),

K, (x)= —, ~H1 ( ix), ——

Eq. (A17) can be rewritten as

(A18)

m' sinl r HP'[ —i(2m'g)'"]
G (x,x')=-

8m. r [—i(2m g)'/ ]

(2) 2 1/2

8m r ( —2m g)/ (A19)

In the latter expression we explicitly used the fact that HP'(z) tends to zero as
i
z

~

~ oo only when
—m &argz &0.

Therefore, for both signs of the parameter g the propagator G (x,x') can be written as

0, m sinhr HP'(( —2m g)'
G (x,x')=-

( —2m 2g)'" (A20)
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APPENDIX 8

24

Let us prove that the kernel (x,s
~

x', 0)' ' given by Eqs. (4.14), (4.12), and (3.8) is an exact solution of the
Schrodinger equation (4.2), i.e.,

i (x,s ~x', 0)' '=( —V„V"+—,R)(x,s ~x', 0)' '.
Bs

(Bl)

In the case of the Robertson-Walker universe (2.1) the Ricci scalar R is equal to 6lt Th.erefore, Eq. (Bl)
can be written explicitly as

i (x—,s ~x', 0) = ——t ———V' +—(x,s ~x', 0)~ ~ (0) ~ 3 ~ l 2 (0)
t3 Bt Bt t~ t2

(82)

Here V' is the three-dimensional Laplacian.
The left-hand side of Eq. (82) gives

t—(x,s
~

x', 0)'"=
Bs

0 2l
(x,s

i

x', 0) .
2s

(83)

The time-derivative part of Eq. (82) is found to be

2l 0——+$2$
t sinh r 3i t'

+——coshr (x,s
i
x',0),

4s ~ 2s t (84)

whereas the Laplacian part of Eq. (82) is equal to

1 2, , (o~ 1 t t' smh r 3ttt'coshr
x,s x', 0) =—1— +

2$
(85)

Substituting Eqs. (83)—(85) into Eq. (82) leads to an identity.
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