PHYSICAL REVIEW D

Brief Reports

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of scientific quality, does not warrant a regular article. (Addenda to papers previously published in the Physical Review by the same authors are included in Brief Reports.) A Brief Report may be no longer than 3½ printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Limits on the emission of heavy neutrinos in ³H decay

J. J. Simpson

Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Received 23 June 1981)

A high-precision β energy spectrum of ³H has been examined for the emission of a heavy neutrino (between 100 eV and 10 keV). No evidence has been found for it, and limits are given as a function of the mixing angle of the heavy neutrino with the usual light neutrino.

There is considerable interest in whether the neutrino (or antineutrino) emitted in weak interactions is a mass eigenstate or a linear superposition of primitive neutrinos of definite mass. If the latter is the case, then energy spectra of β particles will show kinks¹⁻³ associated with the emission of energetically allowed neutrinos of different mass. An examination of β spectra can therefore be used to look for massive neutrinos and, if observed, to determine the mixing amplitudes.

It is useful to assume that the electron neutrino is predominantly a linear combination of two mass eigenstates ν_1 and ν_2 , of masses m_1 and m_2 ,

$$\nu_e = \nu_1 \cos\theta + \nu_2 \sin\theta \,. \tag{1}$$

FIG. 1. Magnitude of the difference of adjacent points of the Fermi-Kurie plot for ³H as a function of the kinetic energy of β particles. The smooth curve is theoretically expected for a heavy-neutrino mass of 5 keV and mixing strength $\sin^2\theta = 0.04$.

Then the β spectrum will be written

$$N_{\beta}(E, Z) = N_{\beta}(E, Z, m_1) \cos^2 \theta + N_{\beta}(E, Z, m_2) \sin^2 \theta ,$$
(2)

where $N_{\beta}(E, Z, m)$ is the usual β energy spectrum⁴ with the emission of one neutrino of mass m. The neutrino masses must be less than $(m_x - m_y - m_e)c^2$, where m_x , m_y , and m_e are the masses of the parent nucleus, daughter nucleus, and the electron (neglecting differences in atomic binding energies).

This paper presents an analysis of the β energy spectrum of tritium obtained by implantation of the tritium in a Si(Li) x-ray detector. A detailed description of the experiment whose purpose was

FIG. 2. Limits on the emission of a heavy neutrino from ${}^{3}\text{H}$ as a function of the coupling strength. The shaded area is excluded at the 95% confidence level.

24

2971

© 1981 The American Physical Society

to measure the neutrino mass has appeared, 5 and only the results of a two-neutrino search are given.

Since β decay of tritium is an allowed decay, the Fermi-Kurie plot is linear,⁴ except very near the end in the case of nonzero neutrino mass, and its derivative is a constant. If the β spectrum is as expressed in Eq. (2), then the derivative will have a cusp (smeared by the resolution function) at a β energy m_2c^2 below the extrapolated end-point energy of the β spectrum, and below the energy of the cusp the derivative is larger in magnitude than above. Figure 1 shows the magnitude ΔK of the difference of adjacent points in the Fermi-Kurie plot of the total of the postannealing data of Ref. 5. Also shown is the theoretically expected difference for m_2 of 5 keV and $\sin^2\theta$ of 0.04. There is no firm evidence for cusps in the data. A χ^2 test of expression (2) against the data was then

used to determine the limits on the presence of a heavy neutrino m_2 with probability amplitude $\sin^2\theta$ and the shaded area of Fig. 2 shows the region of mass-probability combinations disallowed at the 95% confidence level. In fact only a few masses spanning the energy from about 100 eV to 10 keV were actually tested, and a smooth curve connecting their positions on Fig. 2 produced the 5% contour shown. Note that only masses less than 600 eV can have mixing angles equal to or larger than the Cabibbo angle θ_c , for which $\sin^2\theta_c = 0.05$.

In conclusion, for a restricted range of mass from about 100 eV to 10 keV, the spectrum of tritium puts quite low limits on the strength of mixing of a heavy neutrino with the dominant light one emitted in β decay.

Informative discussions with G. Karl are greatly acknowledged.

¹M. Nakagawa, H. Okonagi, S. Sakata, and A. Toyoda, Prog. Theor. Phys. 30, 258 (1963).

²R. E. Shrock, Phys. Lett. 96B, 159 (1980).

³B. H. J. McKellar, Phys. Lett. 97B, 93 (1980).

⁴H. F. Schopper, Weak Interactions and Nuclear Beta Decay (North-Holland, Amsterdam, 1966).
⁵J. J. Simpson, Phys. Rev. D <u>23</u>, 649 (1981).