PHYSICAL REVIEW D

PARTICLES AND FIELDS

THIRD SERIES, VOLUME 24, NUMBER 12

15 DECEMBER 1981

Collapse of radiating fluid spheres

Kayll Lake and Charles Hellaby
Department of Physics, Queen’s University at Kingston, Ontario, Canada, K7L 3N6
(Received 19 June 1981)

We show that the radiating counterpart to the Oppenheimer-Snyder problem can give
rise to nakedly singular spacetimes. Possible classical collapse scenarios include those
with regular initial conditions whose end states are not merely instantaneously singular.

One of the most important unresolved problems
in classical general relativity is the cosmic censor-
ship hypothesis.! This hypothesis (in its weak
form) asserts that no physically reasonable matter
field can give rise to singularities which are observ-
able from the asymptotic regions of spacetime.
The absence of a result in classical general relativi-
ty with the general implications of the cosmic cen-
sorship hypothesis would be a serious flaw in the
theory. Despite various lines of evidence in favor
of the hypothesis, there is as yet no formulation of
it which is precise and complete enough to allow a
clear proof or disproof. In view of this, it is cer-
tainly a worthwhile exercise to search for examples
which, at least superficially, appear to violate the
hypothesis. To date, these “counterexamples” have
included the development of singularities of the
“shell-crossing” type,” the cylindrical collapse of
dust,® and the collapse of radiating spheres for
which the entire mass of the sphere is radiated
away leaving a nakedly singular spacetime.*

The purpose of this paper is to put forward some
further examples of this latter type. Our results,
which for the most part are analytic, are somewhat
less contrived than those given previously as they
depict the radiating counterpart to the familiar
Oppenheimer-Snyder collapse scenario. More im-
portantly, the naked singularities that we find are
not merely “instantaneous” (as in the example
given by Demianski and Lasota®).

We consider the collapse of a spherical distribu-
tion of matter with timelike boundary surface =
and take the interior metric (#"7) to be of the spa-
tially flat Robertson-Walker form

ds_2=a(t)dri4r?dQ*)—dt*, (1
where dQ*=d 60 +sin’0d¢>. The exterior to X is
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described here by means of a radial flux of unpo-
larized radiation so that the exterior metric (7°%)

takes the outgoing Vaidya form’

ds,*=—2dvde+t’dQ*—

| 2mW) }'duz"

Assuredly, the transition from isotropy to a radial
flux of radiation accross X seems unphysical, or
rather, physically unrealizable. We stress, however,
that for the examples given below no standard en-
ergy or junction condition is in fact violated by this
transition.

Necessary (but not sufficient) conditions for the
junction of "+ onto 7"~ (for a perfect fluid inte-
rior) are given by® 0t =6", ¢ T =¢",

ts=a(t)rs, (3)
m(v)=sma (Ors’p, 4)
)iy 1 =iyt = — T (5)
1—e€
and
- 2m) Ugl420sts=1, (6)
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where a dot denotes d /d T (r the proper time along
2), p gives the total comoving interior energy den-
sity, and e=p /p, where p gives the co-moving inte-
rior isotropic pressure. We set ¢ decreasing to the
futu7re along = (F5 <0) and choose the final condi-
tion

r;(t =O):O . (7)

First, we consider the simplest possible interior
equation of state, e=const.® The Einstein equa-
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tions then give 8mp=23y?/t? and a (t) « t¥ with
v=2/3(1+¢€). Equations (3), (4), and (5) with con-
dition (7) give 3 =3e(1+¢€)t /(14 3€) and

m =6€e>(1+€)t/(1+43€)’. From Egs. (6) and (7)
then’ :

v=—(1+3e), )
so that the exterior history of = is given by)10
—3e(l1+€)
ty=—"T——-0, 9)
2T (143e2
and
3
_ —6e (1+4€) (10)
(143¢)

With u = —t /v, the radial ingoing null geodesic
equation of the metric (2), with the dependence
(10), takes the separated form

dv uv
du  (u—a)a_—u)
where o, = {1+£[1—96€*(1+€)/(1+3€)*]'/2}.

For u=~a, then, the ingoing null geodesics are
given by'!

) (11)

lt+a_v|”
= (12)

b
e+

where by =a_/(a,—a_), by=a,/(a, —a_), and
A is a constant >0. Of the null surfaces u =a,
only the surface u =a_ is an event horizon. The
surface u =a . is merely a particle horizon (e.g.,
for 3, see Fig. 1 below). The history of = is a
homothetic Killing trajectory.'> We note that the
(radial) red-shift from =, as reckoned from spatial
infinity for v <0, is given by (1—€*)!/2/(1+4 3e).
For the metric (2) [with the dependence (10)],
the surface v =0 has a scalar polynomial singulari-
ty at t =0.'> Moreover, the (outgoing) null surface
v =0 is not flat (unless e=0). Any C" continua-
tion of the metric (2) across the null surface v =0
for €40 requires negative m for n > 0. All such
continuations are nakedly singular. The collapse
scenario described above then necessitates the
development of a nakedly singular spacetime
(which is not merely instantaneously singular'¥) un-
less a C° continuation is imposed on the null sur-
face v =0. The history of = is summarized in Fig.
1. (For the figure, we have chosen the continua-
tion so that the observed luminosity at spatial in-
finity remains constant.’) '
The example discussed above is not entirely reg-
ular since, according to Eq. (10), m diverges initial-

afemm

FIG. 1. The history of the boundary surface X in the
Vaidya (v,t) coordinates for the case e= —;— While only
the geometry above X (that is, the exterior spacetime) is
relevant to the collapse scenario described in the text,
the complete Vaidya field is shown here for clarity. The
exterior metric has been continued through the null sur-
face v =0 by setting dm /dv= ——. The null surfaces
r= —a4v are labeled by H 4, and h gives the (spacelike)
apparent horizon at t=2m(v). Whereas the radial out-
going null geodesics are given simply by v =const, the
radial ingoing null geodesics (except for t=—a4v)
satisfy Eq. (12) and are shown dashed. The surface t =0
is timelike, singular, and naked for v >0.

/

ly (as v— — o0 ).!> We now show that this defi-
ciency is due to the simple equation of state used

‘throughout the history of 2. For a mixture of

noninteracting dust and radiation, the scale factor

a can be written in terms of elementary functions.!®
For such a mixture the Einstein equations now

give 8mp=3 ><43(2\/;/+;L77)2/7]4( 4‘/:/—+—,u,77)4 and
a(t) < Vym+un*/4 with t =Vyn?/2+un’/12,
where v and p are constants.!” Now
€=4v/3(2V'v+un)?, and Egs. (3), (4), and (5) with
condition (7) give )

VomH4Vy+un)
Ty =
p 602V v ) (13)
and
422
m = = = . 4
27(4V v 4+un) 2V v+ pun) 1

Moreover, from Egs. (6) and (7) we find
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_ (3u2n2+24u\/;/n+28v)n
- 36u
21/3/277 41/3/2 un
—_ In 1
wun+2vv) 2 2wy T
128v*% | 3uy (15)
=V n 2RI g
+ 27u? 8y

It is easy to show that in the limit u—0 we recov-
er the case e= % For p+0 however, Eq. (14)
shows that m is initially finite (for n— «) and
monotonically decreases to zero (at v =7=0).
Moreover, dm /dv | , o= — 5—14 (again as in the
ez% case, but now for all finite v and u) and so
the null surface v =0 (which also contains a scalar
polynomial singularity at £=0) is not flat. The
present case is, in the neighborhood of the null sur-
face v =0, indistinguishable from the simple case
€= % The regularity of the initial conditions,
however, distinguishes it from any e=const case.
The “counterexamples” to cosmic censorship
given above could be dismissed in a number of
ways. The least satisfactory, we feel, would be the
claim that the required transition at = seems phys-
ically unrealizable. Moreover, the collapse
scenarios discussed here would, at the semiclassical
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level, be accompanied by a catastrophic flux of
created particles which, near the end point of the
collapse, would completely alter the classical pic-
ture given.!” The cosmic censorship hypothesis is,
however, formulated entirely at the classical level.
Any dismissal based on a semiclassical particle
flux is, therefore, unacceptable. What seems to us
to be the culprit in the examples given is the interi-
or equation of state. We do not believe that the
equations of state used are oversimplified to the
extent that they give unreliable results for the con-
ventional picture of collapse.”” Rather, they seem
to indicate that the present “‘counterexamples” can
be avoided (or rather, reduced to at best an instan-
taneous nature) only if € (as t—0) necessarily ap-
proaches zero as, for example, in the Hagedorn
equation of state.’!
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