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Hyperfine splittings in heavy-quark systems
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The hyperfine splittings in heavy-quark systems are calculated to fourth order in the strong

coupling constant. The P-q, mass difference gives A—s=0.16+0.02+0.07 GeV (MS refers to

the modified minimal-subtraction scheme) where the first uncertainty is experimental and the
second is a crude estimate of the uncertainty arising from scheme dependence. From the Y-q~
mass difference we expect a more reliable and accurate determination of A.

Nonrelativistic bound-state spectroscopies (such as
hydrogen atom, positronium, etc.) have provided in-

valuable tools to guide us in our understanding of
quantum mechanics and quantum electrodynamics.
They also allow us to determine accurately the fine-
structure constant and the electron mass. Nonrela-
tivistic bound systems are even more important in
quantum chromodynamics (QCD) since there are no
free quarks or free gluons upon which direct mea-
surements can be performed. Although our present
understanding of the large-distance behavior of QCD
is still far from complete, quarkonia (i.e., heavy-
quark —antiquark bound systems) can provide an ac-
curate determination of the scale parameter A and
heavy-quark masses in QCD. ' ' This is possible only
after care is taken to separate the short-distance ef-
fects from the large-distance effects, We argue that
this can be achieved for the hyperfine splitting. Here
we present the results of the complete one-loop cal-
culation for the hyperfine splitting of heavy-quark
systems. The result is then applied to the p and Y
spectroscopies.

To lowest order in perturbative QCD, the hyper-
fine splitting4 is proportional to the square of the
bound-state wave function at the origin, ~@(0)~'.

Thus the spin force, which is responsible for the hy-

perfine splitting, is short ranged. As we shall see,
this force remains short ranged even after the one-

. loop corrections have been incorporated. For the
wave function at short distances we need the quar-
konium potential which, however, can be accurately
determined via a phenomenological approach. "
Hence we believe that perturbative QCD is applicable
to calculate the hyperfine splitting. This is in contrast
to the fine structure (e.g. , the splitting of the P
states), where the responsible spin-dependent force
extends to large distances. Consequently, the fine

structure is more sensitive to the nature of the con-
fining force and the result derived from perturbative
QCD may be unreliable in this case.

Our calculation is carried out in two steps. We first
calculate, in momentum space, the effective Hamil-
tonian b H which governs the spin-spin interaction of
a quark-antiquark pair with on-shell quark (mass m).
In the second step we obtain the hyperfine splittings
AE by evaluating expectation values of the Fourier
transform of 4H with the bound-state wave func-
tions. The Feynman diagrams which contribute to
hH are sho~n in Fig. 1. This set of graphs is neces-
sarily gauge invariant as can be easily checked. The
results for the individual diagrams given below refer
to the Feynman gauge. We have used dimensional
regularization for ultraviolet divergences, and a
small gluon mass A, to regularize infrared divergences.
The result reads

8 ~ (0) ~ (0)
hH= ' C2(R) l+ ' K

(o)

(4)

FIG. 1. Feynman diagrams contributing to the hyperfine

splitting to fourth order in the strong coupling constant.
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where a,'Oi is the unrenormalized strong fine-structure constant, a, =g'/4ir, and C2(R) = —,. The first term arises
from Fig. 1(a), and the various one-loop contributions are given by

K (1(b)) =—C2(G) ——+in(42r) —y —ln
2

+ — ——T(R)Ny ——+in(4n) —y —ln 2
+1 5 2 Q2 31 1 4 2 Q 20

4 3 p,
2 9 4 3 2

(2)

K"'(1(c)+1(d)) = ——C,(R) ——C,(G) ———ln +—ln
3 3 1 1 Q' 2 Q'
2 4 3 2 m' 3

2

1 2 mK' '(l(e) +1(f))=C2(R) ——C2(G) —+in(42r) —y —ln +6+2ln
4 jx m!

1 2 m2 4 Q2
K (1(g)) =—C2(G) 3 —+in(4n) —y —ln

2
+ —+21n

2
+2

4 p, 3 m

Kto'(1(h) +1(i))= —,6 C2(R)(1 —ln2)

(3)

(6)

where we have systematically dropped terms of order
Q2/m2. &=4 D for D —space-time dimensions, gati, is

the renormalization scale, Q the modulus of the
spacelike momentum transfer, y =0.5772. . . the
Euler constant, Ny the number of massless quark fla-

1
vora, and in QCD the group factors read T(R) = 2,
C2(G) =3. In Eq. (3) the "I/u singularity, "which

arises from Fig. 1(c), has been removed in the stan-
dard manner. Summing Eqs. (1)—(6) we obtain

82r aM s(p, ) aM s(p, )
b.H= C2(R) 1+ K, (7a)

with

K = —„(1—9 ln2) C2(R) +—„C2(G) ——,T(R)Ny

[11C2(G)—4T(R) Ny] ln

I

the constant [ln(4ir) —y] into the definition of the
renormalized, scale-dependent coupling constant
aMs(p, ). As expected, the infrared divergences
which appear in Eqs. (3) and (4) have canceled in the
sum Eq. (7b). The existence of the ln(Q'/m') con-
tribution in Eq. (7b) was first pointed out by Dine. '
However, results quoted in the literatures ' for the
coefficient of this term disagree with Eq. (7).

Nonperturbative effects" that can be absorbed into
the potential would influence the wave function at
short distances. %e assume that any additional ener-

gy shift of the pseudoscalar state due to the U(1)
anomaly is negligible. This assumption can eventual-
ly be tested in a quarkonium system ~here the quark
and the antiquark carry different flavors [e.g. , (bc),
(tb), etc.]. In this case, the effective Hamiltonian is
given by (m i and m2 are the quark mass and the an-
tiquark mass, respectively)

+ —,C,(G) ln
7 Q2

m
(7b)

82r Ms /
C (R) I Ms 12 g(12) ' a—(p)-

3 m&m2

~here we have used the modified minimal-subtrac-
tion (MS) scheme' to absorb the pole term as well as with

(ga)

1 i I

mgm2 m~+m2 myK= —3
2 2

ln +1 C2(R)+ — ln
m~ -m2 m2 8 m~ —m2 m2

5 5

36
C2(G) ——T(R)Ni

9

[11C2(G) —4 T(R)Nr] ln
2

+ —C2(G) ln
Q2

, tl m&m2
(gb)

Note that the annihilation diagrams [Figs. 1(h), 1(i)l do not contribute in Eq. (8). Equations (7) and (8) are our
final results.
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From Eq. (7) one obtains the hyperfine splitting
4E by evaluating the appropriate expectation
values, "

32m ~Ms Iji o'Ms HhE =
~ (1) 1+ e(p„(), (9a)

m m'

with
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(I)

e(p, , g) =0.563+2.25ln, +0 375$. ,
m

(9b)

(9c)
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Ng =3
The quantities

~ $(0) ~' and g have to be evaluated in
a specific potential model. From Ref. 2 we obtain"
for J/P and Y: g(P) =0.56, g(Y) = —0.26. The
smallness of ( for P and Y shows that momentum
transfers of order m dominate the hyperfine splittings
in both cases. Thus the appropriate number of fla-
vors is Nf =3 for P and Nf =4 for Y.

From the hyperfine splitting, the leptonic width'
of the vector state ( V), and the hadronic width'd of
the pseudoscalar state we can form the ratios r ~ and

rq, which are almost independent of the wave func-
tion at short distances, and hence any particular po-
tential model that is used. Taking p, = m, we have,
for the P system with Nf =3,

I

9 q q B,E ' aMs(m)
r( —= —e'a' = a—(m) 1+6.11

8 I v Ms
7ree

r

4 ihd Ms(m)
rg= — ' ——a —(m) 1+4—.5

~E MS

, (10)

A—s=016+0 02+O 07 Ge

~here the first uncertainty is experimental and the
last is a crude estimate of the uncertainty due to

where e and o, are the quark charge and the elec-
tromagnetic fine-structure constant, respectively. Us-
ing'5 I' (P) =4.8 +0.6 keV and hE(Q-g, ) =119+9
MeV, we obtain from the ratio r~ (Nf =3) and Eq.
(10), AMs =0.40 + 0.07 GeV (errors are experimen-

tal). However, the correction term in Eq. (10) is
d

of the leading term, which clearly invalidates the per-
turbative approximation. Using the method suggest-
ed by Grunberg and others, ' we obtain instead
AMs =0.170 +0.02 GeV. Using the wave functions
of Ref. 2 and Eq. (9), we obtain AM, =0.35 +0.16
GeV, where the error includes the quark-mass uncer-
tainty (see Ref. 2). Using the hadronic width of the

q, (Ref. 15), I'„=20+Id~ MeV, we have, from rq,

AMs =55+5~ MeV. Taking the weighted average, we

obtain

FIG. 2. Y-qb system. The hyperfine splitting 4E{&-qb)
and the ratios r& and r~ {see text). For the hyperfine split-

ting, the wave functions of Ref. 2 have been used {Ref. 13).
Ny= 4.

scheme dependence. Also we predict AE(P'-q, ')
=80+10 MeV.

We conclude with the following remarks. '

(i) The hypothesis that the hyperfine splittings of
heavy-quark systems are dominated by short-distance
effects is self-consistent.

(ii) As anticipated, ' the radiative correction (i.e.,
the one-loop contribution) to the hyperfine splitting
is small [e(P) =0.77 in the MS scheme, see Eq. (9a)].

(iii) The inclusion of any additional U(1) anomaly
effect should raise the q, . This would result in an in-

crease in the value of AMs.

(iv) The p q, mass di-fference gives a scale param-
eter compatible with the range of scale parameters
(AMs =0.1—0.5 GeV) considered in connection with

the P and Y spectroscopies. ' However, theoretical
uncertainties, such as relativistic corrections and
higher-order radiative corrections, etc., are not
known. All these corrections and ambiguities will be
much less important in the Y spectroscopy, for which
we expect a more accurate determination of the scale
parameter A. The predictions for the Y-gb mass
difference and the ratios r~ and r~ are shown in Fig. 2

as functions of AMs.
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4me 2 2
I. v (1) 1 —5.33—

m 7r
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8~ o.Ms (m) Ms(m)
I'~a,s= (1) & 1+5.27

m
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