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During the past few years a considerable amount
of evidence has accumulated to support the idea
that each of the fundamental interactions is de-
rivable from a gauge principle. The observed
low-energy structure of the weak and electromag-
netic interactions is completely in accord with the
spontanously broken SU(2)~ x U(1) gauge theory de-
veloped by Weinberg, '

by Salam, ' and by Glashow, '
while at higher energies the structure of strong
interactions conforms well to the expectations of
quantum chromodynamics (QCD). Moreover, the
success of SU(2)~ x U(1) established not only the
relevance of the gauge principle, but also the fact
that the weak and electromagnetic interactions are
unified into one comprehensive theory. The sub-
sequent identification of a gauge structure for the
strong interactions as well then led to the specu-
lation ' that all of the three interactions are com-
bined into one and the same grand unified gauge
theory.

In the grand unified theories the weak, electro-
magnetic, and strong-interaction currents are
embedded into the adjoint representation of some
large grand unifying group which is then spontan-
eously broken down to produce the standard low-
energy structure of SU(2)~ x U(1) x SU(3)c. The
additional new (hitherto unobserved) currents
which are needed to fill out the adjoint represen-
tation have associated with them new gauge bosons
which acquire superheavy masses, perhaps as
high as 10"GeV. Further, the matter fields of
the theory, the leptons and the quarks, are also
combined into irreducible representations of the
grand unifying group, so that the above new cur-

We present a grand unified model of the strong, electromagnetic, and weak interactions based on a local

SU(8)~ &(SU(8)~ gauge theory which possesses a global U(8)~ )& U(8)„ invariance. The model is spontaneously broken

by the recently introduced neutrino-pairing mechanism, in which a Higgs field which transforms like a pair of right-
handed neutrinos acquires a vacuum expectation value. This neutrino pairing breaks the model down to the
standard Weinberg-Salam phenomenology. Further, the neutrino pairing causes the two initial global currents of the
model, fermion number and axial fermion number, to mix with the non-Abelian local currents to leave unbroken

two new global currents, namely, baryon number and a particular. lepton number which counts charged leptons and
left-handed neutrinos only. The exact conservations of these two resulting currents ensure the absolute stability of
the proton, the masslessness of the observed left-handed neutrinos, and the standard lepton-number conservation of
the usual weak interactions. A further feature of our model is the simultaneous absence of both strong CP violations

and of observable axions. The model has a testable prediction, namely, the existence of an absolutely stable,

relatively light, massive neutral lepton generated entirely from the right-handed-neutrino sector of the theory.

I. INTRODUCTION rents lead to possible transitions between leptons
and quarks. Such transitions constitute one of the
very few ways to study effects due to a 10"-GeV
scale at presently accessible laboratory energies,
and there is currently much excitement because
the theoretical upper bound' on the lifetime for
the proton decay which these transitions cause in
the most popular grand unified theory, the SU(5)
theory of Georgi and Glashow, ' is within an order
of magnitude of the present experimental lower
bound, ' so that the theory can actually be (unam-
biguously) tested in the near future. While the
observation of proton decay would provide drama-
tic confirmation of the grand unification idea, its
nonobservation would only serve to eliminate the-
ories such as the SU(5) theory itself, and leave
the situation regarding grand unif ication unclear
as access to the 10"-GeV region would unfortu-
nately be lost. Thus, while pursuing improve-
ments in the experimental situation, we should
also examine further the theoretical issues in-
volved, particularly since the origin and nature
of baryon number and the degree to which we
might expect it to be conserved is of such prime
theoretical concern.

It has long been the view of the authors (as ex-
emplified for instance in their spontaneously
broken theory of flavor') that there is no content
to a broken or an approximate symmetry unless
there exists some well-defined limit in which the
symmetry is exact. Consequently, we would ex-
pect any theory, including a grand unified theory,
to be baryon-number conserving in the symmetry
limit. In this respect we find the SU(5) theory to
be somewhat unappealing since baryon number is
not a generator of that theory with the proton al-
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ready being unstable in the symmetry limit. (In
fact we regard it as perhaps fortuitous that the
superheavy gauge bosons which mediate proton
decay just managed to become heavy enough after
the spontaneous breakdown so as to keep the theory
compatible with the present experimental lack of
proton decay. ) In this paper we shall therefore
reopen the question of baryon conservation by
studying an alternate grand unif ied theory in which
baryon number is an explicit generator which is
conserved in the symmetry limit.

In selecting an explicit grand unified gauge the-
ory we recall that the )eptons and quarks appear
to occur together in families, with the first such
family containing the familiar I,. and d,. quarks in
three colors (i=R, G, B) together with e and p, .
In the absence of right-handed neutrinos there
would be altogether 15 particles in the first fam-
ily, and given these particles the smallest grand
unified group in which they can all be accommo-
dated is the SU(5) of Georgi and Glashow, as they
just nicely fill out a 5 and a 10 -dimensional rep-
resentation of the group. This is then the simplest
possible grand unification, and it is so very popu-
lar precisely because of this simplicity. However,
with such a classification of the particles we note
that the 10, unlike the fundamental of the group,
contains both quarks and antiquarks. Consequent-
ly, some of the 24 gauge bosons of the model can
mediate a 5 x 5*-10x 10* transition in the sym-
metry limit to allow the baryon-number-violating
leptoquark process l + q - q+ q to occur in the un-
broken theory. It is the existence of this process
which gives rise to an unstable proton in the SU(5)
theory, and not just the fact of grand unification;
i.e. , it is not so much a consequence of putting
leptons and quarks in common multiplets, but
rather of the particular choi:ce of multiplets made.
It is this specific aspect of the theory which we
find undesirable, and in seeking an alternate grand
unified theory we shill therefore only consider sit-
uations in which no. particles and antiparticles ap-
pear in common multiplets.

The simplest way to meet our above require-
ment is to put the basic fermions only into the
fundamental representation of some alternative
group, a situation which is anyway quite natural
since the obvious way to classify the ultimate
building blocks of matter is in the fundamental of
a group. (Moreover this view accords with the
historical development of particle theory since
our confidence for instance in the quark concept
at all stems from the insistence that the funda-
mental of the flavor group be of physical signifi-
cance, while its utility in @CD stems from the
fact that the quarks transform only as triplets un-
der the color group. ) Thus, for the purposes of

grand unification we are led to considering groups
based on SU(8) as we can then classify the eight
left-handed fermions in a common fundamental.
However, under a single SU(8} we note that the
seven right-handed fermions in the first family
could only be-classified as singlets, which is un-
desirable phenomenologically since, for instance,
the right-handed quarks would then have to be
color singlets. Thus we must introduce one fur-
ther right-handed fermion, a right-handed neu-
trino, to fill out another 8 and so we are led to
consider the local gauge group SU(8)~ x SU(8)„
based on families of 16 fermions. This group is
then the opposite of SU(5) in the sense that it is
(one of) the largest rather than the smallest group
we could use as it contains all possible fermion
currents within each chiral sector. The inclusion
of right-handed neutrinos constitutes an unavoid-
able departure from present phenomeriology, but
as we shall see below the right-handed neutrinos
will play a crucial role in fixing the symmetry-
breaking pattern and will ultimately provide the
model with a new and novel low-energy test of
our ideas. We note that since the sum of the elec-
tric charges of the fermions within each 8 is zero
the theory contains electromagnetism. Further,
the model contains the popular left-right SU(2)~
x SU(2)„x U(l) extension of the Weinberg-Salam
model. The final additional imposition of a dis-
crete parity invariance then reduces the theory to
that of a single coupling constant, and thus our
model is indeed a grand unified theory.

While we have now constructed a model without
leptoquark transitions, we note that baryon num-
ber is not yet an explicit generator of our theory.
The local SU(8) chiral theory only contains the
generators I',.= —,'(B, -L,), .where B, and L, are. .

baryon and lepton numbers (i = L, R), and not the
individual B,. and L, generators separately. How-
ever, we note that in the Lagrangian of our model
the fermion-gauge-boson sector actually posses-
ses the slightly larger global invariance U(8}~
x U(8)„with two additional conserved global fer-
mion-number generators E, = L&+ 8B, (i = L, R).
(We take the baryon number of the guarks to be
—', .} We shall therefore extend this symmetry to
the rest of the Lagrangian as well' so that the
complete theory is now U(8)~ x U(8)„ invariant,
with baryon number (and also lepton number} be-
ing exactly conserved in the symmetry limit.
Since the additional E~ and E„currents are not
gauged, we note that baryon number is for the
moment neither local norIglobal as it is a linear
combination of the F, and E, generators.

In breaking the symmetry spontaneously we note
that the local SU(8)~ x SU(8)„gauge group con-
tains 126 gauge bosons of which 11V are to acquire
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masses by the Higgs mechanism so as to leave
unbroken a local SU(3)c x Q symmetry N. ow the
full U(8)~ x U)8)„group contains 128 currents,
and since its breaking is only allomed to produce
117 Goldstone bosons, 2 global currents must
therefore remain unbroken in addition to the 9 lo-
cal currents of SU(3)c x Q. Thus necessarily after
the breaking there must still be some residual
global symmetry in the model, and we shall pick
tbe breaking direction so that one of the resulting
global symmetries corresponds to baryon number
(in a certain sense this is just a definition of the
names of the quantum numbers associated mith
the unbroken directions —the nontrivial aspect of
our mork is that there will be residual unbroken
global symmetries). Hence our model has a ra-
tionale not only for mhy baryon number is con-
served in the symmetry limit, but also for why
it does not get spontaneously broken either.

In order to implement this conservation explicit-
ly while ensuring that me produce no extraneous
Goldstone bosons me shall rely upon a mechanism
apparently first due to 't Hooft. " He pointed out
that when a set of Higgs fields simultaneously
breaks both a local and a global group down to a
residual global group generated by a linear com-
bination of the currents of the two groups it is
possible for the local gauge bosons to absorb all
the Goldstone bosons leaving, none of them in the
spectrum. Thus we can trade an initial global
symmetry for a final mixed residual global sym-
metry and finish up mith no ungauged Goldstone
bosons and no superfluous massless gauge bosons.
Since baryon number is a linear combination of
the local F,. and the global F,. generators me can
explicitly use the 't Hooft mechanism in our mod-
el so that baryon number emerges after the break-
ing as a residual global symmetry. In this may

baryon number emerges as an exact symmetry to
which, unlike electric charge, no massless gauge
boson is coupled. Thos me explain not only the
fact of baryon-number conservation, but also why

it is not a local symmetry like electromagnetism.
To take advantage of the 't Hooft mechanism the

Higgs fields employed must also break both the
local and the global symmetries. Now recently a
nem mechanism for obtaining parity violation in

chiral weak-interaction theories has been intro-
duced, "' namely neutrino pairing, in which a
Higgs field which transforms as a pair of right-
handed neutrinos acquires a vacuum expectation
value. This dilepton pairing gives maximal parity
violation in the charged-current sector and also
breaks the B —L symmetry in just the right may

to give the familiar Weinberg mixing pattern of
parity violation in the neutral, -current sector.""
Thus neutrino pairing breaks chiral theories

down to the usual Weinberg-Salam phenomenology.
We mill therefore incorporate these features of
neutrino pairing into our grand unified chiral mod-
el. , For our purposes bere we now note further
that the neutrino pairing term also breaks the
global L+ 3B symmetry, and thus it exactly pro-
duces the 't Hooft mechanism to leave baryon
number B„(=B~+ B~) as an unbroken global sym-
metry, as required. Additionally, we note that
an alternative may to break B-L and L+, 3B

, would be quark pairing. However, electric-
charge conservation prevents fractionally charged
quarks from pairing in the vacuum, a pairing
which mould violate baryon number. The electri-
cal neutrality of the neutrinos is thus crucial to
the pairing mechanism, and we thus see that with
the conventional assignment of quantum numbers
there is an intricate connection between baryon-
number conservation and electric-charge conser-
vation in our model.

Noting that there are not one but two global
generators in our model, some other current in
the model must also undergo the 't Hooft mechan-
ism and emerge as a residual global symmetry
which is conserved like baryon number. IThis
second current could not now be the lepton num-
ber L~= L~+ L~, since B~ —L~ is contained en-
tirely within the local SU(8)~ x SU(8)„sector of the
theory ]Beca.use the neutrino pairing only acts
'on right-handed neutrinos the second current
turns out to also involve the F,. and I",. generators,
being a particular lepton number (to be denoted
by L» -N„) which counts charged leptons and
left-handed neutrinos only. (The pairing broke
Nz, the right-handed neutrino counting operator. )
The resulting conserved current (given by
ey„e+ p~y~p~ for the first family) we recognize as
the conventionally defined lepton number of the
usual Weinberg-Salam weak interactions. While
this current has always been assumed to be con-
served in weak interactions, as far as me knom
this is the first time that an explanation has been
given for the fact, and since its conservation is
given simultaneously with that of baryon number
it makes the structure of'our grand unified model
very appealing.

As well as explaining baryon- and lepton-num-
ber conservation our model also possesses some
other noteworthy features. Firstly, the conser-
vation of our particular lbpton number L~ -N„
prevents the left-handed neutrinos from acquiring
a mass, and hence they remain massless to all
orders in the interaction to give a group-theoreti-
cal explanation for the masslessness of the ob-
served neutrinos. Secondly, since no such con-
straint exists in the. right-handed sector, the
neutrino pairing acts to give tbe right-handed
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neutrinos a Majorana mass. " However, because
of the conservation of L~-N~ this now massive
right-handed neutrino is decoupled from the usual
leptons and is hence absolutely stable. Conse-
quently the model predicts the existence of a light
(i.e. , not superheavy) absolutely stable neutral
lepton whose detection and study would provide a
way to explore grand unified theories without
needing to go.to superheavy energies.

With regard to the quarks we note that since [un-
like SU(5)] the theory is a chiral theory it posses-
ses a conserved axial-vector baryon-number cur-
rent (which is yet another linear combination of
the F,. and F,. generators) which then enables us to
remove all strong 8-vacua CP-violation effects
arising from the instanton structure of QCD."
However, because of the mixing of the local and
the global currents, the would-be axion Goldstone
boson' (which appears when axial baryon number
is spontaneously broken) is removed by the same
't Hooft mechanism and hence does not appear in
the observable spectrum. Thus the axion is elim-
inated by the Higgs mechanism without needing to
gauge the full chiral U(8)~ && U(8)~ group, and so
in our model there are both no observable strong
CP violations and no observable axion Goldstone
bosons.

our grand unified chiral model is thus seen to

be a very rich theory which explains some of the
outstanding issues of the fundamental interactions.
The neutrino-pairing mechanism is central to
achieving these features in such a compact way,
and thus analogously to the work of Ref. 12 our
model not only has a rationale for why there should
be right-handed neutrinos at all, but also takes
advantage of their existence in a crucial way to
produce the appropriate breaking mechanism.
Some of the results of our work have already
been presented in a Letter" and in this paper we
give the details.

The present paper is organized as follows. In
Sec. II we introduce the model and the appropri-
ate pattern of spontaneous breakdown. In Sec. III
we discuss the renormalization of the coupling
constants of the model from the superheavy unifi-
cation scale down to normal energies. In Sec. IV
we show how the axion problem is solved in our
model, and in Sec. V we study the structure of
the Higgs potential needed to produce the basic
features of our theory. In Sec. VI we present our
conclusions. Finally, in the Appendix, we present
a self-contained section on a method for calculat-
ing the anomaly factor for an arbitrary irreducible
representation of an SU(N) group, with the results
being used in the body of the text to make our mod-
el anomaly-free.

II. THE MODEL

In our model the basic fermions transform according to the (8, 1)$(1,8) representation of SU(8)L
SU(8)„. Within each chiral sector we label the basis for each family as (p„uz, u~, ue, e, ds, do, d~).

Each U(8) possesses eight diagonal X matrices for which we use the basis
r

1 1

0
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0

1
t F

0
0

(2.1)

0

0
1

H 0

0

0

We denote by T2 and T8„ the third components of the weak isospins SU(2)B and SU(2)B conte. ined within
SU(8)D and SU(8)B, respectively. The baryon and lepton numbers are related to the operators introduced
in Sec. I, viz. ,

y, =-,'(a, -L.,), y, =-,'(a, I.,), S', =I,,+3@„Z,=I.„+sa„
so that the electric charge operator is given as

Q = T B + T B+ YB + 1'B .
When these operators act on the fundamental of each SU(8) we have the correspondence

T = A.Bt F — A.Ct E 2k~ t Q XB — A.C t
1 1

(2.2)

(2.3)

(2.4)

while the diagonal SU(3)c generators transform as XB+ Ac, XF+ XH. Within each SU(8) we can represent the
63 gauge bosons as a rank two tensor

63

w, =g ~;.,w. (2.5)

anal

for I and R indices. In terms of the basis of Eq. (2.1) we obtain (in an obvious notation)

73 Ws 1 1 1
11 2 B+ 2 C 2 Dy 22 2 B WC WD+ Wg+

2v' 3 2v' 3 v'3

1 1 1 I 1 1 2
W33 2WB —WC ~3 WD E ~ F& W44 2WB WC WD WFP

2v' 3 243 2v'3 '

V3

vS v3
W55 = —2 WB+ WC — WD,2 2

1 1 1
W66= -~2WB — WC+ WD+ WC+= WHi2v'3 2 3 v'3

(2. 8)

1 1 1 1 1 2
W77 2WB WC WD . WC+ WHt W88 2WB —WC+ WD WH2v'3 2v 3 V3 27'3 27'3 V 3

for the diagonal elements of W, ~. The coupling of these diagonal gauge bosons to the fermion currents of
the first family is then given in terms of a single coupling constant g as
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&i.t =&QL2~'yiL(+"i)i+ &Q& ~ ~'yacc( Wz4

=4 W~ v,y„v, ey-~e+Z (uy~u, —.dy~d;) +=W„3v,y~v, +3ey~e — (u~y~u, +.d~y~d, .)
4 3

+ Wx 3v,y~v, —3ey, e -~(uP „u,. —d,y~d,.) +
2 W~(ugly„uz —uay~ua)

s+ W~("z'4uz+ uaypa 2uay~ua}
2 3

2
W „(de d„—day, da) + —W—,"(de„d~+ day ~da —2dey)de)

2 3
(2.7)

summed over both chiral sectors. The off-diag-
onal gauge bosons and currents can be constructed
analogously, but we shall not refer to them expli-
citly in the subsequent development of this paper,
as we shall essentially be able to monitor the full
breaking pattern by studying the diagonal sector
only.

In our work SU(3)a x SU(2)~ x U(l)»x T3~ will
emerge as a residual light local subgroup. Here
SU(3)a is the usual QCD color group, SU(2)~ is
the weak isospin of Weinberg and Salam, U(1)»
has (B» —L»)/2 as its generator, and T'„ is the
third component of a right-handed counterpart of
the Weinberg-Salam weak isospin. The familiar
U(l) of the Weinberg-Salam theory has its gen-
erator T~s+(B» —L»)/2 according to Eq. (2.3), so
this U(l) is a linear combination of our U(l)» and
T3~. Associated with our light subgroup are di-
agonal colored gauge bosons We»a = (W~~+ Wa~

+ Ws+ W„)/2 and W»"= (W~+ W~+ Ws+ Wes)/2,
while W~ and 8'„are coupled to T~ and T~, re-
spectively, and Wa»=(Wa~+ Wa~)/v 2 is coupled to
(B„—L„)/2. In the symmetry limit our model is
a chiral, parity-conserving, SU(8)-flavor-con-
serving theory with processes such as the usual
P decay u~+d~- v~+ e~, for instance, being for-
bidden prior to the -breaking, as we are able to
make all possible phase transformations on the
eight left-handed fermions. Additionally, we also
note that as well as possessing eight gauge bosons
which are coupled to the SU(3)a vector currents
the model possesses another set of gauge bosons
which are coupled to an SU(3)a octet of axial-vec-
tor currents.

We note that our model is not yet free of Adler-
Bell-Jackiw triangle anomalies. To eliminate all
possible SU(8)~ x SU(8)~ anomalies we must intro-
duce additional fermions. The simplest possibility
is to have the anomalies due to each separate
(8, 1)$(1,8) family canceled by an associated pre-
sumably heavy companion (8~, 1)$(1,8~) "mir-
ror" family. Alternatively (as we show in the
Appendix) the anomalies of an entire set of four

I=

families of fermions can be canceled by adding
one additional (28*,1)6l (1,28~) representation of
fermions. [Since the 28* is the antisymmetric
representation contained in the direct product of
two 8* representations of SU(8), we see that our
cancellation of anomalies mimics that of the SU(5)
theory where the 10*, an antisymmetric 5* x 6~,
cancels the 5.] Also this latter possibility is ac-
tually quite economical as the (28*,1)e(1, 28~)
representation only contains one state which is
not a confined color nonsinglet, with there then
being only one extra observable fermion in our
model, specifically a charged lepton which pre-
sumably would have a large mass. While we can
thus formally keep our model anomaly-free we
are not sure whether to attach too much signifi-
cance to these additional fermions at this time,
as the whole anomaly question is really an expres-
sion of our ignorance of the short-distance behav-
ior of field theory.

We now construct the breaking pattern for our
model. For simplicity we shall only use Higgs
fields which transform as fermion bi&'riears and
quadrilinears. ' In the first stage of breaking, the
superheavy stage, we shall use the quadrilinear
representations, reserving the lower dimension
bilinears for the more familiar breaking of the
light subgroup. At the superheavy stage we note
that we want to break the local axial colo' and the
local B„-IJ, symmetries. Consequently the
superheavy Higgs fields must transform non-triv-
ially according to both SU(8}~ and SU(8)z. Speci-
fically we therefore introduce p- (36, 36*)$(36~,
36) and &u- (28, 28*)8 (28*,28) as the superheavy
Higgs fields. [In SU(8}, 8 x 8= 36828.] We rep-
resent each of these Higgs fields by a four-index
tensor [with Latin indices for SU(8)~ and Greek
indices for SU(8}z] so that the gauge-invariant
minimal coupling leads for p to a gauge-boson
mass term

g
~

vvac~cyay+ "" yc~acog "" oy~ayyy "" gy~ayoy [

(2 8)
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with an analogous expression for m. In order to
find the superheavy breaking pattern which will
leave SU(3}o x SU(2}~x U(1}»x Ts~ unbroken we
decompose SU(8) according to SU(3) x SU(2), viz. ,

p—= (36, 36~)e(36*,36)

guR, C, B
u,.e+ eu,. —d,.v, —v,d,. L u,.e+ eu,- R

8= (3, 2)+ (1,2},
36= (6, '3)+ (3~, 1)+(1,3)+(3,3)+ (3, 1), (2.8)

+ H. c. (2.10)

28=(3*,3)+(6,1)+(1,1)+(3,3)+(3,1).
Since SU(2)~ is to be preserved the left-handed
piece of p or its conjugate must transform as
(3, 1). To preserve the vector SU(3)o we then need
the right-handed piece to transform as a color 3*.
We will find below that we need to break SU(2)„
already at the superheavy stage, and so we break
the right-handed sector of p as (3~, 3~). Thus we
take the nonvanishing vacuum expectation values
of p to transform as (the fermion fields are used
only to indicate the quantum numbers}

Vfith this choice of breaking we see that the usual
left-handed P decay has now been permitted by
spontaneous breakdown. For the second super-
heavy Higgs field ~ we note that if its left-hand
sector transforms the same way as that of p it
will not be able to complete the breaking of the
left-hand sector down all the way to SU(3)o
x SU(2)z x U(1)» x T'z Thus. for the left-hand sec-
tor of v we have to take the (6, 1) term in the de-
composition of the 28. Then in order to maintain
SU(3)o the right-hand sector of e must transform
as (6*,1). Hence, finally for v we take

(u —= (28, 28~) 8 (28*, 28)

u.d ~ —d u ~ L u~d- —d.
juR, G, B

+ [((usdo- dous+ uods dsuo-) ~(undo —dous+ uodz -Zzuo) s)+ cyclic permutations]+ H. c. (2.11)

+ 3(wi —Wi+ Ws —W„) + 4(wi+ Wi —W„-W~)

+ 3(w» —w", w'„+ w"„)'+ s(w,'- w", + w'„- w"„)']

to leave W„o, W»", W~, , W», and Ws so far massless within the diagonal sector of the local SU(3)o
x SU(2)~ x U(l)„x T~. The couplings of these latter diagonal bosons to the currents is obtained from
Eq. (2.V) as

(2.12)

I

Z„,=4 (W~~)~ v,y~v, -ey„e+g(u, y~u,. —d y~d, ) +4 (Ws)" v,y, v, -ey, e+g(u, y„u, -d,.y„d,.)
L R

I

+' (W'o) sv,y„v, + sey„e Q(u, y~-u, + d&y. ~d,.) +- (W» )"qy~( z+ Xo)q+ —(W»"}"qy~(»+ XH)q.
4 6

(2.13)

From Eq. (2.8) we find that the symmetry is broken down to the local SU(3}o x SU(2)~ x U(1)» x T ~+ for
both the diagonal and nondiagonal elements of W,.&

as required. In particular, for the diagonal sector
of W,.& Eqs. (2.6) and (2.8) give a mass term (p, and ~, denote mean expectation values for the respective
representations)

,=g po [(W~ —Ws+ 2W~) +4wq +(W~ —Ws) +(W~ —W„) +(W~ —W~) +(W~ —W„) ]

+g'~, '[5(w', —w', )'+4(w', + w', —w, —w'„)'+ s(w, w', w'„+ w'„)'

To complete the breaking we follow Refs. 11 and
12 and choose the low-energy Higgs fields to
transform as the fermion bilinears o~ (36, 1},
os- (1,36), and X

- (8, 8*)6 (8*,8). Here o~ and

OR are difermions whose only electrically neutral
elements are the dineutrinos, and X is the fermion
mass term. For these Higgs fields the gauge-in-
variant minimal coupling leads to a gauge-boson
mass term

+ 4 g'
~
W, gXg —Wg" X,g ~

'. (2.14)

o~—= (36, 1)-0,

o„-=(1,36)- (v'„v'„),

(2.16)

(2.16)

For the vacuum expectation values we follow Refs.
11 and 12 and take
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)(
—= (8, 8*)8(8*,8)

(2.1'f)-m, (ee&+Q (m„(u,u, }+m, (Z,.d,.}).

The neutrino-pairing term o„breaks (B„-L„)/2
and T'„but not Q so it leaves invariant an SU(2)~
x U(1) group whose U(1) generator is Ts~+ (By
-L~)/2. The fermion mass term X then gives the
fermions their masses" and breaks this latter
SU(2)~ x U(1) group down to the U(l) of electric
charge. Thus the above pattern completes the
breaking down to the local SU(3)c x Q as required.
Moreover, as was noted in Hefs. 11 and 12, when
the expectation value of 0~ is much greater than
that of X, our breaking pattern also produces the
standard Weinberg-Salam phenomenology in both
the charged- and neutral-current sectors of the
theory. Thus neutrino pairing breaks the theory
in exactly the right way. Before studying the en-
suing phenomenology however, a little caution is
required in applying the analysis of Refs. 11 and
12 to our grand unified model since now the vari-
ous coupling constants undergo renormalization
as we go down from the superheavy unification
scale to usual energies; and although our results
i'n fact remain true we shall defer discussion of
this point until Sec. III where we shall study the
renormalization explicitly.

From our breaking pattern it is clear that as
well as having broken the local SU(8)~ x SU(8)s
down to a local SU(3)e x q we have additionally
also broken the global fermion and axial fermion
numbers of U(8)~ x U(8)„, and our breaking pat-
tern has instead left two other global symmetries
unbroken, namely B~ and L~-N~. Thus the final
overall resulting symmetry of our model is the
direct product of a local SU(3)c x q and a global
B„x(L„Ns) S-ince t.he model has to produce
tmo residual global symmetries it is necessary
that the fermion mass term X also respect our
choice of symmetry with the conservation of L~
-N~ thereby preventing X from generating a neu-
trino mass term in Eq. (2.17). With a Majorana
mass for the left-handed neutrinos also forbidden
by the conservation of L~-N~ we thus see that
the left-handed neutrinos are unable to acquire
either a Dirac (-X) or a Majorana (-o~} mass,
and must thus remain massless to all orders in
the interaction. We believe this to be the first
time that the masslessness of the observed neu-
trinos has been explained by the conservation of
a continuous symmetry (Theories w. hich try to
use y, invariance to keep neutrinos massless are
usually unable to explain why that symmetry is
not spontaneously broken at the same time as it
is broken by the other fermion masses. ) With
regard to the right-handed sector we note that the

right-hand P decay u~+ d„- p~+ e„ is forbidden in

the unbroken theory by the local SU(8)„ invari-
ance of phase transformations on the right-handed
fermions, and is also forbidden after the sym-
metry breaking by tbe global L~-N~. Conse-
quently SU(2)„can never be an approximate sym-
metry in our theory, but rather only T~, with
the right-handed neutrino currents remaining di-
agonal in the canonical SU(8}~ x SU(8)„basis.
Thus in order to leave B~ and L~-N~ unbroken
the superheavy p and w also must not leave an
SU(2)„symmetry unbroken but rather only T'„.
Thus the parity violation and fermion-number vi-
olation due to right-banded neutrino pairing must
propagate to tbe superheavy sector as well, thus
explaining the choice of breaking given in Eqs.
(2.10) and (2.11).

Since our residual L~ -N~ symmetry does not
act on the right-handed neutrinos, the right-
handed neutrinos are able to acquire mass, and
indeed the o~ pairing term generates a Majorana
mass for them. " With the left-handed neutrinos
remaining massless there is thus a clear and un-
ambiguous disparity between the left- and right-
handed sectors of our model which mill eventually
make our ideas amenable to experimental testing.
As we noted above the right-handed neutrino cur-
rents remain diagonal in the canonical basis with
the conservation of L~ -N~ thus preventing the
decay of the massive right-handed neutrinos into
the usual leptons, and hence we expect at least
one absolutely stable rieutral fermion in our mod-
el. This is then the lepton analog of the absolute
stability of the proton in our model, and provides
a clear experimental test of our model. (The
neutral lepton would have to be pair produced by
the neutral currents [see explicitly Eg. (3.14}be-.
low], be found to be stable, and be found not to
be produced together with e~ at a comparable
rate in the charged-current sector. ) Finally,
since the neutrinos get their masses from the
Higgs field o~ which can have a relatively small
vacuum expectation value, the neutrinos are rela-
tively light. Thus the model can be tested at nor-
mal energies way below the superheavy unifica-
tion scale.

In the above way neutrino pairing leads us to a
breaking pattern which breaks our grand unified
model down to the standard phenomenology, while
retaining B~ and L~ -N~ as conserved global cur-
rents. We note that our counting of broken cur-
rents due to the pattern chosen for p, ~, - o~, a„,
and y agrees exactly with the counting (11V) and

i.th the explicit quantum numbers of the gauge
bosons that acquire mass from the minimal cou-
pling in the gauge-boson mass matrix. The
't Hooft mechanism ensures us that if we are at a
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minimum of the Higgs potential there will then be
no superfluous Goldstone bosons or extraneous
massless gauge bosons in the theory. However,
it is unfortunately beyond our computational abil-
ity to check this point explicitly since our model
possesses 4432 Higgs fields. We have, however,
verified that 'all of the phenomena we require do
obtain in a somewhat simplified but nontheless
sufficiently complicated model which we present
in Sec. V. Based on this later analysis we are
confident that the application of the 't Hooft mech-
anism (whose content is primarily group theo-
retical anyway) to our breaking pattern is correct
in essence.

As a mechanism for obtaining proton stability
our model is one of a broad class of grand unified
models discussed in the review of Gell-Mann,
Hamond, and Slansky. " In particular the authors
of Ref. 1V noted that breaking according to a di-
lepton pair in SU(N)-based models can lead to a
stable proton by means of the 't Hooft mechanism
in much the manner discussed here. What is new
in our work is the identification of right-handed
neutrinos as the explicit dilepton pair, and the
use of the chiral group which leads to several
novel features. In particular, since our model is
chiral it possesses not one but two global sym-
metries so that while the application of the 't
Hooft mechanism to fermion number leads to the
conservation of B~ exactly as in Ref. 1V, its ap-
plication to axial fermion number leads, at the
same time and through the same neutrino pairing
term, to the conservation of L~-N~ and also, as
we shall discuss in detail in Sec. IV, to the elim-
ination of the axion by the Higgs mechanism.
None of these additional features were anticipated
in the review of Ref. 1'l, and so they now provide
us with a specific physical reason (other than pro-
ton stability) to pick just one of the general anal-
yses and cases of Ref. 17 as special.

Before discussing some of the above features
of our model in more detail, we turn first in-
stead in Sec. III to a study of the renormalization
of the coupling constants of our model so that the
low-energy structure of the neutral currents of
our model can be put in a form suitable for phe-
nomenological testing of our ideas, and in partic-
ular for studying the physics associated with the
massive right-handed neutrinos.

III. RENORMALIZATION OF THE
NEUTRAL-CURRENT SECTOR

In this section we study the mass dependence of
our model as the theory is renormalized down-
wards from the superheavy unification mass scale
M to a normal mass scale m. Before we discuss
this effect explicitly though, it is convenient to

first discuss SU(3)c x SU(2) ~ x U(l)» x T~ as an in-
dependent theory and only then embed it into
SU(8}~x SU(8)~. We shall define the diagonal sec
tor of this theory in terms of four momentarily
independent coupling constants with an interaction
for the diagonal sector of the form

t 2gcG3qyx(~ e+ &a) f+ l gc68qyx(~E+ ~H)q

+ gzL~Pi+ gaB„P~+g+~Jz. (3.1)

Here 6, and 6, are the diagonal vector gluons,
L, B, and 8 are the neutral gauge bosons of
SU(2) ~ x U(1)» x 1 ~, and the currents are

P, „=,'Q [u,.y—,(1+y,)u,. —d,.y,(1+y,)d, ]

+ & [v y~(l + y~) v, —ey~(1 +ys) e],
J~= 6 u,.y„u,.+d,.y~d,. —

& v,y, v, +ey,e
(3.2}

+(ge'+g„')'~'C, [Js'+ ~, tan'8~(J", —cos'8~Q')],

where we have introduced

&=(g'+g, ') "' gL+, , g',)„,(g,It+ g~)+'~ +a

g'+g '} ' ' g~L -( . .),~ (g R+g
(gg +gg

C=(g, '+g„') "'(g~-g,B},

cT = el' —sin 8t»Q

g=gzgs~(ga +gz }

sin'8~ =g'/( g~'+ g'),

gs sinew

(3.4)

While Eq. (3.3) is merely an identical rewriting
of Eq. (3.1}we note that Z„, has been expressed
in terms of the physical electromagnetic current

Q~ and the familiar Weinberg-Salam neutral cur-
rent J~z. The form of Eq. (3.3) is completely gen-
eral and is the most convenient one to use in the-
ories which contain both left-and right-handed
neutral currents.

In order to break the theory we shall imitate
Sec. II by introducing a right-handed neutrino-
pairing Higgs field &~ which transforms as (0,
-1,3) under SU(2) ~ x U(1)» x T'„and a fermion-

for the first family. The SU(2)~ x U(1}„xT'„sec-
tor of Z,„, can be reexpressed as"

2„,= eA, Q'+ g~ sec 8~Z„J,'
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mass Higgs field g .which transforms as (2, 0, 2*).
Only X gives a mass (M~) to the charged left-
handed gauge bosons of SU(2)z. Further, only &a
gives a mass to the neutral C, while X gives
masses to both Z and C and also mixes them. The
resulting Z-C mass matrix is given as

Mz'= l(g, '+ g')(&i„)'+ & X..&')

=Mg sec 8~ ~

2+ -2 1/2
(&X„&'+ &X..&'), (3.6)

a +a )

f Mz' Mz-c'
M'=

i

iMz-c' Mc' I
(3.5)

where
I

2

g —g giq t —— JzZz+ n Jz+P~Z

+ (gz'+gs')&c'"„&'.

After some manipulation we find" that the effec-
tive weak interaction at small momentum transfer
due to Eq. (3.3) can be written identically as

2 2
'„+ ', tan'e, (Z', —cos'e,q')

where

a' = M '/detM' (3.8)

with the gauge bosons G„G„I, B, 8 being iden-

tively. With the reduction of the theory to one
coupling constant the Weinberg angle at the unifi-
cation scale M is then determined entirely by the
group theory, so that from Eq. (3.4) we obtain

sin20z, (M) = —. (3.10)

gz +gz t Mz (gs +gz )
s, +&' i Ms-c

so that the 0.2 term generates all possible devia-
tions from the Weinberg-Salam theory. From the
above relations we can now recover the results
of Refs. 11 and 12, namely that the theory breaks
down to the standard Weinberg-Salam model in
the limit in which ( &s& is much greater than & y&,

a limit in which n tends to zero.
All of our analysis so far would be true for any

SU(2)z x U(l)„x Tzs theory. However, our theory
here is a low-energy limit of SU(8}~x S U(8)„.
Consequently, we can relate the various coupling
constants appearing in Eq. (3.1) by treating them
as running coupling constants which are a funct'ion
of the mass scale m. At the unification mass scale
M the symmetry is restored, and thus at that scale
we can equate the Lagrangian of Eq. (3.1) with that
of Eq. (2.13) to obtain

g.(M)=g/2, g.(M)= g/2, (3.9)
g, (M) = -gW3/2W2, g„(M) =g/2,

M N M, ln —+,ln —,
g~'(m ) g' 12'' m 6z' m '

(3.11)

I

before we break SU(3)c x SU(2)z, x U(1)„xTs.
Thus by the time the fermion bilinears get to act
the various couplings of Eq. (3.1) have already as-
sumed low-energy values which differ from the
symmetry-limit values of Eq. (3.9}. (To simplify
the discussion we have taken the scales of all the
fermion-bilinear Higgs fields to be much smaller
than the scale M. ) Consequently, the spontaneous
breakdown associated with these bilinears should
be discussed in terms of 0~ and X rather than in
terms of o~ and X of Eq. (2.14). In this way we
can incorporate a running coupling-constant de-
pendence into Eq. (2.14). Thus it is not only the
Weinberg angle which undergoes renormalization
but also the Higgs-field couplings which appear in
the gauge-boson mass matrix. . This latter renor-
malization effect can most easily be described
simply as a renormalization of the running cou-
pling constants of Eq. (3.V).

To evaluate the explicit renormalization of the
coupling constants we follow the one-loop renor-
malization-group analysis of Ref. 19. The most
significant contributions are due to the gauge bo-
sons and the fermions, and of these only the light
particles (i.e. , masses of order m, not M) affect
the renormalization. With our choice of only the
gauge bosons of SU(3)c x SU(2)z x U(l) » x T'„being
light, and with all the fermions being light, we
obtain

I 4 11 M N M, ln —+,ln —,
gc'(m } g' 8n' m 6z' m '

Thus our model gives an acceptable value for the
unrenormalized Weinberg arigle, and a familiar
one in fact, as it i.s the same one as obtained in
the SU(5) theory. "

In breaking the theory down from the unification
scale M we note that the superheavy breaking acts

g'( )
4 N M

g„'(m) g' 6z' m '

where N is the number of families of fermions.
From these relations we see that g2 is not renor-
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malized and after a little algebra we obtain

sin'8~(m )= ——,ln—3 55e'(m)
8 96m m

1 5 e'(m)
6 9 g2{m} (3.12)

Thus the renormalization of the Weinbe'rg angle
is exactly the same as in the SU(5) theory. "
Thus, as there, we have unification at 10 ' GeV.
However, since we do not encounter the problem
of proton decay in our model we still have the
freedom to make order of magnitude changes in
the value of M as the experimental uncertainty in

the Weinberg angle decreases. From Eqs. (3.11)
we note further that P and (g~/g~) tan8~ are re
normalization invariants with values

2m 2

Thus Z,«of Eq. (3. I) takes the final form at mass

j

(z, z,
V2

+ a'(-,'(Zg+ J„)—[ —'+ sm'8g(m)]Q )').
(3.14}

We see that the second term in J,« is completely
parity conserving. Since the full theory was parity
invariant in the unbroken limit we thus find that
in our theory the entire departure from parity
conservation in the neutral-current sector of the
model is that already given by Weinberg-Salam,
and as before the theory reduces to exact Wein-
berg-Salam for small a. The phenomenological
limits on the parameter n in Eq. (3.14) have been
studied in Ref. 18, where it was found that there
is little mixing in Eq. (3.5) and that Mc must be
greater than 2.74 M~.

As noted, the relations of Eqs. (3.12) are ob-
tained both in our model where SU(2}~ x U(1)v x Te
is the light flavor subgroup and also in the popular
SU(5) theory'where only SU(2)~ x U(1) is light. The
reason for this is that there is only one extra light
gauge boson in our model, and with it being coupled to
an Abelian group it makes no contribution in Eqs.
(3.11}.Consequently, the dominant gauge-boson
contributions are the same in the two cases. More-
over, there is even no difference between the two
cases in the fermion sector either. We obtained
Eqs. (3.11)by taking all the fermions to be light. If
instead we were to make o~ superheavy so that the
right-handed neutrino would acquire a superheavy
Nfajorana mass, we note from Eq. (3.7) that, at

the same time, only SU(2)~ x U(1} would be left
as a residual light flavor subgroup and only the
remaining fermions (the usual light ones) would
renormalize the Weinberg angle. This of course
is exactly the situation met in SU(5) where Eqs.
(3.12) were first obtained, and hence they would
still be obtained in our model even when g~ is
superheavy. C onsequently, the renormalization
of the Weinberg angle in our model is not affected
at all by whether or not the right-handed neutrino
is light or superheavy if the low-energy flavor
subgroup of the theory is no larger than SU(2}~
x U(1)„xT3„. Hence, the known success of Eqs.
(3.12) does not constrain our theory to possess
only SU(2)~ x U(1} as its light flavor subgroup,
and in no way prevents the right-handed neutrinos
from acquiring light as opposed to superheavy
masses.

Having now completed the analysis for SU(2)~
x U(1)v x Te as the low-energy flavor subgroup,
it is of interest to ask, what would have happened
had the low-energy flavor subgroup been the pop-
ular SU(2)~ x U(l}v x SU(2}„ instead. Since both
the groups have the same neutral-current struc-
ture all of the analysis of this section would go
through the same (and neutrino pairing would also
make the right-handed charged gauge bosons much
heavier than the left-handed ones" "), except
that the renormalization of g~ would be modified
as it is now non-Abelian to give

1 4 11
, ln —+, ln-

ge'(m) g' 12v' m 6v' m
(3.15)

1 e'(m)
4 3gc'(m)

' (3.16)

Since sin'8~(m) is apparently less than —,
' experi-

mentally we thus see that Eq. (3.16) would appear
to be ruled out. Thus necessarily SU(2)e must
not be a good low-energy symmetry but rather
only T~. This is completely in accord with our
development of the breaking pattern in Sec. II
where we maintained the conservation of L~ -N~
by breaking SU(2)e but not T'„ in the superheavy
sector. Thus we can interpret the observed value
of the Weinberg angle as an indirect justification
for our choice of breaking pattern and as an in-
direct manifestion of the relevance of the conser-
vation of L~-N„.

IV. SOLUTION TO THE AXION PROBLEM

In this section we show, how the axion problem
is resolved in our model. We begin by reviewing

Consequently, the renormalization of the Wein-
berg angle is changed, and we would obtain instead

3 11 2 Msin'8 (m} = —— e'(m} ln—
8 48~2 m
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the nature of the problem. Due to the global prop-
erties of instantons'o the usual local QCD La-
grangian alone does not fully specify the dynamics
but needs to be augmented by an extra term of the
form 8EE. Each different value of 8 specifies a
different theory, and all of them with 810 are
CP violating at the level of the Lagrangian, i.e. ,
even before the symmetry is spontaneously bro-
ken. The origin of this CP violation is due to the
fact that the n = odd index instantons tunnel be-
tween states of opposite CP, making the vacuum
of QCD after tunneling a CP-violating superposi-
tion of states. Such a CP violation is diagonal in
the Qavor indices and would lead to an unaccept-
able experimental value for the neutron electric
dipole moment unless for some reason 8 is as
small as 10 '. Apart from this possible experi-
mental problem the situation is even more dis-
turbing theoretically as there does not appear to
be any physical principle which would fix the value
of 8 at all.

A possible r'esolution of this dilemma has been
provided by Peccei and Quinn, "who noted that in
a chiral theory the effects due to 8 can be rotated
away completely, making the dynamics then in-
dependent of this arbitrary parameter 8. Speci-
fically, they noted that due to the Adler-Bell-
Jackiw anomaly the divergence of the axial
baryon-number current BA is proportional to
a term of the E& just like the instanton con-
tribution to the Lagrangian above, and hence
the dependence on 8 can be removed by a chiral
rotation. However, in order to effect this rota-
tion it is necessary to augment the Weinberg-
Salam weak interaction with an additional U(1)„
symmetry. Consequently, when the fermions ac-
quire their masses by spontaneous breakdown
this continuous U(l)„symmetry will be broken
also, to produce an extra observable massless
Goldstone boson, the axion of Ref. 14, for which
there is no apparent experimental support. Con-
sequently, we have either an uncalculable param-
eter 8 in the theory or an unwanted axion.

What would have been the obvious solution to
the axion problem would have been to remove it
by the Higgs mechanism. However this is not
possible since anomalies in the U(1)„current pre-
vent this current from being given a local exten-
sion in the first place. In order to gauge the
U(l)„current we would thus need the current to
be anomaly free, while in order to induce a 8 de-
pendence into the divergence of the current we
would need an explicit EE anomaly term. Thus
the anomaly resolves one problem only to create
another.

We now note that in our model a new possibility
is now open to us as it is now possible to remove

the axion by the Higgs mechanism without needing
to gauge the extra U(l)„symmetry. Specifically,
in our model B„ is not purely a global symmetry
but is a linear combination of the local F„
= —,

' (B„L„-)and the global axial fermion number
E„=L„+3B„. Consequently, when the fermion
masses spontaneously break B„ in Eq. (2.17) they
simultaneously break both a global and a local
symmetry, so that by the 't Hooft mechanism the
focal gauge bosons now absorb the axion to reprove
it from the physical spectrum, with a new residual
global symmetry, L~ -N„, emerging, in place of
E„, exactly as discussed in the previous sections.
Moreover, while F„ is anomaly free since it is
part of the gauged SU(8)~ x SU(8)z, we note that
we still have the freedom to give anomalies to E~
and E„ t whi chbelong to U(8)~ x U(8)s] as we do
not gauge their currents. (In the Appendix we
show how this is done explicitly. ) Thus in our
model B„ is not anomaly free, so that through its
divergence the dependence on 8 can be rotated
away; while at the same time B„ is not coupled
only to a purely global symmetry, so that through
the 't Hooft mechanism its associated axion is
removed by the Higgs mechanism. Thus we elim-
inate the axion by the Higgs mechanism without
needing to gauge the full U(8)~ x U(8)s symmetry.

We note the explicit role played by neutrino
pairing. It breaks both the global and the local
symmetries in just the right way to produce along
with the fermion mass term the 't Hooft mechan-
ism in the axial sector. Axial fermion. number is
spontaneously broken everywhere by neutrino
pairing and by the fermion masses except in the
left-handed neutrino sector. The masslessness
of these left-handed neutrinos then provides the
additional global symmetry necessary to get the
Goldstone counting correct, and thus in our model
the masslessness of the observed neutrinos has
as a consequence the lack of observable CP viola-
tions in the strong interactions.

It is also of interest to see how the Goldstone
counting is explicitly maintained in the Higgs po-
tential. While we shall discuss the full potential
itself in more detail in Sec. V we can illustrate
the main part of the Goldstone counting mechan-
ism by considering just V(X}, the piece of the po-
tential which involves only. the fermion-mass
Higgs field X. Every term in V(x) possesses the
full U(8)~ x U(8)z invariance except for a possible
term of the form zdet X. When F40 the symmetry
is reduced to SU(8}~xSU(8)RxU(1)». In the event
that gg 0 the symmetry-breaking pattern of Eq.
(2.17)produces a certain number of Goldstone bo-
sons (107 to be precise, since the pattern breaks
107chiralcurrents) in&(X), with all of them then
being absorbed by the local SU(8)~ x SU(8)z gauge
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bosons in the standard way. However, since m„
= 0 we note that the det X term vani. shes in our
solution with the breaking pattern possessing an
extra U(l)„ invariance. Consequently, the poten-
tial V(y) will still only produce 107 Goldstone bo-
sons even if the detX term is absent from V(g)
altogether, i.e. , even if x=0, and they will again
be absorbed by the same set of gauge bosons as
previously. Thus when m„= 0 a U(8)~ x U(8)s in-
variant potential will not produce any superfluous
Goldstone bosons which cannot be gauged by the
SU(8)~ x SU(8)~ gauge bosons. (This effect was
first noted in Ref. 12.) Thus the conservation of
L~-N~ maintains the Goldstone counting in our
model.

It is further of interest to compare our solution
with the "non-axion" possibility discussed in Ref.
14, the m„= 0 solution. It was noted in Ref. 14
that if m„= 0 there would still be sufficient re-
sidual axial symmetry in the theory to be able to
rotate e away; and with the U(1)„current of the
up-quark simply not being spontaneously broken
in the first place there would be no axion in the
theory either. Since rn„ is known to be nonzero
experimentally this solution had of course to be
rejected. However, it has a reflection in our pro-
posed solution. Specifically in our case, because
we combine leptons and quarks together we have
to introduce axial fermion number and not just
axial baryon riumber, and now a piece of E„( toher

than B„)is left unbroken by retaining m„= 0, so
that there is one fewer Goldstone boson than would
be the case if the neutrinos were also to get a
Dirac mass. (In that respect it is the analog of
the effect that m„= 0 would have had on B„ in Ref.
14.) However, the axial baryon number in our
model is still completely broken by all the. quark
masses, so that there is a B„axion in the theory
which is then gauged out of the spectrum. What
there is not is an analogous E„axion since m„= 0.
Thus with grand unification we can move a con-
served axial-vector current completely into the
neutrino sector while still being able to rotate 8
in the quark sector and still being able to give a
mass to each of the quarks. Thus through m„=0
the leptons have an explicit influence on the QCD
structure of the strongly interacting quarks.

In concluding this section we note that despite
possessing QCD with all its instanton structure,
most grand unified theories have not addressed
the axion problem at all, with SU(5) for instance
not even being able to rotate 8 out of the spectrum.
Further, other grand unified theories which do
have a chiral structure, such as SO(10), (Ref.
21), are then not able to eliminate the axion from
the spectrum once the quarks acquire their mas-
ses. Consequently our SU(8)~ x SU(8)z theory is

the'first grand unified theory which can complete-
ly accommodate all the implications of the instan-
ton structure of its QCD subgroup, in a manner
compatible with experiment.

p = (10, 10*)8 (10*,10)
- ((6'e+ e O'-X v, —v,X)~(6 e+ e 6')„)+H. c. ,

(d -=(6, 6*)$ (6*,6)
- ((a'X-St p)~ (a'Ot —Sla')„) + H.c. ,

e~=(10, 1)-0,
oe =-(1,10)- ((v, v,)„),
y =-(4, 4*)e(4~,4)

- m, (ee)+ m„(XX)+m, (%P) .

(5.1)

As previously, this pattern breaks the theory

V. STRUCTURE OF THE HIGGS POTENTIAL
IN A SIMPLIFIED MODEL'

One of the major difficulties with large grand
unified gauge groups is that the analysis of the
Higgs sector of the theory poses enormous com-
putational difficulties. However, the Higgs sec-
tor does not raise any really conceptual difficul-
ties as the group theory alone already dictates the
structure of the breaking pattern and of the asso-
ciated surviving residual symmetry. Nonetheless,
it would be nice to minimize the SU(8)~ x SU(8)„
potential fully to check the consistency of our
model. Unfortunately, this is beyond our compu-
tational ability. Noting, however, that color is
playing no explicit role in the Goldstone counting
needed for the 't Hooft mechanism in our model,
we have, alternatively, constructed an abbrevi-
ated colorless version of our model. We are able
to carry out the complete minimization of the
Higgs potential of this simpler model to the bitter
end, to thus confirm that the basic i.deas of this '

paper are mutually consistent. This strongly sug-
gests that they will also be consistent in the full
SU(8) model as well.

For our simplified model we introduce quartets
(v„e, 9L, 6') ~ „, where X, 6' are "quarks" with
charges zero and one, respectively, so chosen so
that the sum of the electric charges within each
quartet is zero. Based on these quartets we intro-
duce a local SU(4)~ x SU(4)z gauge theory which
has a global U(4)~ x U(4)„ invariance. The model
contains the appropriate Weinberg-Salam model
and is essentially a colorless version of our SU(8)~
x SU(8)~ theory. We take the breaking pattern to
closely resemble our previous pattern by intro-
ducing 344 Higgs fields with expectation values
which transform as
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down completely to the Weinberg-Salam phenom-
enology (giving incidentally a value of —,

' for
sinbe~) with the local Q and the global B„and L„
-NR remaining unbroken. For consistency we

must now show that our pattern is a minimum of
the Higgs potential.

In discussing the Higgs potential we consider
first only the self-coupling terms,

V(P) = -b~ TrP P+ ba(TrP P) + bbp, bnbpcdnypcdbypabbS+ b3pabnsPacybPdcybPdbeB

+1~5~abeg~aby6~cdy6~cdeg 6~a bep~acey~cdy6~bd86 y

V &u}= -a Trury&o+a Tr&oy&o)'+ a a a a Trarycocoy&o analo ous to( .( 3y 3~ 5~ 6 ( g p),

V(o B, os) = -d(TrotBoB+ Troysoe) + e [(Tro yBoB)'+ (Trot+os)'] +f [Tr(oyBoB)'+ Tr(o'tsar) ],
V(X) = -o»X'X+ b(TrX'X)'+ c»(X'X)',

(5.2)

(5.2)

(5.4)

(5.5)

where as usual b„a„d, and a are all positive. The pattern of Eq. (5.1) is a minimum of the separate
V(&o) and V(o„) pieces of the potential if

(5.6)

t
~cx086 ~l T . +' +T ~ ~+ 2abc/ aceyl cdy6~bd86+ +3abeg+abey~cdy6~cdg6+ 3+abe8+aceg~cdy6~bdy6

+ cb Tr&cAu(TroBol + Trash)+ cc(a ac o,b~tdns+adns+ o n„o ys &o, bsbwabnb)+ cy Trp p(Troppo~+ Tro„o„)
Lf L R Rf+ 3(oac ocb Pbdns PadnB+ annoyspabBbpabn6)

Lf L R Rf+ ca(cab ocdPcdnsPabns+ o esoy5 Paby6Pabns}

+d, Tr&uy&o Trxyx+d, (X Xys&oby, „&ub,s„+X, Xby &uy, B„to„s„)+d,x Xbys&oy, „bsb,s„+d, TrpypTrxyx

+ 5(XanXasPbcnyPbcsy+ XanX bnPacsyPbcby) + SxanXbsPacnyPbcsy+ b T Ot. az, T Ozaet r

+ k(Trxyxo~~o~+ Trxxyoeyoe)+ / Trxtx(Tro~~a~+ Troz~o„)

4ab+ 4a3+ 4ab+ ab& 0, e+f& 0, f &0,
but the proposed pattern produces tachyons in each of the p, oL, and X self-coupled sectors. There are
also cross terms which couple the various representations in the Higgs potential,

+ [Pabns acey(&l xbsxcy+ ~apbdsbpcdy6+ ~3 bdsb+cdybl+ 4XanXbspabns 5xanXbs abns (5.&)

Explicit exhausting calculation then shows that
there will be a complete mutual cancellation of
all of these tachyons if

b, c»0,
»$5»$3j$6)0

Ib-2(e+ f) &0,

k(c+ Sb)d —2c(e+f)a & 0,
8bbca —

~
da

~

(c+ 8b) b, » 0,

(5.8)

-2d5bba —(b, + 2b, )(c+ 3b)b, & 0,

all other coefficients very small. Under the set
of conditions of Eqs. (5.6} and (5.8} our proposed
pattern of Eq. (5.1) is then a minimum of the full
Higgs potential for a continuous range of its pa-
rameters.

To complete the analysis we need to check that
there are no superfluous Goldstone bosons gen-
erated by the potential in the diagonal sector of
the theory, the only place where they could in
principle appear. Our model contains eight diag-
onal U(4)~ x U(4)z currents. If the three cur-

I

rents Q, B„, and L„-Ns are to remain unbroken
there should then only be five Goldstone bosons in
this sector, all of which would then necessarily
be gauged by the diagonal gauge bosons of the lo-
cal SU(4)B x SU(4)s to leave only the photon mass-
less. As can be seen from Eq. (5.1) p possesses
two independent components which acquire vacuum
expectation values [-((6'e)(g e)) and ((Xp,)((Pe))],
~ possesses one, o„one and X three. Conse-
quently, in its self-potential V(p) p produces two
Goldstone bosons in the diagonal sector due to the
imaginary parts of the above two components,
while ~ produces one, oR produces one, and X

produces three Goldstone bosons in their respec-
tive self-potentials. The self-potentials thus gen-
erate an apparent seven Goldstone bosons alto-
gether in the diagonal sector. Explicit diagonal-
ization, however, of the 14 x 14 matrix containing
these seven bosons and their real parts is then
found in the presence of the cross terms of Eq.
(5. I) to give a positive mass squared to two lin-
ear combinations of the seven mould-be Goldstone
bosons to finally leave only five Goldstone bosons
as required. (The cross terms which achieve
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this explicitly are essentially the ~,. terms with
the parameters z,. all being negative. )

The simple model is thus an explicitly solvable
model which contains. all the phenomena of inter-
est in this paper, i.e., a completely stable pro-
ton, no unwanted axions, with the conservation
of L~-N„being maintained by the masslessness
of the left-handed neutrinos.

VI. CONCLUSIONS

In this paper we have attempted to understand
baryon number from a somewhat more basic
viewpoint than is usually taken in grand unified
models. We have found a rationale for why baryon
number has to be an explicitly conserved sym-
metry at the level of the Lagrangian, for why it
is then not subsequently spontaneously broken,
and for why it ultimately emerges as an absolutely
conserved global symmetry with no associated
massless gauge boson. We cannot conclude that
baryon number is conserved in the universe as a
whole however, but only that grand unification
does not provide a microscopic origin for phe-
nomena such as the observed baryon excess. To
the extent that such an excess does exist it must
be due to macroscopic cosmological effects and
not due to the fundamental weak, electromagnetic,
and strong interactions. While we have yet to
make an explicit study, we note in passing that
because of the very fact that baryon number is
short range in our theory while electric charge is
long range, these two symmetries could have
quite different cosmological behaviors. Apart
from these macroscopic issues, the model does
of course make a strong microscopic prediction
that the proton be stable, and this issue is cur-
rently under experimental investigation. On the
face of it would appear to be quite difficult to
perform an experiment to show that the proton is
completely stable; thus the upcoming proton-de-
cay experiments will only be able to eliminate our
theory but not confirm it. However, subsequent
generations of experiments could in principle test
proton lifetimes up to times associated with the
Planck mass, and if by then proton decay is still
not seen we would be least be able to conclude that
grand unification is not causing proton decay.

Apart from the key feature of proton stability
our model has several other noteworthy features.
Since the model is a chiral theory, parity viola-
tion arises from spontaneous, breakdown, unlike
say SU(5). We have a reason for the massless-
ness of the left-handed neutrinos unlike the SU(4)'
model of Pati and Salam4 or the SO(10) theory of
Ref. 21. Unlike all other grand unified theories,
as far as we know, there is lepton-number conser-

vation in our modeL The axion problem is solved
in our model. Finally, the emergence of a new
stable massive neutral lepton is a novel aspect of
our model which will eventually provide a clear
experimental way of testing our ideas. With this
neutral lepton having a relatively light mass our
grand unified model can be tested at normal en-
ergies way below the unification mass scale, a
fact that is useful in of itself, and which will be-
come extremely relevant if the upcoming proton-
decay experiments yield a negative result.

Finally to conclude we remark that if we en-
large our chiral gauge theory by putting members
of different families into common fundamentals
[for instance an SU(16)~ x SU(16)„based on u„d, ,
s, , c, , p„e, p, v„ treated as one big family), there
will still only be two residual. global symmetries,
since any chiral theory can possess at most two
extra U(1) invariances. Consequently every pos-
sible kind of symmetry (i.e. , within families or
between families) will ultimately be broken' in the
vacuum leaving only Q, 8», and I.» -N„as re-
sidual symmetries, thus explaining the division
of the world into baryons and leptons, i.e. , into
at most two species which have their own global
quantum numbers.

Note added

(a) We would like to make an additional com-
ment regarding our solution to the axion problem
given in Sec. IV. Strictly speaking our analysis
only shows that we can rotate away the angle 6
either in the unbroken theory or in the broken
theory at the grand unification mass scale. Since
the triangle anomaly is mass independent, the
anomaly itself is not affected by the spontaneous
breakdown mechanism which produces all the
mass scales of our model. Consequently we do
not anticipate that 6 would undergo renormaliza-
tion and acquire a nonzero value in the low-energy
region of, the theory. Nonetheless, without a de-
tailed treatment of the renormalization properties
of instantons which would accompany their quanti-
zation, we cannot rule out the possibility that 0

is renormalized. However, it would appear to us
that even if such a renormalization effect exists
it is likely to be very small (exponentially small
perhaps as it is a radiative correction to a tun-
neling probability). But without a detailed analy-
sis we must, for the moment, make what we re-
gard as a mild assumption, namely that 6 is not
renormalized at all, or if it is that such a renor-
malization is very small.

(b) It is of interest to ask what we would need
to do to our model in order to actually get proton
decay. The simplest possibility is to. gauge the
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additional fermion-number generator E~ = J~
+ 3 B~ so that the full local symmetry is now

SU(8)~&& SU(8)~ x U(1)~+„. In this case the baryon
number B& is completely local. Since there is no

known massless gauge boson coupled to B~ ex-
perimentally, the local gauge boson coupled to
&~ must acquire a mass by the Higgs mechanism.
Hence B~ must be spontaneously broken, with the
pattern of expectation values for the Higgs fields
being modified so as to give one extra Goldstone
boson compared to the previous situation in
which only SU(8)z, x SU(8)z is local. Thus with the
additional gauging of U(1)&,)( we produce a model
in which baryon number is a good symmetry at the
level of the Lagrangian and is necessarily broken
in the vacuum. Provided the axial U(1)~ „sym-
metry still remains global, we can continue to use
the 't Hooft mechanism for the axial fermion num-

ber +„=L„+3&„soas to remove the axion from
the physical spectrum as before.

With the above remarks in mind, we note that
our SU(8)z x SU(8)s theory has a natural embedding
in SU(16) if we put all of the fermions of the (8, 1)
@(I,8) representation into the fundamental 16 of
SU(16). A purely left-handed 16 consists of
left-handed fermions and the charge conjugates of
right-handed fermions. Thus in SU(16) we must
put particles and antiparticles into the same ir-
reducible representation, and so we anticipate
proton decay after spontaneous breakdown. Ex-
plicitly we find that this SU(16) contains a local
SU(8)~x SU(8)), && U(1)J.,„subgroup so that proton
decay simply follows our remarks above. More
interestingly, we note that this SU(16) does not
contain U(1)~ ~ as a subgroup. Hence in models
built on SU(16) && U(1)z, z, where SU(16) is local
and U(1)~ „is global, there will be proton decay
but again the axion will be removed by the 't
Hooft mechanism.

(c) After we finished our work we became aware
that the proton-decay aspects of maximal gauging
theories such as SU(16) and its subgroups had

also been discussed recently by Pati, Salam, and

Strathdee. See J.C. Pati and A. Salam, Interna-
tional Centre for Theoretical Physics, Trieste,
Report No. IC/80/V2 (unpublished}; J.C. Pati,
A. Salam, and J. Strathdee, Nucl. Phys. B185,
445 (1981).

APPENDIX: SIMPLE METHOD FOR CALCULATING
ANOMALY FACTORS

In this appendix we show how to calculate the
anomaly factor associated with an arbitrary ir-
reducible representation of an SU())} group. This
will then enable us to determine what choices of
fermions are needed in order to make our SU(8)~
)( SU(8)~ theory anomaly-free. The problem of
calculating the arbitrary anomaly factor has in

fact already been solved in the literature, "and
our interest here is only is presenting a very
simple alternative method of calculating which
will complement the published works.

To define notation we introduce SU(n) generators
E ( o= l, . . ., n), with an m-dimensional repre-
sentation g(") (a = 1,. . ., m} satisfying

[y u y(m)] &y a q(m)

For the fundamental representation

T =X/2,
where

(A1)

(A2)

(As)

and

(A4)

A "(n, m)= ~ d ~„()((n,m). (A6)

The coefficients n(n, m) thus contain the explicit
group-theoretical dependence of the anomaly after
all kinematic factors associated with Feynman
diagrams etc. have been removed, and have been
normalized so that the fundamental representation
satisf ies

a(n, n) =1
with its conjugate satisfying

(Av)

The anomaly in the gauge couplings of gauge bo-
sons A, A~, and A" due to a closed P(") loop is
proportional to qA ~"(n, m), where )i= +1 for left-
or right-handed fermions, respectively, and

(A5}

We note that A. ~"(n, m} is a group invariant and

is symmetric under the interchange of its in-
dices, and is thus proportional to d ~„, i.e. ,

o(n, n*) = -l. (A8)
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Having determined the group-theoretical factor
for the anomaly associated with the fundamental
representation we can now generate the anomaly
factor for an arbitrary representation by taking pro-
ducts of fundamentals. In order to extract out the
irreducible representations of SU(n) contained in
the product n~ of k fundamentals it is convenient
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to use Young diagrams. We now proceed by con-
struction and begin with k= 2. For k = 2 there are
two irreducible representations in the decomposi-
tion of n xn, the totally symmetric representation
of dimension n(n+ 1)/2 and the totally antisym-
metr'ic representation of dimension n(n —1)/2.
We shall calculate the trace in Eq. (A5) in the
n xn space itself so that T is a four-index tensor
(f,~, k, I= 1, ..., n)

r"= [~;,e(f)„+(1),„e!;,]/2. (A 9)

P= ,' (6„6~—,+ 6, ,6»)

and evaluate

TrPT Jr', r")
to obtain

n(n, n(n+ 1)/2) = n+4,

e(n, n(n -1)/2) = n -4.

(A10)

(A11)

(A12)

As a quick check on these relations we note that
in the SU(3) decomposition of 3 x 3 = 6+ 3* the 3*
has n= -1 as it should. In the SU/4} decomposi-
tion 4 x4=10+6 the 6 is anomaly free which is to
be expected since it is self-conjugate. Also in the
SU(5) decomposition of 5 && 5 = 15+ 10 the 10 has c.
=+1 and hence cancels the 5*, thus confirming the
original cancellation noted by Georgi and Glashow
in Ref. 5.

The same procedure can now be applied to
larger values of k. However, simplification fol-
lows by noting that because of the projector sum-
mation used previously we will find that in the ir-
reducible decomposition of &' each anomaly factor
will be a polynomial of degree k —1 in n, with the
sum of the anomaly factors for all the relevant ir-
reducible representations being kg' '. Further,
for the arbitrary product of bvo irreducible rep-
resentations m, and m, we can express T in the
m„m, product space analogously to our construc-
tion of Eq. (A9) to obtain

m, o.(n, m, )+m, n(n, m, ) =Q u(n, p, ) (A13)

summed over all irreducible representations p,
contained in

m, m, = p&. (A 14)

Also, we have found a closed form expression for
the anomaly factors associated with the complete-
ly symmetric and completely antisymmetric irre-
ducible representations contained in n~, which are
given respectively as, ,

To project out the representations we introduce pro-
jector operators for the symmetric and antisym-
metr ic combinations

(n+ 2k)(n + k)!
(k —1)!(n+ 2)!

(n —2k)(n —3)!
(k -1}!(n-k-1)! '

(A15)

n(n, "C„)=0, k~ n (A16)

(we give the derivation of these relations below,
but note now that the relation for k~ n follows
since it involves multiplication by a singlet).
Finally the anomaly factor of the conjugate rep-
resentation satisf ies

n(n, m*) = —n(n, m) . (A17)

Using the above information it is then, possible to
determine all the k& 2 anomaly factors without
needing to construct explicit projector operators
or evaluate traces at all.

We illustrate the procedure for k= 3. For k= 3
the fully antisymmetric representation has an
anomaly factor which is quadratic in pg. For n= 3
the representation is a singlet, and is hence
anomaly free. For n= 4 a column of three boxes
is equivalent to 4* for which n= -1, and for n
= 5 a column of three boxes is equivalent to (5~
x 5*) antisymmetric for which n= -1 according
to Eqs. (A12) and (A17) above. Solving then gives

o(n, "C,) = (n —3)(n —6)/2. (A18)

(This procedure shows that the arbitrary totally
antisymmetric anomaly factor can also be found
algebraically. ) As a check on Eq. (A18) we note
that for pg= 6 a vanishes, which is to be expected
since the 20 of SU(6) is seU-conjugate.

To calculate the other anomaly factors for k = 3
we now use Young diagrams. The multiplication
of the "C, representation (a column of iwo boxes)
by a fundamental contains the "C, representation
discussed above and a mixed symmetry represen-
tation of dimension (n+ 1)n(n —1)/3 (see e.g. ,
Table I). The sum of their anomalies is given by
Eq. (A13) as

(n -4)n+ -'n(n -1)x 1.
From Eq. (A18) we thus obtain

e(n, 2""Cs) = (n —3)(n+ 3) .

(A19)

(A 20)

(n+4)n+-,'n(n+1) &&1 (A21)

As a check on this relation we note that for SU(3)
this mixed representation is the 8 which is self-
adjoint and hence anomaly free. Finally we also
note that the multiplication of the ""C,represen-
tation (a row of two boxes) by a fundamental con-
tains this same mixed representation and the fully
symmetric ""C, representation. The sum of their
anomalies is obtained similarly and is given as
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so that

a(n, ""C,) = (n+ 3)(n+ 6)/2, (A22)

whi. ch exhausts all the irreducible representations
in n'.

By now we have obtained enough totally sym-
metric and totally antisymmetric representations
to be able to generalize their anomaly factors to
any k to obtain Eqs. (A15) and (A16). For the ar-
bitrary n~ we can proceed constructively using
n~', ...,n and we present the results for 0 = 4 in
Table I, where we have collected together all the
anomaly factors that we have explicitly calculated
in this paper. Repeated application of our tech-
nique (which can also be used to determine the
dimensionality of an arbitrary Young diagram)
then enables us to determine any n(n, m) as de-
sired.

The most interesting aspect of our results is
that the factors given in Table I are all reason-
ably small integers. Moreover, the overall sign
of each anomaly can be changed by choosing the
conjugate representation or by taking right- or
left-handed fermions. Thus essentially any SU(n)

group can be made anomaly-free by a judicious
choice of the low-lying representations given in
Table I. Thus it would appear to us that anoma-
lies present no serious formal consistency prob- .

lems for the renormalizability of non-Abelian
gauge theories. Moreover, even though the pres-
ence of the required extra representations of fer-

ions may well involve many new ferrnions, in
grand unified theories only a few of them will be
observable color singlets.

We can now use our results to make our SU(8)~
& SU(8)z model anomaly-free. From Egs. (A7)
and (A8) we see that the anomalies of each (8, 1)
$(1,8) representation can be canceled by a mir-
ror (8*,1)8 (1,8~) representation. Alternatively
we note from Eqs. (A12) and (A17) that o(8, 28~)
= -4, so that we can cancel the anomalies of a
complete set of four families of (8, 1)$(1,8) rep-
resentations by a single (28*, 1)$(1,28*) repre-
sentation. Both procedures are acceptable, and
either will serve to make our model formally
anomaly-free as discussed in Sec. II.

Having now developed our method we note that it
can also be applied to an arbitrary TrT T~. ..T"

TABLE I. Anomaly factors and dimensions of the low-lying representations together with
the Young diagram that characterizes each representation.

Young diagram Dimension m e(n, m)

n+iC
2 n+4

nC

I l I I n+2C
3

2"' C3

( +3)( +6)/2

(n —3)(n+ 3)

"C ( -3)( -6)/2

I I I I n+3C
4

3n+2C
4

(n+ 3)(n+ 4) E'n+ 8)/3 t

(n+4)(n +n —8)/2

(n —&)n (n+ 1)/&2 (n -4)n(n+ 4)/3

3"'C
4 ( -4)( '-n-8)/2

nc
4 (n- 3)(n -4)(n —8)/3 ~



GRAND UNIFICATION AND PROTON STABILITY BASED ON A. . . 2941

and not just to the three index A s"(n, m) of Eq.
(A5}. Particularly, in this paper we are also in-
terested in the anomalies of the extra global
U(l)~ and U(1)„symmetries of the full U(8)~
&& U(8)„. Thus we calculate

Eq. (A12) we also find that

p(n, n(n+ 1)/2) = n+ 2,

p (n, n(n —1)/2) = n = 2. (A 26)

Aos(n, , m) = TrTOTs (A 23)

with the anomaly factor for the coupling of a
U(1) gauge boson to two SU(8) gauge bosons then
being given by Y(n, m)Aos(n, m), where Y(n, m) is
the U(1) quantum number of the representation
(n, m). Noting that we can write A s(n, m) as

A "(n, m) = P(n, m) 6.,/2,

(A 25)

By introducing projectors as in the derivation of

(A24)

we thus only need to calculate the factor P(n, m).
For the fundamental this is done directly from Eq.
(A4) to give

Now as discussed in Sec. IV it is our wish in our
model that U(1)~ and U(l)„not be anomaly-free
so that axial baryon number does possess an
anomaly. Thus for our SU(8)~ x SU(8)~ anomaly
cancellation mechanisms w'e -must additionally
now require that the mirror fermions not satisfy
Y(8, 8*)= —Y(8, 8) [so that the (8~, 1)6 (1,8~) fer-
mions are mirror fermions for the SU(8)~ x SU(8)s
currents only and not mirror fermions for the
extra U(l)~ x U(l)„currents as well]. Or alter-
natively noting that P(8, 28}= 6 we must require
that the (28*,1)$(1,28*) representation not satisfy
6Y(8, 28*)= -4Y(8, 8), a choice we are free to
make. Thus we have no difficulty in keeping
SU(8)~ x SU(8)s anomaly-free with anomalies still
being present in the extra U(1)~ x U(1)~ sym-
metries, as required for our work.
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