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Sum rules for partial waves in production processes
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Using general crossing symmetry a complete set of sum rules for partial waves in production processes is derived.

These sum rules are derived explicitly for the case of pion production and are particularly suited to provide

constraints on model (e.g., isobar) amplitudes.

I. INTRODUCTION

In particle physics two-body reactions have at-
tracted most attention due to their relative sim-
plicity, both theoretical and experimental, com-
pared with production processes where the final
state consists of many particles. Production pro-
cesses are important experimentally because at
high energies they account for most of the total
cross section. They are also of great theoretical
interest; for example much work has been done

applying quantum chromodynamics to the study of
jets.

However, the increased number of particles re-
sults in considerable kinematic complexity; each
production event is characterized by 3n -4 inde-
pendent variables, where n is the number of final-
state particles. Thus for n =3 we need five inde-
pendent variables and for n =4 there are eight, and
so on. Moreover the spin dependence becomes
more involved; ignoring possible restrictions due
to symmetries we need

(2s)+1)
i~a, b

/ye ~ ~ ~ e fry

independent helicity amplitudes to describe the
production process a+&- f, +f, + ~ ~ ~ + f„.In fact
there are more degrees of freedom than can be de-
termined experimentally; this arises from the fact
that it is not yet possible to measure the spin
states of all the final-state particles in a produc-
tion event. So in order to completely determine
the individual amplitudes corresponding to the dif-
ferent spin states of the particles, it is necessary
to make some assumptions about the functional de-
pendence of the amplitudes on the 3n -4 indepen-
dent variables. In other words a model is adopted
for the process. We mention, for example, the
Veneziano model and the isobar model. Of course
it is inherent in the nature of these model ampli-
tudes that they are not unique, so it is important
that any general symmetry or invariance princi-
ples available should be either incorporated in the
model or imposed as a constraint.

Our purpose in this work, therefore, is to de-
rive from general crossing symmetry relations
between partial-wave amplitudes for production
processes which we believe will provide useful
constraints on model amplitudes. We derive sum
rules for partial waves analogous to those derived
for two-body reactions by Balachandran and co-
workers l(a)-1(c) and for multiparticle spinless
reactions by Modjtehedzadeh. ' Sum rules for
multiparticle processes using crossing were also
derived by Johannesson' using techniques different
from those of this paper. The partial-wave ampli-
tudes he uses are (like those of Modjtehedzadeh)
diagonal only in the total angular momentum of the
system. His results therefore, though elegant,
are not readily generalized to cover final-state in-
teractions which can be analyzed using the work
of this paper. Section II contains kinematic defini-
tions together with the helicity crossing matrix
and kinematic singularities associated with the
helicity amplitudes for the two crossing-isolated
processes Nw -Nwm and +N-~mr. We also sum-
marize here the analytic behavior of the crossing
matrix between kinematic -singularity-free helicity
amplitudes. (This material is discussed in great-
er detail in our previous paper. '} In Sec. III, after
giving the partial-wave expansions both for these
nonsingular amplitudes and for arbitrary polynomi-
als in the independent scalars, we use the results
of Sec. II to obtain sum rules for partial-wave
amplitudes in the two channels. An appendix con-
tains definitions of angles and coefficient functions
used, together with limits of phase-space integrals
over the Euclidean region.

II. PRELIMINARIES

In this section we summarize the necessary pre-
liminaries to calculating the sum rules of Sec. III.
We refer the reader to our paper' for further de-
tails.

A. Kinematics

We consider the process a+b-1+2+3. A one-
particle helicity state (m, s, ri; P, &) or ~P, X) isde-
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fined by
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We are interested in evaluating integrals of the
form ff(Z) d~, where

where (,&},(t are defined by

E=m cosh(,

IP I =~»nh$,

and

(2.2a)

(2.2b)

(P„,P„,P,) = (IPI sin8cosg, IPI sin&sing, IPI eos&).

(2.2)

The helicity amplitudes T» „.» are taken to
be

1, 2, 3

de= f&(P -fqi( )d P(6a(P, +P3-P, P2 -—P3)

(2.6)

is the product of the initial- and final-state phase-
space factors. It is a straightforward matter to
show that

&'[ .(P., P.)]"'i..., (2.7)

normalized as in Ref. 4. Setting P=P, +P, we
take Z=(P', P P„PP„P,~ P„P,P2} as the set
of linearly independent scalar variables on which
Tl„&depends. There also exists one pseudoscalar
c2 = f p v poP "P,"P', P', on whic h T~,~

may depend.
Parity invariance gives the relation

T&&(} (Zi ~2) v&1}T-&&}(Zi~2) i (2.4)

where &(&» =+3(.,&l, (-1)'("(. The linear combina-
tions

&)lj
I

I( }1} cx} -&&)})

}~,j
(2.5)

are therefore even in a„and thus regular at E, = 0.
We define all angles and rapidities used in the
paper in the Appendix.

where s, s,./, and t„aregiven by s = P', s, /
= (P,

+P/), and t„=(P,-P() .2Also, for convenience,
We Write A = /&. 2(p, p, )b 2(p, p, )]1/a. The SpeCial
Gram determinants 4, are defined in the Appen-
dix. Following Balachandran et al.""' and Modj-
tehedzadeh' we choose to perform this investiga-
tion not over the physical region of the process
a + b —1 + 2 + 3 but over the Euclidean region, where
the space parts of the particle momenta are imag-
inary or zero. It is easily checked that the Eucli-
dean region is exactly that region which corre-
sponds to physical values for the angles 6), 0', and
(t) in each channel, together with the appropriate
range for the energy and subenergy in that channel.
We give the limits on the variables s, s»,
and g, corresponding to this choice in the Appen-
dix. Similarly the integral over the Euclidean re-
gion in terms of the crossed-channel variables is

dt„ds d cos8, d cos8;d g b, , P, P b, P„-P6, P, -P„P,-P (2.8)

B. Kinematic singularities and the crossing matrix

Again referring the reader to our paper' and to Svensson' for details, we give the regularized helicity
amplitudes (RHA's) T(1&2&, i.e., those linear combinations of helicity amplitudes free of the kinematic sin-
gularities which arise from the singular behavior of the helicity states on certain hypersurfaces in the
space of the scalar variables Z. We now restrict ourselves to the case s, sy 2 sy s2 s3 0 e g pion
production Nm -Nmm and the corresponding crossed process NN-Fm7t'.

The RHA's for the subchannel process a+ b- 1+2+3 are

T&1, 2& [g (P P ) ~ (P P )]1/a([f&+(P P P )] / ] 1a x1}/2f[D-(P P P )]1/2]}x +11}/2T&1,2&
l a Q 1 3 cf 1 3 t &}}9 1 XyX

We also found the RHA's for the continued t~-channel (a+1- f&+2+)3helicity amplitudes as

7 (1& [L&-(P, P )]1/ [f}s(P P P ) ~-(p P P )]& &)a-&(1(/2 sfs(1&

a 1

(2.9)

(2.10)

&&,1 =[D3(Pai-P1)] [Ds(P)Pa)P1)D3(P)Pa!Pi)] ' ' 111.
The helicity crossing matrix connecting the linear combinations T~+~""~&' and T~", '('&~) is shown in Ref.
4 tobe
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go); Ds(»Pa&Pili -f2

D;(P, P., P,}f, f„ D;(P., —P,)(2s)'"

(2.12)

—(2) . D3(P, P„iP)f 3f~

Ds(P, P„Pi)f4 -f~

where

D,(P., -P,)(2s)'",

(2.13)

f, =(sm. '+A'-P P.P ~ P,)'i2,

f =(sm '- A' PP.P P-,)'",
f =(-sm '+A' —P ' P P ' P )'"

(2.14a)

(2.14b)

(2.14c)

From (2.11) for the crossing matrix together with
(2.9) and (2.10) for the RHA's it follows after a
certain amount of manipulation that the regularized
crossing matrix (RCM) —the crossing matrix be-
tween the RHA's —can be written in the simple
form

D;(P,P„P,) =A'(1+ cos8f), (2.17)

it follows that X ' is linear in cos8, .
We observe in passing that this inverse crossing

matrix still exhibits singular behavior at +(P,P,}
=0, g(P, P,) =0 and s =0. The branch point at
s =0 can, in fact, be removed by redefining the
f„-channel RHA's while those at +(P, P,) =0 and

g,(P, P, ) =0 correspond to the existence of con-
straints on the s„-channel RHA's on these sub-
manifolds. However, as we are not primarily
concerned with the dependence of the amplitudes
on s and s23 we do not pursue this further, merely
noting that these singularities in the inverse RCM
do not affect the derivation of the sum rules in the
next section.

III. SUM RULES FOR PARTIAL WAVES

I

It is immediately apparent that X ' is not only finite
at +(P,P„P,) =0 but in fact it is linear in

D;(P, P„P,) and thus, as

f~ =(-sm, ' —A' —P ' P, P ' P,)'i (2.14d)

X(1) 1

and

-f D'(P, P„P) f D (P,P„P} 2(2 )1/2

(2.15)

X(2)-l

The 2x 2 matrices X and X correspond to the
upper-left and lower-right blocks in X& 2'~1, re-
spectively.

It is also useful to calculate the inverse RCM:

In this section we derive sum rules relating
partial waves for the direct and crossed-channel
processes. Our techniques are based on the work
of Modjtehedzadeh2 on sum rules for processes of
type g+b, -1+2+3, where all particles have zero
spin. The introduction of spin, of course, intro-
duces several complications, namely, kinematic
singularities and the helicity crossing matrix, both
discussed in Sec. II. We begin by considering
partial-wave expansions for production processes.

A. Partial-wave expansions

4 Namyslowski et al. ' use the three-particle angu-
lar-momentum states of Wick' to write a partial-
wave expansion for the helicity amplitudes T„&as)tl Ag

f4 s(PiPaiP1) f D-(p p p ) (2s)
(2.16)

I

S S23
1/2

(~ ~ i g (~ ~ i 1/2 J' jl yg10 1 )l,g, tfel-)tl 1& 1& 1 + Q & 23

where Nz =(2j2Z+1)'". Again we define the angles in the Appendix. For an unpolarized target, P; is of
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course not measured, moreover Wick's three-particle helicity states contain an overall factor e-&"1~1 which
does not appear in the states IP;X,;P~X2;P~Xg we choose to work with. Thus, using (2.9) for the RHA's
we find

T (1,2) — P 23 iV' Pj (cosgc/2) ~ a 1~ (singe/2) I xa+lll+ d 1 (g )dj1 S S 1/2

[~(P P )]1/2 j Jl 1 1 y)10 1 Ag ~ ygl A,lJ '~12ml 2& 3
2/

X (e™121y e lml "1)7 j/lmlll(S S ) (3.2)

Similarly we can write the partial-wave expansion for the t„-channel HHA s as
2 '1 1/2(1)

2

&& [D'(P P P )D (P P P)] &" "d' (8 )d (8')(e'm121+e 'm121)& ' ' (3 3)

In his paper' on sum rules for processes of type 2-N where all particles have spin-zero, Modjtehedzadeh
gives a sketch proof that any polynomial in the five scalars Z has a finite partial-wave expansion. We car-
ried out a similar check for the more complicated cases Am-Ngz and NN-mew with the same conclusion.
We find, for an arbitrary polynomial 6',(Z), that

j jl, ml L 2& 3

x ( I + Zc) I xa-All /2(1 Z)cl 1 +axll 2/dl (g )elml21 C Jl 1 l(s s ) (3.4)

where Z, =—cos8, and the limits of the summation are given by

ml

A™~&l'Ilm -'ll&-~-A+5+&-'(I'™-' l- l'-' I+ I&. -m +&ll —I'+' I)

lm, l

& j,- r+~,

(3.5a)

(3.5b)

(3.5c)

and y, 5, and e are the highest powers of s», t„,and f„,respectively, in d'3. A sketch proof of (3.4) ap-
pears in the Appendix.

Similarly we have checked that

t 2 1/2
(I Zc2) I Xa-All (p (Z)— la 23-„„„[a.(. J,ya, &J.-.„s.-.).,&.„J,)] I )

g (I Zc2) I la 11I /2d j (gc)d~l (g ) lm121C jlml(f )1 &a-&1 2 ~1 1 ~1O 1 Xakl la ~ 23

where now the limits of the summations are given by

ml

If™»CI'-&.
I

I~. l)-&-&'+&+~-~l'-"-m. l+ I'-"+m.
l,

—2I'-&. I)

Im. l
-j.- lm. l+r+e

(3.6)

(3.7a)

(3.7b)

(3.7c)

and y, 5, and E are the highest powers of
f», s, and t„,respectively, in s', (Z).

In Sec. IIIB, when using (3.2) and (3.3), we ig-
nore the factors 1, &„corresponding to T"' and
T"'. This leads to no error for, as may be seen
from (2.11), the RCM only relates amplitudes of
the same 'signature in different channels. The
omission of these factors is made for reasons of
simplicity —the square-root singularities at c2 =0
thus reintroduced are, of course, integrable and
so the integrals over the Euclidean region per-
formed in the next section are well defined.

B. Sum rules

The crossing relation for RHA's, expressed in
terms of the inverse RCM [(2.15) and (2.16)], is

X(122) T(1,2) (g ~) T(1,2)(/la) (3.8)Xa)t1

where parity conservation allows us to set X, = A,,'
=+—,'. We obtain our sum rules from the resulting
identity

( )~1
~,(P, P., P, ) a,*(Z)X„.',. 7",",;."'"3'

= g(Q P P —P)(P*(Z)T ~ ala, (3.9)
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where again 6', is an arbitrary polynomial in the
set Z and (p, is the same polynomial expressed in
terms of Z, the crossed-channel version of Z
[of course, n,,(P, P„P,) —= n, (Q, P„P,—P) for
Q =P, —P,]. Next we integrate (3.9) over the
Euclidean region:

d~', P„P,—P O',* Z T„"""1', 3.1Q

projecting out a finite number of partial waves in
each channel.

Consider first the left-hand side of (3.10), 8,""
say. Qn substituting into 8,"" the partial-wave
expansions (3.2) and (3.4), together with the ex-
pression (2.7) for the phase-space factor d&u and
using the linearity of X" ' in cos8, we find after
integrating over 8„8;,and g,—and a great deal
of algebra —that

J+ j 3 n

= —v dsds g s (2J+ 1) Q ~& '~~ ' (s s ) p & ~1'~a'mls 23 n 23 nJog jl) I mll n=O i= -n

y [CJj]mphil (s g )q'z-i jgmg, xi(s s ) g ( 1 ) xi+ xgC J) tnt, xi (s s )EZ'1 i jy g xy($. $, )] (3 1 1 )
a

23 )I a a

where/, and j, are given by (3.5b) and (3.5c) and we define the known quantities o.„'~i~~"'"-'(s, s») and
y„'"~1~a™1'in the Appendiz.

Similarly, calling the right-hand side of (3.10) V", ", we find after integrating over the angular depen-
dence that

@la S23S23 ~2 Pa~ Pl ~2 ~Pb 2 Paq -Pl
IJ j 2 ~8

g g g
~1™1

$ g — g ~ ~a'~1™1g '~&™1
$la~ 23 ~+ yp la~ 23 la& 23

J»K ~l~l mll a 1 a x 1=-2 a

2

+(-1) & xC I' q+(t~„s23) v'qg „g'(t~,, s2,)- Q 5'"""' "' &~~ qg '(tea~ ~») ~

Xa, X1

(3.12)

The variables 5"" a ~1 1' hre defined in the
g

Appendix, and are analogous to the ~„'~a ~1' men-
tioned above.

Thus, equating

and

~(1) g(1)
s t

g(2) —g(2)
s t

(3.13)

(3.14)

IV. CONCLUSIONS

In this work our objective was to obtain sum
rules —constraints on partial waves —for produc-
tion processes like those obtained by Balachandran
eI; al. for four-particle scattering and by Modjte-
hedzadeh for five-particle spinless processes.
We began by summarizing the contents of our
previous paper' in which we considered in detail
the analytic behavior of the RCM in order to cheek

for A.,*=——,', —,', we obtain the required sum rules
relating only a finite number of partial waves in
each channel, where, of course, the integrals are
performed over the ranges specified in the Ap-
pendix.

that the integrals over the matrix's angular de-
pendence could be performed. Next, after check-
ing that an arbitrary polynomial in Z had a finite
partial-wave expansion it was a straightforward,
though algebraically involved, task to derive sum
rules connecting partial-wave amplitudes for
crossing-related processes.

We have considered' one obvious application of
these sum rules, i.e. , isobar-model fits to pro-
duction and (the crossing-related) annihilation
processes. In complete analogy to the work of
Hoskies' on the application of sum rules to w-m

elastic scattering, on substituting the isobar-
model partial-wave amplitudes into the sum rules
(3.13) and (3.14) we obtain a set of constraints on
the parameter-dependent amplitudes. Thus the
imposition of the sum rules reduces the number
of degrees of freedom in a fit to experimental
data. We consider this to be the most immediate
use of our work.

For reasons of space we do not give these iso-
bar-model constraints here. They will be in-
cluded in a paper on more general applications,
now being prepared.
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APPENDIX

l. Angles Initial-state
particle (i =a, b)

Final-state
particle (k =1,2,3).

TABLE I. Polar and azilnuthal angles and rapidities.

%e begin by defining the special Gram determi-
nants 4,(P, q), Es(P, q, R), and &,(P, q, R, s) us-
ing the notation of Ref. 3:

P' q)
&P ql

where

"ii= det( R )
{R~ Rs ''' R„)

and (q, R,) is the nxI matrix whose (i, k) entry
is q, 8„.Similarly

~,(P,q, R)= ~

LP q Rf

&,(P, q, R, s) =
~

(P q R s)
{Pq Rs)

Then

are defined by

~„,(P„.. . ,P„,) ~„(P„.. . ,P„)
=D„'(P„P„... ,P„,;P„„P„)

cosh/

sinh)

P ~ P;
m]v s

f& (p p&)]~
m;Ds

sine

sin&

cosP

sing

cosg

sing

+1 for a=a
cos8 -1 for z=b

P P»
m, Hs

[g(p, p )]v~

m~Hs

P P~"

P PI,
g, (P,P.)]«2 g, (P,P,)]~~

[s,(p, p,)]v'[g(p, p, )]~'

P-P~ P;

Iz,(P,P,)]~'Q,,(P;,P,)]~'

fs tjt {Pqi,t pg, Pt )]
[g(p, pt, )P [rt2{p;,pg)]~

PP P(

P P Pq
[+(P,P„P,)]~' [Q(P,P„P,)]~~

~ (P;P„pg,Pg, ) E&p(P, P,)]
[q(p, p„p,)P' [q(p, p„p,)]~2

"P P( P
P P, PI,

[q(p, p„p,) ]v~ [q(p, p„p,)]~~

& (P,P, ,P„P) [Dp(P, P, )]
[q(p, p„p,)]v'[q{J,P„J,)p2

Thus

/P P ~ ~ ~

LP, Ps ' ~ ~

P. s P.-xlII It

P„i

I);(P,q) =P q+ (P')"'(q')"'

where

n„'(P„P„.. . ,J'„,;P„„P„)
= [~„,(P„P„.. . ,P„„P„,)]"'

~ [~„,(P„P„.. . ,P„„P„)]

2. Limits of intelrations

The limits of the integration over the Euclidean
region in (2.7) are given by

-1~ cose; ~ 1,
-1» cose, ~ 1,
0 ~ g, ~ 2m,

(m, m, )'~s ~ (m,-+m, )',

«C. +
823 ~23 ~23 y

D', (P, q, R) = [a,(P, q)]"'[a,(P, R)]"'+it.l s t.i s

(P R)

TABLE II. Crossing angl. es.

Next we define the angles and rapidities used in
this paper. In Table I we give the polar and azi-
muthal angles and the rapidities, while in Table II
we give the crossing angles. The crossed-channel
versions of the angles in Table I are simply ob-
tained by the substitutions (P,-q. ; P,-q„P,-q„

s qst s qs) ~

P P"
P P,

[~,(p, p, )n, {p,

m~2+(P, P„P))
[62(P,P~)+(P~ —P() i

P) P

P, P
[b 2 (P,P()+ (P —P() ]v~

m2g(P P P) tS'2

62(P, P))b2(P —p))
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where

S23 min m2 +m3 ', tPlg +

s„=-max{(m, —m, )', (m, —~s)').
The crossed-channel angles 8;, &„andg, have

the same range of values, while the limits on t„
and s» in (2.8) are given by

0~t&~4m, (m, =m1)

and

I ( & I+
S23 S23 S23 ~

where

sa,'=min{(mm+mn)', (m, +&/f„)'),

s',,= max{(m, -m, )', (m, -v'f~)'].

3. Coefficient functions used in sum rules
I

The coefficient function (&'„("1"c"'"(s, s») which
appears in (3.11}is simply defined by

3

[1 (Zc) ]~(l, 2& 1 ~(11,xc&(1,2& {s s )(Zc)n
)t+, )t' 8 23 1

g ~ a ae0

That the left-hand side of the above equation is a
cubic in Z; follows from (2.15), (2.16), where
X' ' is shown to be linear in Z~.

The coefficients y„'"'"~"»' are given by the re-
lation

(Zc)"dZ ~ (ec) g y ((& (1', 11,n1& d
J' ~ +( (gc)

For any given value of n, the explicit form of these
coefficients can be found by repeated use of the re-
cursion relation

ZP„' ' &(Z) =[(2n+&+p)(2n+&+p+1)(2n+o(+p+2)] '

&( [2(n+ ~)(n+P)(2n+ ~+P+ 2)P„";"(Z) + (P' ~') P„'""(Z)
+2(n+1)(n+(&I+p+1)(2n+&+p) P„'„"(Z)],

where P„' ~ '(Z} is the Jacobi polynomial of degree
&I. Finally, &"""c"1 "1', which appears in (3.12)
is defined by

+2

(Z')'d; „(e')= g 6«&&"* "' ".&d';» (ec)

Again, the coefficients can be found explicitly us-
ing the above recursion relation for the Jacobi
polynomials.

4. Sketch proof of (3.4)

It suffices to prove the result for the case (P,(z)
s s 23 s y2 t~ tp '. We obtain the proof by showing

l

that the expansion in the total angular momentum
J and the dimeson angular momentum j, terminate
when considered separately. Then, by orthogonal-
ity arguments, it follows that the full partial-wave
expansion (3.4) terminates.

(a) The expansion in Z. Here let the quantities
A, B, C, etc. represent functions of s, s,3 s3g
only. It is straightforward to show that

6+4~7) Nil

f,.'f..'=P g g ~.„,[1 —(Z;)'1""(Z,)"'""..
neo lnO k~ 0

NoW (1+Z1) ' ' '(1-Z,')'"c'"1/' iS a Sum Of termS
of the form

The factor in square brackets, 3C(z', ), is a polynomial of degree

2I+2n I& +~ &, I+ l~ &, I I& ~+&, I+I& +&

and can therefore be written

36(zc) L&nx11 P (I &n+n-11l ~ I &&n-n+11l & (Zc)1 J-rC 1J
where the summation runs from

to

&=&+I+l(2n- I&. +&-&,I+ I&. -&.l- I&. -&+&, I+ I&.+&, I)

and again P„' ~ ' is the Jacobi polynomial of degree n. Using the well-known relation between the Wigner
rotation coefficients d», and the Jacobi polynomials, we find, after summing over n and l that
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(i Zc)I X -Xgl/2(] ge)IL +Xgl/ ato te1

6+C-~/2(~)t +A-)tq1-l g-XqI+l )t~-a+XZl-l)t, +)t~l )
g O'Ax~x dz (ec)
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i.e., the required finite expansion in J.
(b) The expansion in j,. Similarly it can be shown

that s~» t~ (and therefore s', ) has a finite expansion
of j~ of the form

C

lig aO Qa C

where CK is a function of s, s» and t„only.
(c) The complete expansion. Finally, because

any function f,(Z) has a (in general nonterminating)
partial-wave expansion similar to (3.2), i e.

&& sin(e;/, )~" ' ~ d„',(e,)d„„„(e)g& 1 1

it is straightforward, though tedious, to show that,
on integrating over the angular dependence
(8;, e„g,) having first multiplied by the appropriate
Nigner rotation, the orthogonality of the d func-
tions, together with the results of (a) and (b)
above, implies that the complete partial-wave ex-
pansion (3.4) terminates in both J, j„andm,
[where the limits are just those of (a) and (b)].
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