PHYSICAL REVIEW D

VOLUME 24, NUMBER 10

15 NOVEMBER 1981

Comments

Comments are short papers which comment on papers of other authors previously published in the Physical Review. Each Comment
should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as for regular

articles is followed, and page proofs are sent to authors.

Comment on stability properties of degenerate systems

W. Mecklenburg*
Department of Physics, The University, Southampton SO9 SNH
(Received 25 August 1980)

Stability properties of degenerate systems are discussed. It is argued that degeneracies corresponding to zero-
frequency modes may in general indicate instabilities of the system under consideration. It is pointed out that a
stability analysis of the classical Lagrangian is particularly relevant when, due to some symmetry, higher-order

corrections do not alter the form of the potential.

Degenerate systems occur on various occasions
in field theory (compare Refs. 1-3 and refer-
ences therein). A system with Lagrangian £(¢)
will be called degenerate in this comment if it has
a constant solution ¢, of the field equations that
minimizes the energy (i.e., a ground-state solu-
tion) and that can be continuously deformed into
other constant solutions without changing the en-
ergy. The latter statement means that in fact a
continuous set of constant ground-state solutions
exists that all have the same energy (each mem-
ber of the set may be continuously transformed
into any other).

Goldstone-type potentials are typically of this
form; for instance,
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Here and in the following only the time dependence
of the fields will be kept, since this is sufficient
for our purposes. Any constants bo, ¥y comprise
a ground-state solution of (1) if for ¢,% + Pyl =c?
one has

ur=act. (2)

Any two such solutions may be continuously trans-
formed into each other by a rotation in the (¢, )
plane. Note that such a rotation is a symmetry
transformation of £;.

Another example is given by

£u=%(q'>2+d32)- id’zlpz . (3)

Constant ground-state solutions are now of the
form (g, 1) =(c, 0) and (g, ) = (0, c) where c is
an arbitrary constant. Again ground-state solu-
tions corresponding to different values of ¢ may
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be continuously transformed into each other. In
this case, however, they are not related by an
internal symmetry transformation of £;;.

Degenerate systems such as £; and &;; exhibit
characteristic difficulties if the stability proper-
ties of their ground-state solutions are analyzed.
These difficulties are the objective of the present
comment. They are related to occurrence of
zero-frequency modes.* Technically, the diffi-
culties arise because the usual Liapunov criterion
does not decide stability in these cases. The
stability question itself is important when one
wants to construct Lagrangians displaying a Gold-
stone-Higgs-Kibble phenomenon.

In the following it will be pointed out that the
existence of zero-frequency modes may in general
indicate instability. It is important to keep in
mind, however, that degeneracy does not always
imply instability.>®

In the following a short compilation of results
on stability will be given. This is being done in
order to have a definition of stability available
that is independent of Liapunov’s criterion (which
is insufficient in the degenerate case).

Furthermore, it will be seen that the rate of
growth in time of the fluctuations around a given
ground-state solution is in general not linked with
the stability of these fluctuations; in particular
the fluctuations around an unstable ground-state
solution may grow polynomially (rather than ex-
ponentially) in time.” (Compare the example given
below.)

Stability in the sense of Liapunov is defined in
the following way.? Let

J'ci::fi(xioc-x"), i=1,...,1’l (4)

be a system of differential equations of first order
for the unknown functions x;(#). Let us choose a
particular solution, called »eference solution
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%,(t), by specifying initial values ¥,(0) at the in-
stant t=0. This reference solution is called
stable if small variations of the initial values pro-
duce a variation of the solution of (4) which re-
mains small for any value of ¢ >0.° Of particular
interest below will be the case of constant refer-
ence solutions, ¥,(t)=a;, i=1,...,n. Such solu-
tions will be called equilibrium solutions; (a;) will
be an equilibrium point. Note that free motion
with nonvanishing velocity does not constitute an
equilibrium solution in the sense of this definition.

Consider now a small perturbation 6x;=y,
around an equilibrium point (a;) of (4). Neglecting
terms other than linear in y; we find

3

bx, r=1,...,n.

(5)
The general solution of this system will be of the
form

n
yi':;fc,k(ai' * a,.)l’k» o, 2=

n
V) =D betert, i=1,...,n (6)
k=1 ,

where b;, and w, are constants. If all the fre-
quencies w,, k=1,...,n are real and not zero
then (a;) is a stable solution of (4). The solution
is unstable if some or all of the w, are complex
(“exponential instability”). If the frequencies are
real but some of them are zero (“zero-frequency

modes”) the solution may be stable or not. This
latter situation is the degenerate case that is the

topic of this comment. This criterion for stability
is due to Liapunov.!’ Intuitively it is based on the
observation that the harmonic-oscillator solution
of ¥+ w?x=0 is indeed a stable solution in the
sense of the definition of stability given above.®
The occurrence of degeneracies elucidates the
statements of Dirichlet’s theorem.'" In fact this
theorem states the following: “Assume that
filxy* + - x,) [see Eq. (4)] are a power series with-
out a constant term in x;,...,x,, convergent in
some neighborhood of the origin. If the system (4)
thenhas anintegral g(x;+ - - x,) that does not depend
ont and has a relative minimum in the strong sense at
x; =0, thenthe equilibrium solution x; =0is stable.”
Clearly it does not matter whether one chooses
the origin as the equilibrium point rather than the
constant x;=a; as above. The theorem gives a
sufficient condition for stability. Note that the
integral g(x;« - + x,) has to have a strong relative
minimum at the origin, meaning that for suffi-
ciently small x; one requires g(0) <g(x;* * * «x,)
rather than just g(0) <g{(x;- - - x,). This explains
from the point of view of Dirichlet’s theorem why
the existence of degeneracies as specified above
may indicate instability of an equilibrium solution.
Note that the formulation of Dirichlet’s theorem

does not refer to the situation of minimal energy
alone but as well to the occurrence of a minimum
for any constant of motion. Minimality of energy
is therefore not a necessary condition for stability
if, say, angular momentum is at a strong relative
minimum. The relevance of this point in particu-
lar in the context of Yang-Mills theories has re-
cently been emphasized by Jackiw and Rossi.®

Let us now discuss examples. Consider the
Lagrangian £;;. As remarked above it has degen-
erate ground-state equilibrium solutions ¢ = ¢,
P=0; <§>=0, 311=0; and ~—¢. It has been demon-
strated in Ref. 1 that these solutions are not
stable. The reason for this is that any solution of
this system with vanishing initial velocities and
boundary conditions ¢(0)#0, $(0) #0 will move
towards the origin in the (¢, ¢) plane. The small
perturbations around the ground-state solutions
are exactly of this type. They will therefore not
stay in the vicinity of the chosen ground-state
solution. This is in disagreement with our defini-
tion of stability as given above.

Let us now study the growth in time of the fluc-
tuations around the ground-state solutions. The
field equations are

__T 2
¢= 2¢111, (7

"__I 2
== 6" (8)

Linearizing around the ground-state solutions with
d=¢,tTA, p)=B gives

A=0, (9)
B=- 7Boy’. (10)

Note that the zero-frequency mode is explicitly
seen. From (10) with B(0) =0,

B=bsin(7¢,"/2)"/*, b=const. (11)

Thus, in the (¢, 3) plane we find oscillating be~
havior in the direction of 3. In the direction of ¢
we include quadratic terms so that (7) becomes

o

A=-7B%,. (12)

Using (11) this may be explicitly integrated and it
can be seen that the rate of growth for A for small
t is polynomial.

We thus find that if zero-frequency modes indi-
cate instabilities, the rate of growth of instability
need not necessarily be exponential as it would be
for the case of complex frequencies. This type
of polynomial growth is not to be mistaken with
the following one. If some of the frequencies w,
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[see Eq. (6)] are identical (but real and nonvan-
ishing), then for suitable boundary conditions
superpositions of y; may show polynomial growth
with small {. Thus polynomial growth for small
t alone does not necessarily indicate instability.s'“

A similar analysis may be carried out for &£;.
The zero-frequency mode can be explicitly seen
if small fluctuations around ¢ =¢,, =0 are
studied. However, taking into account quadratic
corrections much like the above for £;;, the
stability question in this case can be answered in
the affirmative.

In order to build a Lagrangian which exhibits a
Goldstone-Higgs~-Kibble phenomenon, not only the
“classical” Lagrangians such as £; and £;; have
to display nonvanishing stable ground-state solu-
tions, but also those Lagrangians where the poten-
tials of £; and £;; are replaced by the so-called
effective potential, thus taking into account quan-
tum corrections to the theory.

For Goldstone-type Lagrangians such as £; the
situation has been analyzed in a classic paper.!
For £;;, a renormalized effective potential has
been given by Drummond.!® Defining

E=¢*+yt, =¢%* (13)
and

Uy, =4re+ (722 +127%) 7], (14)

it is given by (M?= const)

—_ 24 = 2 Uy _l 2 U, _ l)
Ve 4‘¢> VT Sart [U‘ (1"5/1—f 2) T (1“7{47 2
(7
- 5 (10 +2) o+ g7

-372 (m%) ¢2¢2] ) (15)

One then finds by inspection that the degeneracy
of the original theory has disappeared14 and the
situation with respect to stability is completely
changed.

A still different situation is given for the super-
symmetric Lagrangian discussed in Ref. 2. Here
the potential contains a term
e'?=1, (16)

i,j=1,2, €= —Eﬂ,

2

£ (o),
and a degeneracy similar to that for £;; occurs.
However, the one-loop corrections to the effective
potential vanish in this case, due to the underlying
supersymmetry of the Lagrangian. Thus in this
case the stability problem remains the one of the
classical Lagrangian. It is then the requirement
of “classical” stability that prevents us in the given
context from using (16) as a Goldstone-type potential.
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