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Predictions for hadronic transitions in the bb system
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Within the framework of the multipole expansion of quantum chromodynamics, we propose a model to compute
the rates of hadronic transitions in the bb system and heavier QQ states. Rates and estimated branching ratios of
various transitions are given. The predicted result for Y'~ Trna agrees with recent measurements. We discuss the
spin-flip mm transitions &"~1 'P, m.m and 2 'PJ~1 Sp7l77 which can be used to reach the spin-singlet states 1 Pl
and1 Sp.

I. INTRODUCTION

It is now generally accepted' that the Y reso-
nances are bound states of a heavy quark b and its
antiquark 5 with a quark mass about 5 GeV. The
four resonances discovered so far are presumably
the spin-triplet states 13Si, 2381, 33Si, and 44Si
Their spacings and the ratios of the leptonic
widths agree with the expectation of potential
models constructed to fit the charmonium system.

The bb system has a much richer spectrum be-
low the flavor threshold than the cc system. The
various decay rates of these narrow states will
provide valuable information on heavy-quark dy-
namics. Among all the Zweig-rule-forbidden
decays hadronic transitions play an unusual role.
They are dominant decay modes of states such as
g' and T', yet it is not possible to compute the
absolute rates from first principles. The radiated
light hadrons carry only a small amount of energy,
and the asymptotic freedom of quantum. chromody-
namics (QCD) is not of much use here. However,
a general formalism for describing these transi-
tions in QCD has been developed in terms of a
multiple expansion of the gauge fields. 3 ~ We have
presented elsewhere5 many predictions that follow
simply from the symmetry properties of the tran-
sition amplitudes. ' Calculation of absolute rates
would require the understanding of color confine-
ment, e.g. , how the gluons emitted by the heavy
quarks convert into light hadrons. On the other
hand, ratios of similar transitions in two families
are largely determined by the relative sizes and
quark masses of the two systems. For example,
the naive estimate '3

agrees very well with recent data from CESR
(Refs. 6 and 7) and DORIS (Ref. 6). Therefore,
we may hope to calculate the relative rates with

some confidence.
The calculation of the hadronic transition rates

not only tests the mul. tipole-expansion formalism;
it is also important in other respects. These
r'ates, if large, will significantl. y reduce the
branching ratios of photon transitions which are
the main method to find the P states. There are
also interesting transitions which will reach some
otherwise inaccessible states (see discussion in
Sec. IV).

In the present paper we wil. l attempt to compute
the absolute rates of the mm and g transitions within
the Y family and for even heavier quarkonia. The
measured rates of the transitions g'-|l mw and g'

pe wil-l be used to normalize the parameters in
the models we will use.

To illustrate the basic ideas of our models let
us consider a mm transition between two spin-
triplet states. Such a transition is dominated by
two color-electric-dipole emissions. Its matrix
element is given by'

2

Mz, z& i (C&k~x EG(——E;)—x E~4;),8 i-E i 6
(1.2)

Dp ~p gAp e

The matrix element (1.2) is represented in Fig. 1.
We encounter two fundamental difficulties when

we attempt to calculate the matrix element (1.2):
1. The intermediate states between the dipole

transitions are very complicated. Although they
are overall color-singlet states, the QQ system
is in a color-octet state. The static potential for
a color-singlet QQ system extracted from the cc
and bb system is not directly relevant to a color-
octet QQ pair.

2. The mechanism for the conversion of gt, uons
into light hadrons is not understood.

Both problems are related to the question of

where G(E,) is the Green's function

G(E;) =(E; —H8 —ADO)
'

with F-; being the energy of the initial state, H8 the
Hamiltonian of the color-octet QQ system, E the
color-electric field, and
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tional states proposed by Tye and his collabora-
torse' are also due to excitations of degrees of
freedom other than quarks. If the string picture
is correct in QCD, these new degrees of freedom
must be due to gluons also. We propose to make
the ad hoc identification of the intermediate states
here with the vibrational states of the string. The
resolvent G(E~) is then given by

FIG. l. Amplitude for a hadronie transition between
heavy-quark states 4' and 4.

"color confinement. " Any suggestion to overcome
the difficulty has to be simple-minded. Two simple
options suggest themselves. One may, in the spir-
it of the parton model, consider the intermediate
states as consisting of a free QQ. pair and a free
gluon. At the other extreme, one may neglect the
nonlocality of the resolvent and treat it as a local
operator,

2—x EG(E,)x ~ E =c(x E) .
6

As we shall see in Sec. V, both treatments are
not very satisfactory since neither takes into ac-
count the crucial property of the intermediate
states that they are color-singlet hadrons with
finite masses. We, therefore, propose a third
alternative which we will mainly follow in this
paper.

We observe that gluonic degrees of freedom play
a crucial role in these states. The string vibra-

where H'„" is the effective QQ Hamiltonian for vi-
brational states with a string excitation labeled by
a, and P, is the gluonic projection operator for
this particular excitation. A prescription for con-
structing H'„" from that of a color-singlet QQ sys-
tem has been given by Ref. 10. Now we have

x(hlE~P, E, l0) . (1.7)

Equation (1.7) has no predictive power since it in-
volves an infinite number of unknowns. We will
drastically simplify (1.7) by keeping only the con-
tribution of the lowest excitation of the string.
The matrix element now factorizes,

~xi xi=~ (4'yl&a(«-&o) "&l~'~)

where we have dropped the label o and denoted byI and P the effective QQ Hamiltonian and the pro-
jection operator for the sector of the lowest string
excitation. For two-pion transitions we apply the
ideas' "of the soft-pion theorem to, write

g 0)=~(2 )(2 )~ ~ ~ ~ ~ ~ +~(q ~ +~ ~ —-~ q q) (1.9)

This model is clearly an oversimplification: our
ignorance of color confinement is summarized by
an effective Hamiltonian H„and two constants a
and 5. Once we have recognized the fundamental
difficulty in computing the amplitude (1.2), the
oversimplification becomes a virtue of the model.
Vfe hope that it incorporates the correct qualitative
physics yet introduces a minimum number of ar-
bitrary parameters. We must view in the same
spirit the use of the string vibrational states. It
does not imply that the success of the model nec-
essarily depends on the existence of these states.
It only means that we need a convenient represen-
tation of the hadronic states not found in the con-

ventional quark model, and the vibrational states
are the only ones in this category that we know.

In Sec. II spin-nonf lip pm transitions are calcu-
lated. The result for Y' —Yzz agrees very well
with the recent measurements, and Y"—Yen is
predicted to have a width smaller than I'(Y'- Yvv)
in spite of a much larger phase space available to
the zn system. The q transitions are discussed
in Sec. III. The rates are found to be rather
small. The method used in Secs. II and III can
only study transitions that are analogs of g' —Pvn
and g' Pq. When applied to other transitions,
it will introduce unknown parameters and no new
prediction can be made. In Sec. IV we propose



2876 YU-PING KUANG AND TUNG-M0% YAN

yet another method. The zn system and the q are
approximated by a two-gluon state. This method
allows us to use the measured rates of P'- gag
and g'- Pq to determine two coupling constants:
g~ of (colored) E1 and g„of (colored) M 1 and M2
transitions. The rates for the (colored) El M1-
induced transitions 'S, —'P, + zz and 'P.J' Sp+
are then calculable. The cascade Y"- j. 'P, + mw

—1 'Sp +y + p7t appears to be an exciting and prom-
ising way to reach f1' spin-singlet states. [The
El transition 1'P, —1'S, +y has a very large
branching ratio of -40gp. See Sec. IV.] In Sec.
V we discuss and summarize our results.

II. SPIN-NONFLIP em TRANSITIONS

These processes are induced by two electric-
dipole transitions. The matrix element is given
by (1.2). In our model, it is reduced to (1.8) and
(1.9). We may write

), ~ ~ v, kl)(kl, vl (2. )t 2. 1
» & @at

where Iv, kf) and E „are vibrational eigenstates
and corresponding eigenvalues in the sector of the
lowest string excitation. An elementary but
lengthy calculation gives the transition rate

I'--:"(I .(I') Z(2(+()(~ '

I(
1 I I 1 /~

(0 0 oi o o 0&

2

+(2«+1)(2~~+ 1)(2~~+1)g (2~+1)[1+(-I) ]
A J] l)

'g( )(l~ 1 I tf 1 l) l, / 1

(0 o 0 io o 0) 1 /2 Lf
(2. 2)

where l, and J, are the orbital and total angular momenta of the initial state 4 „respectively. The final

state C& has the corresponding quantum numbers l& and J&. Both 4', and 4z have the same spin s. We

have defined
w r

f(r:r fdr r dr (r)d'; (r'') d",r"r" 'd', (r')d, (r) (2. 3)
wl 1

where R, (r), R&(y'), and R, (2") are the radial wave functions of the initial, final, and intermediate vibra-
tional states, respectively. A vibrational state is labeled by its orbital angular momentum l and the prin-
cipal quantum number A. The initial state and the vibrational state have masses M, and M», respectively.
The quantities G and II are the phase-space integrals

4~ 2&~~2

4 2 'tl /3 2 Z' 'I 8Z'

(2.4)

(2.5)

with K given by

[(M +M )2 M 2]1()2[(M M )2 M 2]1j21 (2. 8)

We give here explicit formulas for a few transitions between spin triplets:

I, =2, I, =o: r= ,'Hlc I'lf,",I'—
I*=I =I: r«-0) = HAGI" I'lf;, +2f;, I' r(0-»=r (I-o) =0

r(0- 2) =5r(2- 0) = —,'; H I, I

'
I
f'„ f,', I

', r(1 —1) = I'(0- 0) + -,
' r(0- 2),

r (1-2) = -', r(2- 1)= -,' r (0- 2), r (2- 2) = r(0- 0) + —,', r (0- 2) .

(2. 7)

(2. 8)

(2.9)

In (2.9) we have used the short-hand notation
r(z —z) for r(c,, —c,+~v).

To evaluate numerically the transition rates

I

(2.7)-(2.9) in the T family we must specify H„and
determine the constants c, and c,. We will discuss
II later. Once H is given, the constant cy can be

V V
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v„(r)=v(r)+ v„(r) , r -+——",1 A.„
a

(2. 11)

where V(r) is the Qq potential in the color-singlet
sector and (1/a~)r is its linear piece. The poten-
tial V„(r) is defined implicitly by

2m a'n
a' (r 2d)2 + 4—d'

1-=—,r[2 —n„'(r)] "', (2. 12)

r'n„(r)
4a'[2m + (1/a )ro.„(r)]

(2. 13)

For our model we will set n=1 corresponding to
the lowest string excitation. The constant A„ is
adjusted to fit the location of the lowest vibration-
al state in the cc system. So far, there is no ex-
perimental confirmation of the existence of a vi-
brational state. According to Buchmuller and

Tye, 'P the structure at ~s=3.96 GeV or Ms=4. 03
GeV in e e —hadrons could be the candidate for
the lowest cc vibrational state. In our calculation
we will choose M„=4.03 GeV to be the ground
state of the cc vibrational spectrum. The higher
value for M„ is favored so that the vibrational.
states are farther away from the color-singlet
QQ states, and thereby the sensitivity of our re-
sults to their details is reduced.

In order to have some idea on the model depen-

determined by the measured rate of g' —gpv. The
decay rates for Y'- Tom, Y"-pmz, and p" —p'pp
are then predicted. However, the const;ant c, e„
ters the decay rates for transltlons such as 23Pz
—1 'P~ + we, 1 'D~ —T + w~, etc. In an attempt to
predict these rates we propose to fix c, by the fol-
lowing considerations. In the limit of massless
pions the two processes

C,- - ef + two real gluons,

@f + Vlf

have the same kinematics and there is a one-to-
one correspondence between the two calculations
of the integrated rates. We will assume that the
ratio c,/c, is correctly given by the two-gluon cal-
culation. The result is [see Eq. (4. 20)]

(2. 1o)

We now turn to the consideration of 0„. Let us
write it as

=p'a„=—+ v„(r) .
SZQ

The potential V„(r) for the vibrational states is re-
lated to the potential model we use for the color-
singlet QQ system. The prescription given by
Buchmuller and Tye' is

dence of our ck,lculations we have considered three
models defined below. The prescription (2. 11) is
natural for a potential V(r) which has a linear
piece at l.arge distances and a genuine Coulomb
potential at short distances. For models A and B
this is true and we follow the prescription (2. 11).
However, for model C we simply set A„=O and

introduce an additive constant in V (r) [Eq. (2.11)]
so that M„occurs at 4.03 GeV. Now, the three
models are as follows.

Model A (Coulomb plus linear potential with

parametrization given by Hef. 2):

1 KV(r)= —r-- (2. 14)

a=2. 34 GeV ',
z(cc) =0.52, Ip(bb) =0.48

mc =1'84 GeV, ma 5'17 GeV .

Model B (Bhanot-Hudaz potential" ):

(2. 15)

r « 'v ~a—= e 'r

ceoV(r) =( —,-' ln —,e 'r, & r & er (2, 18)

1
x& ego

~Q

K=0.42,

a=2. 54 GeV ',
m, =1.05 GeV, m, =3.4 GeV.

(2. 17)

Model C (improved Richardson potential'~ as
given by Buchmiiller, Grunberg, and Tye'~). For
details of the potential the reader is referred to
Ref. 14. It is characterized by a seal. e parame-
ter A~ which is chosen to be

Ms=0 509 GeV,

m, =1.48 GeV, m, =4.88 GeV.
(2. 18)

r„(T)=1.23+ 0.10(+0.14) keV,

B„„(T)= [3 . 5 a 1.4 (+0.4) ]%%up,

r..(v')
( )

=0.45+0.03+0.04,
ee

r..(T")=0.32 +0.03 +0.03,
ee

r,„(p)=215+40 keV,

&(g'- gvv) =(50+4)/o.

(2. 19)

(2.2o)

(2.21)

For our calculations we have used the following
experimental information"' ":

r„,(Y) = 35",,'I,'I kev,
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TABLE I. Values of parameters in different potential
models.

Parameter Model A Model B Model C

C)

C2'(Gev')

gE'/4x

g~2/4n

61.8 x 10 6

1.93 x10 8

0.54

4.8

12.0 x 10 6

0.12 x 10 6

0.24

0.61

50.2 x 10"6

0.46 x 10"6

0.49

4.1

The quantities fthm are computed numerically.
The constant c, is determined by (2.21) and given
in Tabl. e I. The resul. ts for the transition rates
are presented in Table II. We would l.ike to make
a few comments on these results:

1. Although the quark masses and the constant
c, have quite different values in the three models,
the results for the rates come out surprisingly
consistent with one another. It indicates that the
ratios of rates are indeed determined mostly by
the scaling properties of heavy-qua|. k systems.

2. The widths I'(T' —Tmv) and 1"(T"-T'wm) are
rather model independent. In particular the width
I'(T'- Tww) = 6-7 keV agrees with the earlier
estimate (1.1). The transition T'- Tmm has been
observed experimentally. Three groups have
measured the branching ratio:

(19+8)/0, LENA (Ref. 8)

B(T'- Tw v )= (20+7)%, CUSB (Ref 6)

(19.1+3.1)%, CLEO (Ref. 7)

(2.22)

To compare our results with the data, we must
convert our predictions into branching ratios. We

have estimated other partial widths for T' (to be
discussed later) and obtained the results

18%, model A

B(T'- Tm'p-) = 20%, model B

16%, model C

(2.23)

The matrix element for Y"-Ypp is tremendously
suppressed:

fig T -Tvm
( )f'„(T'- Tvm)

The large suppression is due to two effects.
First, there is a great deal of cancellation among

different terms in the series for f',z(T" —Tmm).

Second, many high vibrational levels contribute,
so the mean distance from these levels to Y" is
large. Because of the delicate cancellations, we

cannot expect our results to be very reliable.
This uncertainty is reflected in our results for

The agreement between (2. 22) and (2.23) is excel-
lent. All three groups have also found that the

mass distributions of the pm system are consis-
tent with the prediction of soft-pion theorem. ' "

3. The rate for Y"-Ymz is surprisingly small.
If we compare the phase-space integrals (2.4) for
the two transitions T"—Y pm and Y' —Y wv, their
ratio is large,

(2. 24)

TABLE II. Hadronic transition rates of bb states. The total widths needed for computing

the branching ratios given here are obtained by adding the hadronic transition rates in this

table to the partial widths of the last column of Table III. Rates for other transitions 23Pzp

13Pz (J«J) not listed in this table can be found by relations (2.9).

Transition

23PO-1 3PO m.

2 Pg 1 Pgm'

2P2 1 P2m

2P2 1 P(m
1 Dg Tvr7r

Model A

I (keV) [B (%)]

7 [273

0.01 [0.04]

0.3 [2)

0.6 [3]

0.003 [0.02]

0.3 [0.05]

0.4 [0.3]

0.4 [0.2]

0.02 [0.01]

Model 8
I'(keV) fB (%)]

[29]

0.01 [0.04]

0.5 [3]

0.5 [3]

0.003 [0.02]

0.3 . f0.05]

0.3 f0.3]

0.3 [0.2]

0.03 [0.02]

Model C
I'(keV) [B (%)]

6 [253

0.01 [0.04]

o.9 [5]
—

O.4 [2)

0.005 [0.03]

0.4 f0.06]

0.4 [0.3]

0.4 [0.2]

0.01 [0.01]
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this transition given in Table II. They differ by
almost a factor of 3 in the three models we have
considered. Furthermore, the emitted pions are
not very soft. The multipole expansion need not
be valid nor is PCAC (partial conservation of
axial-vector current) expected to work well.
Therefore, we can only regard our results as an
order-of-magnitude estimate. It is probably a
reasonable guess that

IGO

I'(2s-Is+ s v)
I (3s is+ I s)---F (4s —Is+~a )

~ ~ m P (gS 2S + ~ ~ )

r(Y"-Y~~) &r(Y"'-Y~~) . (2. 28)

Additional evidence for our moddl will come from
the confirmation of the mass distribution of the Ytn

system predicted by the soft-pion method.
4. The pm transitions between 2'P~, , and 1'P~

have very small rates due to the small phase
space available. Transitions between initial and
final states with the same total angular momentum
have substantially larger rates. Even so, their
branching ratios are tiny since the P states are
much broader.

5. We have calculated the pm transition rates
for heavy quarkonia as functions of the quark mass
in model C. The results are shown in Fig. 2.
The rate for 2'S, —1'8, +me decreases very rap-
idly as the quark becomes heavier until it stabil-
izes for m@ ~ 30 GeV. The rapid decrease is due
to the shrinking size of the QQ system. When the
quark is so heavy that the Coulomb potential dom-
inates the binding, the phase space increases with
mz. The two compensating factors stabilize the
rate. In any case, the rates are all very small
(cl keV). So hadronic transitions will not be a
major decay mode for a very heavy QQ. system.

In Table II we have also given the branching ra-
tios of various transitions. These are obtained
by estimating other partial widths according to
standard methods. The three-gluon annihilation
rates of Y' and Y" are determined by

.Ot
'

0
I l

Ip 20 30
I

$0

m+ (GeV } (27058(

FIG. 2. Rates for « transitions as hction of quark
mass m~.

n, (Y) =0.17. (2.28)

III. q TRANSITIONS

For simplicity we will consider only the transi-
tions

r(Y'- 3g) r(Y"—3g) r(Y —3g)
Y„(Y') r..(Y") r..(Y)

r(Y- 3g) =[1 —(3+E)a(Y- 8 e-)]r, ,(Y) .

(2. 27)

(2. 28)

n, '~, -n~'8, + g
I

which cover the important processes (1-~, Y~-Yq, and T" -Y q. The leading multiples for
the g transitions are M1-M1 and E1-M2. The
matrix element is given by

The gluon-annihilation rates of the P states are
estimated by the formulas given by Ref. 17. The
E1 rates for various photon transitions are taken
from Ref. 2. For convenience, these rates are
listed in Table III. Incidentally, (2. 28) leads to
the value of o.,(Y):

M(C( —4 +q) =M(M1-M1)+M(E1-M2), (3.1)

M, -=M (M1-M1)
2

&4 ql(o-o') BG(E~)(o-o')'BICi)
24m@

(3.2)

~ M, -=M (E1-M2)

=i (C&q[x ~ EG(E&)S ~ (x '7)B+ S (x &)BG(E&)x~ E]~ C'&),8l
Q

(3.3)
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TABLE III. Theoretical estimates of partial widths of bb states {keV).

Gluon
annihilationa (3 +Rhad) ee Photon transition

Partial
sum

T(9.46)

T' (10.02)

T» (10.36)

1'P, (9,92)

1 P((9.92)

1 3P()(9.92)

1 P ) {9.92)

2 P2(10.27)

2 3P
&
{10.27)

2 3PO{10.27)

8.2

760

60

200

40

80

160

3.7 2.5

30

30

30

30

33

33

18.2

16.4

790

90

230

70

633

113

194

The gluon-annihilation widths given here replace those in Ref. 2. The I'3g for T, T, and
T» are obtained by (2.27) and (2.28) and are model-independent. Those for the P states are
obtained by using the formulas of Ref. 17 and the wave functions of Ref. 2 and e,= 0.17.

A value of R»d= 3.7 is used.
These are taken from Ref. 2 with corrected photon energies by using the experimental

values of the T masses and the improved bb spectrum given in the note added in proof of Ref.
2.

x(& IB,PB, I 0), (3.4)

where o and v' are the Pauli matrices for Q and

Q, respectively, and S is the total spin of the QQ
system. In our model (3.2) and (3.3) reduce to

, c, l(o-o'), (E&-If„) '(o-o')ilc'~&
Q

C
X g ~ q ~

~if y

Q

where e, and ef are the polarization vectors of the
initial and final QQ states, respectively, and f,'z
is the amplitude defined in (2.3) with l=1. The
decay rate calculated from (3.9) is

(3.9)

where q is the momentum of g. The matrix ele-
ment (3.1) now becomes

M(4( —4~ +@)=M2

x (g I E ~ PVB, + vB, P E 10), (s.5)
(s. io)

&nlB,B, I0&=+&CRIB,P.B Io& (s. 8)

It is, therefore, not totally unreasonable to as-
sume that each term in the sum has the same
symmetry in indices k and I as (q IB,B, Io& . We
wil. l make the assumption. Then

&q IB,JB, I o& =o (3.7)

since the only available pseudotensor is antisym-
metric in k and E. I et us define

2

12 &ql(E v)PB +—vB P EIO&=ig-2'„=q„, (3.8)

where we have made use of the fact that both 4,
and 4f are l =0 states. Each of M, and M2 has a
reduced matrix element. But the measured rate
of g' —gq is the only available experimental in-
formation. Our model must be simplified further.
We observe that

r(Y"- 7'vv)/G
r(7'" —7 q)/(q'M, „/M, )

. (s. i2)~~ ~

r(P'- gvv)/G
m, r(tl' —~pq)/(q'M, ,/M„)

'

When the data (2.21) and"

B(g'- ~Pq) =(2.18+0.14+0.35)% (s. is)

In our model, a zv transition and an g transition
between two spin-triplet s states are related.
From (2.7) and (3.10) we find

r(C ~ @f71%)/G 27 cy

I (@;—Cqq)/(q'Mq/M, ) 8v' c, mo', (S.11)

where G and q are the phase-space integral (2. 4)
and the g momentum, respectively. For example,
Eq. (3.11) gives
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are used, (3.12) predicts

r(Y"—Tww) /m~&I'
r(Y"—Tq) imam, &

= 150, (3.14)

This cascade offers the possibility of detecting
two spin-singlet (bb ) states 1'P, and 1'S,. An-
other alternative to reach 1'S, is

Y(3'S,)-Y(2'P, ) +y

Y(1'S,)+,w. (4.3)

IV. TW'0-GLUON TRANSITIONS

So far we have considered only those hadronic
transitions in the Y family which are the analogs
of g'- gww and $'- Pq in the charmonium system.
However, the bb system has a much richer spec-
trum and many other interesting transitions are
possible. A particularly exciting example is the
spin-flip parity-changing pm transition

Y(3'S,) —Y(1'P,) + ww

and its subsequent E1 transition

Y(1 'P, ) —Y(1 'S,) + ~.

(4. 1)

(4. 2)

where the quark masses of m~=5. 17 GeV and es,
=1.84 GeV are used. As we have emphasized
earlier, we cannot reliably calculate the rate for
Y —Ypm. The same is true of the rate for Y
—Yq. We hope that the prediction for the ratio
(3.14) is more reliable. These predictions (3.12)
and (3. 14) follow from (3.7); they provide a test of
this assumption.

The constant c, is fixed by (2.21) and (3.31) and
shown in Table I. The rates computai from (3.10)
are given in Table II. We notice that the rates are
rather small. So far, no q transition in the Y
family has been detected experimentally. We
have also applied (3.10) to heavier Qg systems.
The results are so small that they will not be
presented here.

r(g' - gww) = 107 keV,

r(t/j' ~)=4. 7 keV .

(4.4)

(4.5}

The objective can be accomplished if we approxi-
mate the hadronic transition rates by gluon emis-
sion rates, "namely,

I (4, —C,ww)—= r(C, —C,gg),

r(4, —4,q)'=-r(c, - e, (gg), ) .

(4. 8)

(4. 7)

In (4.7) the two gluons are projected into a Z =0
state to simulate the g meson. If one calculates
the rates in the conventional perturbation theory,
there is only one coupling constant to be deter-
mined. We will allow'for the possibility that a
heavy quark may have an anomalous color-mag-
netic moment. The first three terms in the mul-
tipole expansion are

The rates for the photon transitions in (4.2) and
(4.3) can be calculated by a standard E1 dipole
formula. The wm transitions are more difficult to
estimate. The model described in earlier sec-
tions cannot predict the rates for (4. 1) and (4.3).
The pw cascades are induced by E1-M1 transitions,
and the matrix element (ww IE„PB,IO) ne&ed in-
volves unknown parameters.

In a boM attempt to provide some guide for the

experimentalists, we will resort to a different ap-
proach. The basic idea is to make as many pre-
dictions as possible from the two pieces of exper-
imental information presently available,

igs(~. „-.),-.E. ', h. p.)[(g g ) B.+-', (o+o ) ~ (r D)5.1,
mQ

(4. 8)

where g„o and g„a are the color matrices and Pauli spin matrices for a quark and an antiquark, re-
spectively. In this model we have

M[4, (s = 1)—Cz(s = 1)g,g, ] =M (El-El)
2

=fg; &4, x, (E, -H„) 'x, le, &(g,g, lE,E, Io),

M[4, (s =1)—Cz(s=1)(g,g, ), ] =M(M1-M1) +M(E1 M2)-
2

=iP ", (4~ I(o —o'), (E, H„) '(o —u'), IC-~&(g,g, lB„B,IO)
Sl

Q

+ g2
g"

&4, I x,(E, —Jf„)-'(o + u ),x, + (o+ o ),x,.(E, —H„) 'x, I c,&

x (g,g, I EP'P, I 0),

(4.8)

(4. 10)
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M [4((s = 1)- 4~(s = 0)g,g2] =M (El —M2)

=-f12 '
&4, l(o-o'), (E, -If„)-'x, +x, (E, -If„)-'(o-o'), le&&

~&g,g. lR,E, lp&,

where s denotes the spin eigenvalue and I' is the projection operator into the 0 state

(4.11)

(4.12)

J 2

x g (2u+i)[i+(-1)']
k J) E)

(k, —5,)e*, &&a f
h(i-l, 5,)

where A„k„e„and ~, are the unit vectors along the gluon momenta k, and k„and their polarization
vectors, respectively. A straightforward calculation gives the rates

r[e, (s)-C, (s)+vv]=r[C, (s)-C, (s)gg] =~gs '~, ' '
(2Z, +i)(2l, +1)(2l, +1)i2 j 9v' 140

1 l l 1 l)l, l
x g(21+1) '

r ip p pj(0 0 Oj 1 k lq
(4. i3)

r[e, (s = 1)- C (s = 1)q] =—r[C, (s = 1)- C, (s = 1)(gg), ] = i«" ,()3mo' 12'' 140

gsg~ 1 (M ( —My)

3m, &2 ' eeOC
(4. i4)

( '(M1'[C', (s =1)-C (s =0)vv] —= I'[C,.(s =1)-O (s =0)gg] =~
g g '

(2l 1) I

L 6m 315m' )' (0 0 Oj (g~)'~
(4.15)

Equation (4.14) only applies to transitions in which both C)( and 4)& have zero orbital angular momentum.
The amplitude f!& is defined by (2.3) and the others are given by

1
g,z= g E dr~'Rz(r)R», (r) dr(rl'R» (r&)R, (xr)

k1f klan

klan

f

r g, , fd«~, (r)((;(,)fd'",»;, (")a,(;)1

k f kl] "f

h,r= g f drr'RI(r)R', (r)f dr'r"((", (r')R (r'),1

k(l =o& j kl

1
hI =

k&, ,)E —Ek) dhXA~rBk)X des Bk, s B)r

(4.i6)

(4.17)

(4.18)

We shouM mention the shortcomings of the mod-
el before the numerical results are discussed.
The phase space for the light hadrons in these
transitions is generally not large enough to ne-
glect the masses, while the gluons are treated as
massless. Furthermore, the p meson is poorly
approximated by a two-gluon system since the lat-
ter does not have a definite mass. Despite these
complaints, it is instructive to find out its conse-
quences simply because this is the only way to
estimate the transition rates for new processes

I

such as (4.1) and (4.3).
The coupling constants g~ and g„are determined

by (4.4) and (4.5); their values are given in Table
I. The rates of several transitions calculated in
potential models A, 8, and C are given in Table
IV.

It is gratifying to note that the rates of spin-non-
flip 7tg transitions and the g transitions in Tables
II and IV are very similar with two exceptions.
The rates for Y»- Y'mw and Y" Yg are much big-
ger in the two-gluon model. This is understand-
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TABLE 1V. Two-gluon transition rates of b5 states.
(in keV). The process in parentheses is the one to be
represented by the two-gluon transition.

(2.5). We then have

Transition Model A Model B Model C (4.19)

&gg

(T~- T~~)

T» Tgg)

(T»- T~~)

(&» T'xm)

&(gg)0"

(T~- Tg)

g» ~ g(gg)
6' -&n)

0.2

0.03

0.4

0.3

0.03

1.2

0.6

g» ~1 P gg
(V» —1'P,~~)

0.2 0.2 0.1

23P&~1 Sogg

(2'P, —.1 'S, ~~)

0.6

able. In T —Y'mm the actual phase space is so
small that it is very poor to approximate the pions
by massless gluons. In Y -Yg the phase space
is rather large. The two-gluon representation of
the g is also poor and gives a very strong energy
dependence [see Eq. (4.14)]. From the examples
of 'F' T~z and T»- Tzm we may conclude that
when the phase space available to the two pions
is comparable to or larger than that of P'- /vs
the two-gluon model is reasonable for a mw tran-
Sltlon.
Therefore, the spin-flip parity-changing mm tran-
sitions should have a better chance of success in
the model. The transition Y"-1'P,+mr has a re-
spectable, although small, rate of -0.2 keV cor-
responding to a branching ratio of order 1%. The
subsequent photon transition 1 Py 1 Sp+ y has a
very large branching ratio" (-40%; see Table III)
due to the fact that an axial-vector meson cannot
annihilate into two gluons. Once the spin-singlet
1P is found, the spin-singlet 1S should be easy to
detect. Alternatively, it is also possible to reach
the 1'Sp by T" 2 P&+ y, 2'Pz 1 Sp+mm. The
best chance is to cascade through the narrow axial-
vector state O'P, .

Finally, we verify the claim in Sec. II that the
two-gluon model leads to the relation (2.10). To
see this, we set m, =0 and M, /M& =1 in (2.4) and

When (4.19) is substituted into (2.2) we find the
formulas (2.2) and (4.13) agree provided

1 (g 'l'
c '=9c '=—

I6 &6w' ~

which establishes (2.10).

(4.20}

r(T -Tvv)=o. i keV,
I'(T" T'vw) = 6 keV.

(5.1)

(b) If G(E,) is approximated by a constant by ne-
glecting its nonlocality, then we obtain

I (T'- Tvv) = 20 keV,
I'(T" -Tvv) =35 keV,

1(T -T vv)=0. 5 kev.

Not only do the two sets of predictions (5.1) and
(5.2) differ markedly from our results in Table
II, they do not agree between themselves. Clearly
our model gives the best result for Y'-Yen'. Fur-

V. SUMMARY AND DISCUSSIONS

In this paper we have proposed a method (with
two variations) to calculate the rates of hadronic
transitions within a QQ system in the framework
of multipole expansion of QCD. Emphasized in the
Introduction and again here is the difficulty of
carrying out such a program because of our ignor-
ance of color confinement. 'Therefore, a useful
model should contain as few free parameters as
possible. Our model is constructed to meet this
requirement. The measured rates of g'- Pvv and
g'- gg are used to determine the parameters in the
model. The goal is to predict the rates for as
many transitions as possible in the T family. The
details are presented in Secs. II-IV. In summary
the most important conclusions are as follows.

1. The predicted rate for Y'- Ymv is in excellent
agreement with the recent measurements. The
transition T"-Y'vv should have a small rate (s 1
keV) due to its small Q value. The rate for T"

Tvv is also expected to be small f& F(T'- Tvv)],
although large canee11ations in the amplitude make
it difficult to predict this rate reliably. The two
simple options mentioned in Sec. I mould have led
to very different results: (a) If G(E&) is approxi-
mated by the Green's function for free particles
as in the parton model, then we get

I'(T'- Tnir) =4 keV,
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ther testing of our model will come from future
measurements on the other transitions. One should
also study and compare the mass distributions of
the mm system in the three transitions Y'- Ym~,
Y"-Ygm, and Y"-Y'mn.

2. The treatment given in Secs. II and III and
that in Sec. IV usually give consistent results ex-
cept for the transition Y" Yg. (We are not con-
cerned with the discrepancy in another transition
Y"-Y'pg which is simply due to the pion's mass
effect. ) The predictions for this r/ transition by
the two methods differ by almost two orders of
magnitude. The small rate I'(Y"-Yrl) predicted
in Sec. III is related to the small rate for Y"-Y7tm.

This relation is a consequence of the assumption
(3.7). On the other hand, the large rate predicted
in Sec. IV is due to the poor representation of q
by a two-gluon system. Perhaps the truth lies
somewhere between the two extremes. We wi.ll
need experimental information to help us under-
stand the g transition better.

3. The bb system has a richer spectrum than
the cc system. Consequently, new types of had-
ronic transitions are possible for the first time.
In Sec. IV we have considered two spin-flip wn.

transitions: Y"—1'P, +em and 2'P~-1 'So+mr
These processes offer new alternatives to reach
the spin-singlet states 1'P, and 1'8,. The theo-
retically interesting state 1 P, is almost impos-
sible to detect by any other means.

4. The rates for the transitions 2'P~ -1'P~
+mr in the bb system are disappointingly small. .
It will not be easy to test the relations among dif-
ferent transitions predicted by the Wigner-Eckart
theorem. '

5. As the mass of a heavy quark increases, the
rates for hadronic transitions decrease rapidly.
Hadronic transitions will cease to be dominant de-
cay modes of a very heavy QQ bound state.

Overall, we are encouraged by the agreement of
our prediction and the data for Y'- Y7tw. This is
by no means a trivial result. First of all, the
validity of the multipole expansion for the cc sys-
tem is marginal at best. Yet we have to rely on
the rate of P'- gvv as input to our calculations.
Furthermore, to arrive at a branching ratio, so

our result can be compared with the data, we must
estimate other partial widths theoretically. These
estimates involve theoretical as well as experi-
mental uncertainties. Therefore, the agreement
between the model and experiment indicates that
our results will provide at least a guide as to
what to expect from these transitions.

Note added in Proof Re.cently, both experimen-
tal groups (CLEO and CUSB) at the Cornell Elec-
tron Storage Ring have observed the transition
Y"—Ypm. The branching ratio has been measured
to be [for details, see talks by D. Schamberger
and A. Silverman, in Proceedings of the 1981 In-
ternational Symposium on Lepton and Photon
Physics at High Energies, Bonn, (unpublished)]

ll
(3.8~1.8)% (CLEO)

1'(Y"-»'v ) l (9 7~4. 3)p . (CUSB)
I'(Y"- all)

l

(4;8+1.7)p (CLEO and. 0
CuSS combined).

This is to be compared with our predictions of
1.3%, 1.8%, and 3.4% for. models A, B, and C,
respectively. Our predictions agree with the
CLEO result and the world average, and they com-
pare favorably with the CUSB measurement. Most
importantly, the data confirms the theoretical ex-
pectation that the rate of this transition should be
smaller than that of Y'- Yvtw. It therefore lends
further support to the general ideas of the multi-
pole expansion as the mechanism for hadronic
transitions.
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