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There are two baryons at the center of an octet weight diagram of SU{3)„,„„both of which contain the same
quarks. We call these baryons "flavor degenerate. "We discuss the symmetry of the wave functions of these baryons
in terms of a quark-ordering principle and a mixing angle. We explore the consequences of the mixing on predictions
of the masses and magnetic moments of flavor-degenerate baryons, including baryons containing heavy quarks. We
obtain a simple approximate expression for the mixing angles in terms of the quark masses. The mixing angles turn
out to be rather small, but still change some of the calculated magnetic moments substantially. The effect of mixing
on the baryon masses is much smaller,

~I. INTRODUCTION

In the past few yea, rs, a number of quark-model
calculations of masses' ' and magnetic moments' "
of "heavy" baryons (i.e. , baryons containing heavy
quarks, such as the c, 5, and f quarks) have ap-
peared. These calculations have generally used
quark wave functions constructed in analogy with
wave functions previously used for the light u, d,
and s quarks.

For baryons containing two or three identical
quarks, the Pauli principle requires definite spin
wave functions and the procedures used previously
for light quarks are directly applicable to heavy
quarks as well. However, this is not necessarily
the case with spin-& baryons containing three
quarks of different flavors. We refer to such bary-
ons as "flavor degenerate" because they cor-
respond to the twofold-degenera, te states in the
middle of the baryon-octet weight dia, gram in
SU(3)„,„„.For the flavor -degenerate baryons the
Pauli principle does not apply directly, and there
is an ambiguity in how the three different quarks
are to be ordered in the spin function of the bary-
on.

We illustrate this ambiguity by considering the
usua, l magnetic-moment formula, s in the qua, rk
model. For spin-& baryons with a pair of identical
quarks, the sta, ndard quark- model magnetic-mo-
ment prediction is ' '

p, =3(2p, +2k, , —W,,),
with the Pa,uli principle requiring that the pair of
identical quarks be taken as the first two. " For
a, pair of flavor-degenerate baryons, one moment
is given by Eq. (1) and the other by" "

and

p (:.;) = 3(2p„+2p, -u, ) =0.70 (3)

p(:- ) = p,,=0.39.

The numerical values for all magnetic moments
are in units of nuclear magnetons-and come from
the input values

p „= -2pg = 1.86, p, = -0.61, p, = 0.39,
which assume Dirac moments for qua, rks and use
the measured proton and A moments, "and a ma, ss
for the c quark of m, —-1.6 GeV, as suggested by
g-meson spectroscopy.

Without a principle such as isospin to guide us,
other choices could be made for the quark order-
ing. For instance, picking the u quark as the
third qua, rk results in

but the pure Pauli principle puts no restriction on
the quark ordering.

For the light-baryon octet, the Pauli principle
can be extended using isospin to the ud pair, and
this removes the ordering ambiguity. The Z' has
moment p and the A has moment p ', each with the
s quark third. The fact that isospin is not an exact
symmetry leads to some small mixing between the
Z' and A, which we discuss later.

For heavy flavor-degenerate baryons, such as
the =, and =,',"composed of the u, s, and c quarks
for instance, isospin does not resolve the ambigui-
ty in the quark ordering. The usual procedure in
Refs. 8-14 has been to pick the two lightest quarks
(u and s) as the first two quarks. Then use of Eqs.
(l) and (2) leads to
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W(:- )= p„=1.86.

These are completely different values from those
of Eqs. (3) and (4), showing the nature of the
ambiguity. Remarkably, the sign of p, (=;) in Eq.
(6) is opposite that given in Eq. (3).

Similar, but not quite as striking, ambiguities
can occur in heavy-baryon mass calculations. '
(In Ref. 1, the mass matrix is diagonalized in such
a way that the ordering ambiguity never arises.
In Ref. 7, a specific model is used to mix the fla-
vor-degenerate states, removing the ambiguity
in the same way as is done in this paper. )

The quark-ordering ambiguities discussed here
also appear in group-theoretic treatments of heavy
baryons, ' but there take the form of which

SU(2) subgroup is used to distinguish heavy bary-
ons. (In the case of baryons containing only light
quarks the subgroups are isospin, U spin, and V

spin. '3)
Some calculations of magnetic moments have as-

sumed the moment operator proportional to the
charge'"' '" rather than the charge-to-mass ratio,
even though the former assumption does not work
so well for light-hyperon moments. The difference
becomes crucial for baryons containing heavy
quarks. Here we shall assume that the quark mo-
ments are proportional to their charge-to-mass
ratios.

Our main purpose in this pa, per is to discuss
the ambiguities and mixing that occur for flavor-
degenerate baryons and to suggest a more general
principle (arising from the color-magnetic inter-
action) than isospin for resolving the ambiguities
within the quark model. The color-magnetic inter-
action also leads to predictable mixing between
such baryons that somewhat modifies their pre-
dicted magnetic moments and produces a small
(generally negligible) shift in their masses.

In Sec. II of this paper we review the mixing
formalism for flavor-degenerate baryons and in
Sec. IG, the dynamics of mass mixing. In Sec. IV
we use the color-magnetic spin interaction to re-
solve the ambiguity in quark ordering. Applied
to flavor-degenerate baryons, the color -magnetic
interaction predicts their mixing and consequent
shifts in their predicted magnetic moments and
masses. In Sec. V we include electromagnetic
mixing for the Z'-A pair and discuss its effects
on the A magnetic moment. In Sec. VI we discuss
our results.

II. MIXING FORMALISM

All our considerations are for the static quark
model with neglect of relativistic, orbital, and

exchange effects. We further assume an internal
degree of freedom (such as color) in which the
three quarks are antisymmetrized. 4 Then the use
of Fermi statistics and the absence of relative
orbital angular momentum for any two spin-&
quarks of the same flavor requires them to be in
the symmetric spin-1 state. This requirement
forces any spin-& baryon with two identically
flavored quarks and one odd quark to have the
unique wave function"

0 =Cxq2Qs& ~ (8)

having the spin function

with the spin function

y'= (00 —40)0/M2 (12)

orthogonal to g. The spin function X' couples the
first two quarks in the antisymmetric spin-0 state
and thus cannot be used if the first two quarks are
identical

Having, thus formed the spin;& baryon octet, we
now consider what would happen if we did not have
isospin to guide us for the Z state. Then there
would be three possible states, depending on which
quark was chosen as the third quark. We can gen-
erate the other two Z' states by the quark flavor
(but not spin) interchanges q, =q„ leading to

(13)

)(=(200k —f40 —f00)/v 6

with the pair of identical quarks taken'as the first
two. We do not further symmetrize with respect
to quark flavor, treating different quarks (even
u and d) as distinguishable particles. This makes
for simpler calculations (with the same results)
and facilitates the extension to heavy-quark baryons
without ud pairs. Since there is no fully symmetric
spin-& function for three spin-& quarks, the above
considerations show there is no baryon of spin 2

with three identical quarks (without orbital excita-
tion).

For the standard spin-& baryon octet, formed
of combinations of the u, d, and s qua, rks, the
above procedure works for the six baryons with a
pair of identically flavored quarks. It does not
work for baryons such as the Z' and A with three
distinct quarks, uds. For the Z and A, one pos-
sibility is to use the isospin formalism. Because
the Z is in an isospin triplet with the Z' and Z,
it i.s natural to give the Z' the spin function g with
the u and d quarks chosen as the first two, so that

Z'=udsy.

The A can then be chosen as

A =udsx',
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and qi-q3, leading to

Z v
= @set( . (14)

and

4 (B')=Vs+26» ~

As the subscripts U and V suggest, these are just
the familiar central states of the U- and V-spin
triplets. ' These three Z states are neither
orthogonal nor linearly independent, satisfying
the relation

Z +Z +Z =0I U F

There are also AU and A~ states chosen ortho-
gona, l to the correspondirig 5 states. The three
different A' states can all be written in terms of
the 5' states so that

Ai = (Z v —Z'u)/V 3 (16)

with the other two A's given by the interchanges
(I=U) and (I =V). Thus, even though we now have
six ambiguous states, only two of them are inde-
pendent, corresponding to the twofold degeneracy
in the middle of the baryon-octet weight diagra, m
in SU(3).

This ambiguity in choosing the central states
can lead to ambiguous predictions, further com-
pounded by the fact that the two physica, l states
could be linear combinations of the mathematical
states discussed above. We treat this situation
by using a mixing formalism, writing the physical
baryon states B and B' a.s normalized linear com-
binations of any one of the Z'-like states and its
orthogonal A -like partner:

8 cos8 qyq2q3X —sin8 q,q2q3X
'

and

(18)B ' = sin8 q,q,q3X + cos8 q,q,q3X' .
I

That the mixing representation of Eqs. (17) and
(18) can replace the I, U, V representation of
Eqs. (10)—(16) can be seen by the observation that
8 = 60' corresponds (up to a sign) to the quark inter-
change q, ~ q„8= -60 to q, =q„and 8 = 90' to
B~B'.

With mixing, the magnetic moments of flavor-
degenerate baryons B and B' are given by"

The mixing also affects the transition moment
between the two flavor-degenerate baryons. The
physical transition moment is given by

w(B,B') =g». cos28 ——,'(p ' -p, ) sin26

(24)—6(P g —P s) ~

The physical transition moment between a flavor-
degenerate bar/on and a nondegenerate excited
baryon B*with the same quark content (e.g. , 5'
and 5'~) is given by

or

p (B*,B)=y s~~cos6 —p~~~, sin6

~ B+B ~ B+B'

4( B*, B') =Q ~g~ cos8+ p sg~sin6

—P BgB ~ + 8P BgB ~

(25)

(26)

where p B~B and p B+B, are the unmixed transition
moments. For s -wave spin-& baryons, these are
given by

and

i,~, =~&(W, +V. -2V,)/3 (27)

(28)

connecting the two unmixed states B and B'. This
leads to

tan26 = -2e/A, (30)

where 4 =M -M'. There is also a shift 5M (5M')
in the B (B ') mass given by

III. MIXING DYNAMICS

The mixing angle 6 is determined as that angle
for which the linear combinations of Eqs. (17) and
(18) diagonalize the 2 x2 part of the mass operator

M
(29)

and

p(B) = p, icos'8 —p» i s2n8g+ssin' 8 (19) 6M= -6M'= -E tan8

(31)

g(B') = p, s sin'8+ p, ss, sin26+ pecos'8, (20)

»(P 2
—P g)/v 3 ~ (21)

For small mixing angles, Eqs. (19) and (20) can
be approximated by

P (B)™P s —28/» (22)

where pB and p B are the unmixed moments given
by Eqs. (1) and (2). The unmixed transition mo-
ment p BB, is given in the quark model by' '"

The mass shifts in Eq. (31) are equal and opposite
so that the combination (Ms+Ms, ) remains invar-
iant undermixing (as e, xpected for the trace of a
matrix). This means that the prediction for the
mass sum of a pair of flavor-degenerate baryons
does not depend on mixing and is unambiguous
with respect to quark ordering. ' Inspection of Eqs.
(19) and (20) shows that this is also true for the
sum of the magnetic moments of a flavor-degener-
ate pair.



WAVE-FUNCTION MIXING OF FLAVOR-DKGENERATK BARYONS 2913

Since the baryon B' has the spin state X', the
interchange of the first two quarks (q, q, ) in its
wave function results in B'- -B'. On the other
hand, B with the spin function X is unchanged. This
means that the off-diagonal mass matrix element
will change sign under the interchange (q, -q, ).
However, Eq. (30) shows that 8 also would change
sign so that the mass shifts of Eqs. (31) which
depend on e tan8, . are not affected. As far as
physical mass predictions are concerned, the
relative ordering of the first two quarks is irrele-
vant.

The sign of p, », as given by Eq. (21) does
change sign under the interchange (q, 33 q, ) and,
from Eqs. (24) and (26), so will, physical transition
moments to B'. The relative signs of transition
moments are observable in interference between
decays to the same state. The relative signs will
not change if the same quark ordering is used con-
sistently for each state of the same quarks. Then
there will be no physical dependence on the rela-
tive order of the first two quarks. When the first
two quarks are the u and d (e.g. , for the A), it is
convenient to choose the order ud to correspond
with the Condon-'Shortley phase convention when
comparison is made with the isospin formalism.

The mass matrix of Eq. (29) can only be de-.
termined by a dynamical assumption. We consider
a model " where the ma. ss operator K is given by
a sum of one-body operators m,. and spin-depen-
dent. two-body operators D& that include projection
operators onto spin state S (S =1,0):

m= pm, +gD,', . (32)

The D,&
are independent of which baryon the quarks

are in and where they are in the baryon if we make
the SU(6)-like assumption that all the spin--,' bary-
ons have the same symmetric spatial wave func-
tion. This assumption has generally been made
in Refs. 1-18, and long experience with the quark
model has shown it to be a..relatively good assump-
tion as far as baryon mass differences are con-
cerned.

With this mass operator, baryon masses are
easily calculated as the diagonal elements of SR.
The mass M of a baryon with quark ordering
q,q2q3 and spin function X is""

(33)

while the mass M' of a baryon with the. same quark
ordering and spin function X,

' is

(34)
The off-diagonal elements c of the mass operator

are given by'

(qlq3q3X l~ I q,q.q3X )

0 1 1 0

4 (D„D„-+D33-D33) . (35)

The off-diagonal elements exist only for flavor-
degenerate baryons where all three quarks are
different (otherwise there is no y'). The mass dif-
ference between a pair of flavor-degenerate bary-
ons is given from Eqs. (33) and (34) by

( 13 13 13 ~13 33 33

We note that any one of the six possible quark
orderings can be used in the original mixing equa-
tions (17) and (18), and while 8 depends on this
ordering, the final diagonalized mass matrix and
the physical baryons B and B' do not. In this re-
spect, there is no longer an ambiguity in physical
results for different quark orderings. As a matter
of caleulational simplicity and for physical insight,
however, it is natural to choose a quark ordering
that makes the mixing angle 8 smallest. Further-
more, since we cannot calculate 8 exactly, it is
better to have an error in a small quantity than in

a large one. We therefore take as our criterion
for choosing the quark order for flavor-degenerate
baryons that order which minimizes e.

For the uds quark combination leading to the
physical Z0 and A baryons, inspection of Eq. (37)
shows that the equality of u-s and d sforces -(charge
symmetry) makes 8.=0 if the u and d quarks are
chosen as the first two, so that this is the obvious
choice. With violations of charge symmetry known
to be small, letting the u and d quarks be the first
two is .still the natural choi.ce in calculating Z'-A
mixing effects. For the heavy baryons with two
nucleon-type quarks, charge symmetry also sug-
gests that they be chosen as the first two. How-
ever, for heavy baryons with only one (or no) nu-
cleon quark, charge symmetry cannot be used as
a guide and a new principle is required.

IV. COLOR-SPIN MIXING

For heavy flavor-degenerate baryons, two ques-
tions confront us: Which quark order is best, and
what is the mixing angle 8 for a given order?

From Eq. (37) for 8, we notice that the numer-

r

Combining Eqs. (30), (35), and (36) we have for the
mixing angle for quark order 1,2, 3

2$
tan28 123
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ator and denominator each depends on the differ-
ence in interaction energies between the two spin
states and thus, only on the spin-dependent part
of the quark-quark interaction energies. Consid-
erations from quantum chromodynamics (QCD)
lead to a quark-quark potential with a spin-depen-
dent electro-color -magnetic interaction, which,
for s waves, has the form"'" m, = 515 MeV. (44)

in the simplest quark model. "
With SU(6)-symmetric wave functions, the mass

difference m, -m„ is given in this model by""
m, —m =M~ -M& —180 MeV,

leading to a strange-quark mass

Ds Ripsaw
' s

m.m
(36)

The c and b quark masses are suggested by heavy-
quarkonium spectroscopy to be about

The interaction strength X&& is given from QCD
and QED by

(39)

where Q, and Q~ are the quark charges in units of
the proton charge, n, is the strong-interaction
(quark-gluon) coupling strength analogous to the
electromagnetic fine-structure constant a (= ~),
and (5(r, r&)) i-s the expectation value of the 6

function. With the assumption of SU(6) symmetry
of the spatial wave functions and the neglect of
electromagnetic interactions (n «o.,), the only
flavor dependence in Eq. (38) is through the quark
masses in the denominator. Then the difference
between quark-quark interaction energies that only
differ in total spin is

(4o)

where X,&
= X, a constant. Then Eq. (37) for 8 can

be rewritten as

(41)
2m 3

—ml —m2

which is the key equation for answering our two
questions.

For any quark order, Eq. (41) gives the mixing
angle explicitly in terms of the quark masses.
The best choice of quark orderings is to pick m,
and m, to give the smallest difference m2 my
since that makes 8, as given by Eq. (41), smallest.
Since successive quark-mass differences seem to
increase with increasing quark mass (for the u, d,
s, c, and 5 quarks), this leads to the simple rule
to order the quarks in flavor-degenerate baryons in
increasing order of their masses to achieve the
least mixing. This corresponds to what has been
done intuitively m most calculations. ' "

There is still the question of what values to use
for the quark masses in Eq. (41), but the mixing
angles are all small and not too sensitive to the
exact values of these masses. For an average
nucleon-quark mass m we take

m —m„—mg —335 MeV,

as suggested from the nucleon magnetic moments

m, = 1.6 GeV and m~= 5.0 GeV. (45)

V. Z -A MIXING

Electromagnetic and color-magnetic SU(3)-
breaking interactions both contribute to Z -A, mix-
ing, but the 3'-A mixing can be found in terms
of other hyperon masses without any assumption
about the form of the interaction.

The off-diagonal matrix element e connecting
the Z and A is given from Eq. (35) by

e-—(D„-D +Dq D~ ) . - (47)

It can be seen from Eq. (32) that this same com-
bination of interaction energies occurs in certain
linear combinations of baryon masses, ao that we

Withthe above masses, we can use Eq. (41) to es-
timate the mixing angles due to the color-magnetic
interaction. These are listed in Table I for each
flavor-degenerate baryon pair, along with the ef-
fect of the mixing on the magnetic-moment predic-
tions. The mixing angle 6„~, also includes an elec-
tromagnetic contribution, and is discussed further
in the next section. The mixing angles 8„„,and

8„„~are not listed because they are negligible, as
are all induced mass shifts. (We shall estimate
8„~, and 8~, in the next section. ) Because the mix-
ing angles are negligible, the moments of spin-&
heavy baryons containing two nucleon quarks are
given by the standard quark model of Eqs. (1) and

(2). The moments of heavy spin-2 baryons con-
taining two quarks of the same flavor are given by
Eq. (1), and the moments of spin- —, baryons are
given by

0 (&*)= P ~ +W 2 +V 3 ~

We do not list in Table I the moments of these un-
mixed baryons. '

The color-magnetic interaction is smaller for
heavy quarks than for light ones. For this rea-
son, some of the heavy s-wave spin-& baryons
(8*) may be stable under strong decay and have
dominant electromagnetic decay into the corres-
ponding B or B' baryon. The physical transition
moments for these decays are not listed, but can
be readily calculated from Eqs. (25)-(28) using
the appropriate mixing angle.
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TABLE I. Color-spin mixing for flavor-degenerate
baryon magnetic moments (using p„=-2p„=1.86, p,
=-0.61, pc=0.39, and p&=-0.06, all in nuclear mag-
netons). Values of mixed and unmixed moments are in
nuclear magnetons.

where 4 =M -M'. Because the mixing is so small,
it is a good approximation to replace M -M' by
the difference between the physical Z' and A mas-
ses (&= Mco -M„=77 MeV). Then we get

8 = -e/&=0. 011 + 0.002 (51)
Quark
content

NdS

Mixing
angle (rad)

0.011
~i (Zo, A)

0.82

-0.61

-1.61

O.86

-0.65

-1.59

Baryon Unmixed Mixed
pair moment moment

8=(M -M„+M o -M )/(MSLL) =0.014. (52)

for the Z'-P mixing angle.
Some time ago other authors"'" derived an ex-

pression for 8, using. only electromagnetic break-
ing of SU(3), obtaining

NSC

dsc

Nsb

scb

0.066

0.066

0.017

0.017

0.13

0.12

M, P

M~. ~P

(MC S

M+
wc)
M I4

cb

(8,'g„

i (go

Qc~

Ip
Qc~

(QP~,

Mcb)

0.70

0.39

-1.43

-1.16

0.39

0.18

0.85

-0.06

-1.43

-1.01

-0.06

0.18

1.52

-0.06

-0.85

-O.34

-0.06

0.76

-0.13

-0.06

0.58

0.89

0.20

-1.40

-1.18

0.41

0.08

0.90

-0.11

-1.41

=1.02

-0.05

0.16

1.71

-0.25

-0.62

-0.53

0.13
. 0.70

-0.27

0.08

0.56

+f(D' -Du. ) (53)

If it is assumed that the only SU(3)-symmetry
breaking in Eq. (53) arises from the electro-color-
magnetic interaction of Eqs. (38) and (39), then Eq.
(53) can be reduced to

M„-M,+M,.-M,.=(2+m, /m){D,', -D'„). (54)

With the same assumption, Eq. (47) for e can be
written

e =M3(D~o -D„,).
Comparison of Eqs. (54) and (55) shows

M3(M„- Mo+ Mo+ —Moo)
(2+m, /m)

(56)

or

At first glance, it is surprising that the result of
Eq. (51) is so close to the purely electromagnetic
result, especially since the color-magnetic mix-
ing due to the d-I mass difference is believed to
be' considerably larger than the mass-corrected
electromagnetic contribution to e.

We can understand this by considering the quark-
model derivation of Eq. (52). From Eq. (32), we
ean write

M„—Mp+Mc+ -Mco = Dgg -D„g + g(Doo -Dgo)

aIncluding electromagnetic mixing angle. M3(M, -M„+M.o -M„,)
~(2+ m, /m)

(57)

can write

e =(M~s- -M~go -M~ +M~o )/2~3
= -0.92+ 0.29 MeV (48)

or

e = (Mcw- -Mcg. -Mc-+Mu )/2v 3

= -0.81+ 0.20 MeV. (49)

c = -0.84+0.17 MeV (50)

as our estimate for e. Then 8 is given by -e/d,

These two independent results agree well within
the experimental errors and we use their statis-
tical average

With the further SU(3) assumption that m, = m, this
reduces to Eq. (52).

We note that the reduction of Eq. (53) to Eq. (54)
follows for either the electromagnetic or the color-
magnetic spin-spin interaction because the strange.
quark has the same electric charge as the d quark
(U-spin invariance, except for the m, /m mass
ratio). It is for this reason that the Z'-g mixing
angle is the same whichever interaction is used
to derive Eq. (56). The near agreement of Eq. (56)
for e with Eqs. (48) and (49) indicates that any
SU(3)-breaking contributions other than those given
by the spin-spin interaction are not large. Isgur, '3

using procedures similar to ours in a specific
quark model, has also estimated 8~0 ~ —0.01 from



2916 FRANKLIN, LICHTENBERG, NAMGUNG, AND CARYDAS

\

a combination of different individual contributions.
The Z'-A mixing can be extended to isospin

mixing in heavy baryons with quark combinations
udh, with h being any heavy quark, by simply
scaling the 5'-A results with appropriate mass
factors. From Eq. (41), we see that for udge bary-
ons the mixing angle scales as

8„,„~1/(m„-m) . (56)

Then the mi:xing. angle 8„&„for heavy quark h will
be related to ~„„by

e.,„=[(m, —m)/(m„-m)]e, q, .
For charmed baryons, this gives

8„~,= 0.0015,
I

while for bottom baryons,

6„„=0.0004,

(59)

(60)

(61)

both of which are probably negligible.
The effect of Z -A mixing on the A magnetic mo-

ment has been considered by Isgur and Karl 4 using
Eq. (52}. Here we discuss the effect of the spin-
spin mixing of Eqs. (47)-(51) on p(A).

With the Z'-A mixing angle 6 =0.011, the quark-
model prediction for the A magnetic moment is
shifted to

u (A) = P, + 28' co~ = P, —0.035 + 0.006. (62)

The A moment has been accurately measured to be
p (A) = -0.613 +0.005, and this value has been used
in many calculations as a measure for p, , (and
consequently m, ). We see from Eq. (62) that a
more consistent measure for models such as this
with SU(6)-symmetric wave functions would be

s=-0 58+00 (63}

VI. SUMMARY

The ambiguity in quark ordering that arises for
flavor-degenerate baryons can be resolved if the

This can be compared with the Dirac quark moment
(for a strange-quark mass of 515 MeV) derived
from the equation

p, = -3 (Mp/m, ) = -0.61 . (64)

This is reasonable agreement, but. not as good as
using the uncorrected moment p, = -0.61 instead
of Eq. (63). We emphasize, however, that the
appropriate comparison is between Eqs. (63) and

(64), because the Z -A mixing is inevitable in the
model.

Another way to use Eq. (62) is to use the strange-
quark Dirac magnetic moment of -0.61 to predict
y,(A) = -0.65, again not in as good agreement with
experiment as the uncorrected result.

spin-spin interaction between quarks has the form
Xs s&/(m, .mz). This form was originally proposed
on phenomenological grounds by Zel'dovich and
Sakharov" and is expected to follow from one-
gluon exchange in QCD." The best quark ordering
for flavor-. degenerate baryons is that which has the
two quarks closest together in mass as the first
two. Their relative order then does not matter as
long as it is kept the same for all flavor-degenerate
baryons with the same three quarks. For the
known quarks (u, d, s, c, b) the quark mass spec-
trum is such that this rule can be followed by al-
ways ordering the quarks in flavor-degenerate
baryons from lightest to heaviest.

The mixing angle relating the physical flavor-
degenerate baryons to their corresponding mathe-.
matical pair is given simply (for baryons contain-
ing at most one nucleon quark) in terms of the
quark masses by Eq. (41). Using this equation,
the quark ordering described above leads to the
smallest mixing angles and thus mitigates any un-
certainties involved in the derivation. We have
listed the mixing angles of flavor-degenerate bary-
ons containing at most one nucleon quark in Table
I, as well as the Z'-A angle.

For flavor-degenerate baryons containing two
nucleon quarks, electromagnetic interactions must
also be taken into account. We obtain the mixing
angles for such baryons containing a heavy quark
in terms of the Zo-A mixing angle of Eqs. (51).or
(57) and the scaling principle of Eq. (59). The val-
ues of 8 for these baryons are given by Eqs. (60)
and (61).

The largest mixing angle found is 8 = 0.13 rad.
The largest mixing angle possible for any possible
new quark masses would be 8 = 15' = 0.26 rad. This
would be for the case of equal quark-mass spac-
ing, which is not expected even for new quarks.

With the mixing angles all being so small, the
mass shifts from the simple unmixed masses of
flavor-degenerate baryons, as given by Eq. (31}
are generally negligible, being at most 2%%uo of the
B -B' mass difference. This is because the mass
shifts are second order in the mixing angles. This
means that, if the quark order is optimized as
above, mixing is not necessary in practice
to calculate baryon masses. Magnetic-moment
shifts are first order in the mixing angle, and
mixing does affect them, especially the magnetic
moment of the A -like flavor-degenerate baryon
of each pair. The effect of mixing on flavor-de-
generate moments is shown in Table I.

The mixing formalism applied to the 5'-A fla-
vor-degenerate pair leads to a change in the
strange-quark moment as determined by the ac-
curate A moment measurement" from -0.61 to
-0.58. This has the effect of worsening agreement
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with the Dirac momerit expected for a strange-
quark mass of 515 MeV as predicted from the A-P
mass difference, "and the proton moment, The
Z'-A mixing angle calculated including color-mag-
netic mixing turns out to be almost the same as
that calculated years ago using SU(3) with purely
electromagnetic breaking. This apparent coinci-
dence is explained by the fact that the U-spin
breaking in Eg. (54) due to m, 4 m~ is seen to be
small.

Our main conclusions are that mixing can be
important for the magnetic moments of flavor-
degenerate baryons, but can usually be neglected
for their m8,sses if the two quarks closest in mass

are symmetrized (or antisymmetrized) as the
first two quarks in our ordering. The mixing
angles can be uniquely determined from the quark
masses if the mixing. interaction is due to the
mass-dependent spin-spin interaction suggested by
one-gluon exchange in QCD.

ACKNOWLEDGMENTS

One of us (D.C.) is grateful for the hospitality
shown at Indiana University where he spent several
months while this work was done. This work was
supported in part by the U. 8. Department of Ener-
gy

~A. D. Sakharov, Pis'ma Zh. Eksp. Teor. Fiz. 21, 554
(1975) [JETP Lett. 21, 9 (1975)];Lebedev Physics
Institute report, 1980, available as SLAC translation
Report No. 0191, 1980 (unpublished).
J. Franklin, Phys. Rev. D 12, 2077 (1975).

3A. W. Hendry and D. B. Lichtenberg, Phys. Bev. D 12,
345 (1977).

4L.-H. Chan, Phys. Rev. D 15, 2478 (1977).
L. A. Copley, N. Isgur, and G. Karl, Phys. Rev. D 20,
768 (1979); 23, 817(E) (1981). This reference con-
sidered baryons with two nucleon quarks and, so, did
not encounter the ambiguities discussed in this paper.

SM. O' Neill aLd C. S. Kalman, Lett. Nuovo Cimento 27,
481 (1980), and references contained therein.

~K. Maltman and N. Isgur, Phys. Rev. D 22, 1701 (1980).
D. B. Lichtenberg, Phys. Rev. D 15, 345 (1977).

9R. J. Johnson and M. Shah-Jahan, Phys. Rev. D 15,
1400 (1977).
C. P. Singh, S. Kanwar, and M. P. Khanna, Phys.
Rev. D 23, 793 (1981).
G. Dattoli, R. Mignani, and D. Prosperi, Lett. Nuovo
Cimento 22, 147 (1978); 22, 639 (1978); 25, 38 (1979).
P. Camiz, G. Dattoli, R. Mignani, and D. Prosperi,
Nuovo Cimento 49A, 429 (1979).

~3A. L. Choudhury, Acta Phys. Pol. B9, 945 (1978).
~4S. K. Bose, Acta Phys. Austriaca 52, 53 (1980).

G. Morpurgo, Phys. (N.Y.) 2, 95 (1965).
W. Thirring, Acta Phys. Austriaca Suppl. II, 205
(1965).

~7H. R. Rubinstein, F. Scheck, and R. H. Socolow, Phys.
Rev. 154, 1608 (1967).
J. Franklin, Phys. Rev. 172, 1807 (1968).

~90ur notation for any baryon containing heavy quarks is
to use the same Greek symbol as the symbol normally
given to the baryon if the heavy quarks were strange

quarks, with subscripts to indicate which heavy quarks
have replaced strange quarks. For example, ~=use,

=ccN, -'q=ucb, etc. We use an asterisk to denote
the corresponding spin-z heavy baryon so that 0 =gag
has spin ~ while 0,* has spin ~.
L. Schachinger et a$. , Phys. Bev. Lett. 41, 1348 (1978).

2~A. L. Choudhury-and V. Joshi, Phys. Hev. D 13, 3120
(1976).

2 S. Iwar, Prog. Theor. Phys. 55, 943 (1976). .

3S. Meshkov, C. A. Levinson, and H. J. Lipkin, Phys.
Rev. Lett. 10, 631 (1963).

240. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964);
M. Y. Han and Y. Nambu, Phys. Bev. 139, B1006
(1965).

2~We use the notation pz for the unmixed moment of
baryon B and p(B) for its physical, mixed moment.
P. Federman, H. R. Rubinstein, and I. Talmi, Phys.
Lett. 22, 208 (1966).

2~A. De Rujula, H. Georgi, and S. L. Glashow, Phys.
Rev. D 12, 147 (1975).
The form of Eq. (38) for the SU(3) breaking in the
quark model was originally suggested on phenomenolog-
ical grounds by Ya. B. Zel'dovich and A. D. Sakharov,
Yad. Fiz. 4, 395 (1966) [Sov. J. Nucl. Phys. 4, 283
(1967)].

2 H. Lipkin, Phys. Bev. Lett. 41, 1629 (1978).
3 Some of these moments are given in Ref. 8;
3~A. J. Macfarlane and E.C. G. Sudarshan, Nuovo Ci-

mento 31, 1176 (1964).
32B. H. Dalitz and F. Von Hippel, Phys. Lett. 10, 153

(1964).
33N. Isgur, Phys. Rev. D 21, 779 (1980); 23, 817{K)

(1981).
@N. Isgur and G. Karl, Phys. Hev. D 21, 3175 (1980).


