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New crossing-symmetric narrow-resonance models with nonlinear Regge trajectories are presented. The N-point
amplitudes have cyclic crossing symmetry and are meromorphic in all channel invariants. The amplitudes are shown

to factorize on the leading trajectory.

It is a very appealing idea to attempt a descrip-
tion of hadrons and strong-interaction phenomena
based on a narrow-resonance approximation.!
Within the context of quantum chromodynamics
(QCD), such an approximation is probably provi-
ded by ’t Hooft’s large-number-of-colors limit,
N,—~= with N, g fixed.?

Historically, a tremendous amount of work has
been devoted to a particular class of narrow-reso-
nance models, the so-called dual resonance mod-
els (DRM?). These models are all based on a fund-
amental hypothesis that all the narrow resonances
lie on exactly linear Regge trajectories. Except
for a very interesting model invented by Coon® and
developed by Baker and Coon,* little thought has
been devoted to narrow-resonance models with non-
linear Regge trajectories. There appears to be no
good reason that any of the Regge trajectories of
infinite-N, QCD should be exactly linear, and,
moreover, some of the trajectories, notably those
on which the states of heavy quarkonia lie, are
certainly nonlinear.® We therefore believe it is
worthwhile to give serious consideration to the
construction of self-consistent narrow-resonance
models with nonlinear trajectories.

In this paper a large class of candidates for such
models is presented. So far only the simplest
self-consistency checks have been made on these
models. For example, we have not yet established
full factorizability of the N-point amplitudes, and,
indeed, it is doubtful that the models in their pre-
sent form do possess full factorizability. None-
theless, these models seem to possess enough nice
features, both theoretically and phenomenogic-
ally, to merit publication at this preliminary stage
of their development. It is hoped that, in spite of
flaws these models may possess, they will repre-
sent a useful step toward a satisfactory narrow-
resonance approximation for the strong interac-
tions.

In the models constructed below, the trajectory
functions @,(s) are roots of an nth-order polyno-
mial with coefficients which are polynomials in s:
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where c;(s) is a polynomial in s. The functions
a,(s) are then determined from the equation

P(a,(s), s)=0.

Ingeneraltherewillbe #» such roots: a=1,2,...,n.
Physical requirements will place restrictions on
the nature of the polynomials c,(s).

The trajectory functions a,(s) will typically have
branch cuts in s. For example, in the case n=2
and

P(z,s) =22 =(a’'s +b)z +(cs +d) (2)

we have the two roots

' 2 1/2
a,(s)=+z(a’s +b) £ [(a S4+b) -cs —d]

Ezl%zﬁl+yi[Eﬂgfﬁﬂi+Byk_ (3)

Since scattering amplitudes in the narrow-reso-
nance approximation must be meromophic in all
invariants, the trajectory functions must enter in
such a way that all these cuts are absent. A way
to arrange this is to make use of the fact that

:ﬂ%@l (@)

is a meromorphic function of s if f(z) is a mero-
morphic function of z. One can then immediately
write down meromorphic amplitudes with cross-
ing symmetry by evaluating the old dual resonance
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amplitudes expressed as a function of the trajec-
tory functions, A ,(a(s;;)), with each a(s,;) re-
placed by aa”(s”), and then summing independ-
ently over each a;;.

To see what this prescription yields, consider
the four-point function for scalar particles:

r(xr(y)
B = A2
(x, ») Tty
is the Euler beta function. A, is clearly mero-
morphic and symmetric under s - £. A, has poles
in s whenever

" a(s)=k, k=0,1,2,... (6)
Als, )= EZM B(-a,(s), - a,(t)), ®) for some a. Because of the sum over b, the resi-
! due of each of these poles is a polynomial in ¢. In

where fact, the residue is proportional to

J
I"(— ab(t)) 1 Y
2= al)) —k=a,O)[1 =k =a,()] - - [-1=0a,)]= D Pul-a,(t)), (7
Y s 3 k-] 0]+ [=1=ay(0]= 3 Pul-a,

with P,(z) a kth-order polynomial in z. The order
of the polynomial as a function of ¢ will depend on
the detailed nature of the polynomial which deter-
mines the ¢, i.e., upon the polynomials c;.

In the following, the c;(s) are restricted to be
linear functions of s, and, in particular, we de-
mand that

c,(s)=—a’s-b (8)

with @’>0. With these restrictions, the location
s, of the resonances corresponding to

a,(sy) =k, £=0,1,2, ... 9)

is a unique function of k#, and only one of the n
trajectory functions, «,(s), will pass through large
positive integral values. We shall label this tra-
jectory a,(s), which accordingly has the asymp-
totic behavior

a,(s) ~ a’s. (10
s>+
Such an asymptotically linear trajectory is com-
]

(_1)m+l
M=m§$/n,1) irigee k= M

C:
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With our restrictions on the ¢;(¢), the maximum
power of ¢ which occurs on the right-hand side is
in the term withm'=p, i,=i,=- - - =i, =1, i.e., the
power . Thus, the right-hand side of (z) is a kth-
order polynomial in ¢, so that the resonances at

a =k have angular momentum <k.

So far we have seen that the four-point function
of Eq. (5) is crossing symmetric, meromorphic in
s with poles at a(s) =k with residues which are kth-
order polynomials in ¢ and similarly for the poles
in {. Next consider the Regge limit s —«~ at fixed
t. For definiteness consider n=2. When s - +,
a,(s)~a’'s whereas a_(s)—~y. Thus the terms in

C; *

I
patible with a quark confining force which approa-
ches a constant T0=1/27ra’ at large distances. In
the n =2 example mentioned above, a,(s)=a,(s).
For the range of parameters <0, >0, only
a (s) achieves integral values =0.

For application to heavy quarkonium systems we
mention the trajectories determined by the poly-
nomial

P(2)=(z +1P = (a’s +b)(z +1)* —a’m2c . (11)

For this case, the mass level a,(s,) =1 is

1 b 2
sl - -y, (12)

i.e., alinear superposition of a linear plus Cou-
lomb mass spectrum.

Let us now return to Eq. (7) which contains in-
formation about the angular momentum of the reso-
nances. To write (7) as a polynomial in ¢, we need
the formula

(13)

r :
(5) containing a@,(s) will be Regge behaved, but

the terms containing o _(s) will approach a con-
stant:

N 2 2
Afs, D) ~ 25 sMOT(= 1)) + 3 Bl=y, - ay(t)
b=1 _

§—>+e0 b=l

+0 (s%“*l, l}. (14)

S

In complex angular momentum plane parlance, the
constant piece corresponds to a nonanalytic “Kron-
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ecker 5” singularity 6,,. When we consider fac-
torizability of the N-point function at resonances
on the leading trajectory, we shall find that A,
must be modified in such a way that wheny =-1,
the Kronecker & piece is absent. Even so, there
will still be fixed powers like 1/s in the asymp-
totic behavior.: these correspond to fixed poles
at nonsense values of J and are not ruled out by
unitarity in a narrow-resonance approximation.
However, these poles must move with energy as
soon as unitarity corrections are turned on.

Now let us consider the high-energy fixed-angle
behavior of A,. In this limit s~ +~ and - —$s(1
—cosf)~ —x. So a,(s)=a’s, a_(s)=y, a,(t)-y,

and @_(t)—~ a’t. The term containing @ (s) and

a_(#) will fall off exponentially. The term con-
taining a,(s) and o, (¢) will behave as s?, as will
the term with @_(s) and @_(¢). Finally the term

with @_(s) and o,(¢) will approach the constant

B(~vy, -y). (15)

Thus, our amplitudes incorporate power behavior
at large momentum transfer, certainly a desirable
feature from the point of view of phenomenology.
As a final self-consistency check on our models,
let us consider the factorizability of the N-point
function. The obvious guess for the N-point func-
tion would be, using Koba-Nielsen variables z;,*

dz (2, =2,) 2, =2, )2, —2,)

N(Sij) fdz ] [dzb] [dzc]'

(z3 -2z )(z4 -2z,)

n (Zj -2,z & "Zi-1) —otgls; -1
LB [t 7,

where z,, z,, 2, are fixed and the range of integration is z,<z,<- <2z, s;;=-

(zy =2 -2z,

=252y =2y)

(16)

(p; +pyay ++ * - +p;)%. This

amplitude has cyclic crossing symmetry and meromorphy as required. However, the residues of the poles

are not necessarily factorizable. Let us consider factorizability in the 1, ...,

k channel, for which it is

convenient to choose z, =0, z,,, =1, and zy=«." Further call z, =z and change variables to

zy;, i<E
R i>k (amn
T
so that A, can be written
! 1
= ] 5. —oy(s p)-1 -
AN f {dyi}{dyj}l( yi)[(y")," dz Z z " ¢! -—zy,.-l)(l -zym)
18 (1-2y,5,)(1 - >]-a 1)1
Yi yJ zy:-lyi*'l bt 18)
H I:i { [(1 =2y, 91 =29,5,.,) } , ot

The pole at @,(s;,) =1 will come from integrating

ld (s,,)=1+1 1
22 741 T = e
J‘o l-a 1(31h)

i.e., we must expand the factors multiplying z 7 161271 in a power series in z and isolate the term z’. Con-
sider the terms corresponding to a resonance of spin /, the maximum spin at this level. These are the
terms with 7 factors of the various s;;. Inspection of Eq. (13), tells us that

n

a=

2 a,(s)? =nb,+(c,)” +lower powers of s =10, +(a’s +b)" +lower powers of s .

Thus for factorizing the spin-/ resonances, one can replace

[ (1 —zyJ)j)(l —zy‘-&ﬁl) ]—a,,(siﬂﬂ.‘n 1 +[

(1 -zy,_,9,)1 "Zyi91+1)

(A —2y;5,)1 —2y;_19;4) ]—(o{s””’)-l
(1 —Zyi —1&})(1 —zyijjj'i-l)

All resonances on the leading Regge trajectory will factorize just as in the ordinary dual model, provided

Eq. (16) is modified to read

{dz} "\ [(z;-2;)z;,, -2 _;1) -aa(sii)—l}
A f(zs-—z ) 22~ 2y) H{ _n+az=;[(zj—z:—1)(zf+1 :Zx)] ) (19)
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Consider now what the modification in Eq. (19) does to the four-point function. A, changes to

Ads D=0 =nP st w3 [ i) 3 8- 0, 0), — ). (20)

The resonance structure is not modified except that the residue of the pole at o =0 changed from » to 1.
There are new fixed power pieces in the asymptotic behavior, however. We notice that the constant piece

of the asymptotic behavior is now

1-[22 2] TBy, —e)=14-+ T

and that this =0 if y =—1. The remaining fixed
powers in the asymtotic behavior correspond to
fixed poles at nonsense values of the angular mo-
mentum. The constant piece in the fixed-angle
asymptotic behavior also disappears for this value
of y.

We have not yet succeeded in showing that Eq.
(19) factorizes for resonances on the nonleading
trajectories. It would not be surprising if further
modifications are required to achieve full factor-
izability, to say nothing of the absence of ghosts.
Nonetheless, we think it is remarkable that such a
simple-minded extension of the old dual models
possesses the degree of self-consistency already
established. In view of the fact that infinite-N,
QCD will predict at least some nonlinear trajec-
tories, we feel that further development of these
types of models will be worthwhile.

We conclude this paper with some remarks on
phenomenology and future directions. Recent data
from inclusive production of 7 and n mesons in-
dicate that the p and A, trajectories tend to flatten
off for —¢2 1.5 GeV2.® Our » =2 model has trajec-
tories with this behavior. In this regard it would
be interesting to extend the Lovelace-Shapiro mod-
el” for pion scattering to incorporate nonlinear

[ - RACDNC a,,(t))]
b

T(—y = ()

r
trajectories. One’s first guess might be
) DRALETAC) JETAG)!
o T(l-a,(s)=a)

However, the need for modifications as in Eq. (20)
is likely. These modifications were required by
factorization of the leading trajectory resonances
in the N-point function, so one has to look at N-
point extensions® of the Lovelace-Shapiro model.

Where does one go from here? We presented
these models as a step toward guessing a set of
scattering amplitudes for large-N, QCD. It seems
that factorizability of the N-point function is in-
deed very restrictive and that there may be only a
limited number of possible narrow-resonance mod-
els which can be taken as consistent Born approx-
imations. We doubt that any of the models we have
presented here are completely consistent—al-
though this has not yet been ruled out. We hope
that they do indicate a useful direction for further
research. )
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lFor background on the early development of this idea,
see the lectures by S. Mandelstam, in Lectures on
Elementary Pavticles and Quantum Field Theory,
edited by S. Deser, M. Grisaru, and H. Pendleton,
(MIT, Cambridge, Mass., 1970).
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