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Propagation of a neutrino in a homogeneous magnetic field
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A neutrino, although it has no electric charge, can interact with a magnetic field by virtue of self-energy processes
in which the virtual particles are charged. In this note, we examine the one-loop correction to the neutrino

propagator in the presence of a homogeneous magnetic field in the context of the standard Weinberg-Salam model

for leptons, using a technique introduced by Sapirstein.

I. INTRODUCTION

The Weinberg-Salam model of leptons' involves
the vertices v-e -W' and v-e -Q'. The neutrino
(v) does not couple directly to the electric field,
but the electron (e ), the intermediate vector boson
(W'), and the Higgs boson (Q') do carry an electric
charge. Consequently the virtual processes of
Fig. (1) lead to an effective interaction' between the
neutrino and an external magnetic field, on account
of the electric charge carried by the virtual par-
ticles. Evaluation of the neutrino propagator in
this situation is complicated by the fact that both
of the virtual particles carry an electric charge.
A method for handling this problem has been de-
veloped by Sapirstein' in determining the magnetic
moment of a quark in a constant colored magnetic
field.

We will ignore the effect of the external mag-
netic field on the spontaneous symmetry breaking. 3

II. THE WEINBERG-SALAM MODEL
IN AN EXTERNAL MAGNETIC FIELD

The Lagrangian for the standard Weinberg-Salam
model of leptons4 has the following parts relevant
to our discussion:

(2c)

R =-,'(1+y,)e, (2d)

(2e)

If p.'(,0 and ~&0, spontaneous symmetry break-
down occurs without destabilizing the system. The
field P, in the tree approximation (which we will
not try to improve upon), develops a vacuum ex-
pectation value

(v/v2 )
upon a suitable orientation of the internal symme-
try space. The vector fields A.', B„develop a
mass, except for a component

A, =(gB„+g'A', )/(g'+g")"'
which is identified with the photon.

We now assume the existence of an external
electromagnetic field
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where e =gg'/(g +g")'~' is the electric charge.
It is now possible to identify those parts of the

Lagrangian of Eq. (1) that contribute to processes
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FIG. 1. Diagrams containing charged virtual. particles.
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involving charged virtual particles. If we set S = —G, ef' ( ')v+if'(
S

')e

+~g vW' y ' e+eW 'y ' v . (6)
1 ~ p 1

2 2

then

2 2

g~ =(8„+ice'.„)f'*(8"—iec(")f'+ W'„W ~

+
2 W„{8 —ieo' )f' — W„(8"+ie&")f'*,

(6a)

III. CALCULATION OF THE NEUTRINO
PROPAGATOR

It is now possible to determine the lowest-order
corrections to the neutrino propagator induced by
an external electromagnetic field.

From Eqs. (6) and (7), the appropriate propaga-
tors are

1:,=e iy"(8„+ice(„)— '
l
e,|",v't

(6b)
S(x', x) = (e(x')e(x))

2„=—,[W„(8 —ieo'G)(8" —ieo(")W"

—W„(8~ —ie o.'")(8,—ie o(,) W'" —2ie W F""W']

+ .'[W'„(8„-+ie ~„)(»+ien") W

—W;(8" +ie o)( „8i+ec(„)W"+2ieW;F""W„],

1= x', , (V Zvm) x), (Se)

D(x', x) =(f'(x')f '*(x)&

(6c)

lead to the appropriate propagators for the charged
particles, provided we use an appropriate gauge
condition such as

(8„—ie o'„)W'" — f '
I

and

X P 2 X

D,„(x'x) =(W'„(x')W„(x))
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g "G(w —p,') + 2ieF»

(Bb)

(9c)

x 8+ieu. ~ + ivg
fy fy 2 j'

Vertices arise from the interaction terms

(7)
where m =G,v/v 2, V.'=v'g'l4, z=i8+e(s, g=i8
—eo', and M=(el2)o zF"~

The expression corresponding to the diagrams of
Fig. (1) is

I= dx' dx K,gvx') ' l~(x', x)D{x',x) 2
' lv(x)

eeei(x )( S
'),V S(')G ('x x)'V, (x.S„'x)',v(x)",

where K, =(-G,)' and K, =(v 2g)'. If we use the identity

1= ds e
a

then Eg. (10) becomes, upon dropping the term linear in m,

(10)

OO 2I= dxdx'v x' K, x' -i dse " y'Ze"~ x e ""x' -i dte ""e"~ x
0 0

2 1-y.—K y x' -i dse "~ y Ze"c x e '~~ x' idte st-~»e ' "" e"' x y ' v(x) .2 p v 20 0

(11)
Sapirstein' has indicated how to evaluate the matrix elements for the case in which E» =B. We arrive at

the results
s)0

G(x'x) =-( —,e ""', . exp —[(x"—x')' —(x' —x )'))t' 16m' sin(eBt) 4t

x exp [(x"—x')'+(x" -x')'] lexp (x'+x")(x' —x") l,4 tan(eBt) j 2
(12a)
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"ds a eBs f-1Sx', x = e- asm

16m, s~ sin(eBs) ( 2s

x
/

[y'(x"-x') —y'(x"-x')]+ . B e""[-y'(x"-x')—y'(x" x'-)] /e
""

««( I

—'[(«"-«')'-(«"-«')'[ ««PI
" [(«"-«'&'+(»" -«')'))

(4s ( 4 tan(eBt}

-ieB
x exp (x'+x")(x'- x")

2
(12b)

[Note the slight difference between the result of Eq. (12b) and Eq. (2.23) of Ref. 2.]
We are interested in fields whose strength is weak (i.e. , eB«p, ) and hence we will use the approxima

tions

sin(eBS) —tan(eBS) = eBS .

Equations (11) and (12) thus combine to give

)2
I= dx dx'v x'

16m'&

00 OCI

exp —[(x"—x')'+(x" —x')'+(x" -x')' —(x' —x')']
~
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1 —y,—&,y„([y'(x"—x') —y'(x" —x')J+e"~[-y'(x" —x') —y'(x" —x')]]}e""y„e"'~» ' [( ),

(13)

where

1/u =1/s+1/t.

Again expanding to first order in eI1,

e""= 1+ieBscr, ,

e 2e~z„„~gf "—2etE""
7

we see that Eq. (13) has a term linear in B:

-( )(1 'I' "ds "yg -1't
16m~) 0

s' , t' 2s)

x [(K, —2K,)(-ieBs )((yT'(x" —x') —y'(x" —x') ]
I+(4tzeBto, ) [y'(x" x') —y'(x" ——x') ]

+(Re««)(«, + 2«, ) [«(«"-«') —«'(«" —«') j&[ ') «(«) .
2

Equation (12) can be inverted to show that

x'e ""~""'*'=(16m'i)(2g()')(x ~(ie )e '"""~x) .
Consequently, Eq. (14} becomes

M= —
JI dx J[ dx'P(x'),

~
—, —,—e "~-i & "ds "dt n'

67T2 ) s~ t

(14)

2
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~x)
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[«&&( « ') «(«) .

(16)
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The integrais over z and ~' in Eq. (16}can now be evaluated upon introducing a complete set of states
~
k) such that Q

~

k}= e'o '"/(2m)'. Our expression for 6I then becomes

bi= t (k)(
~

—, r, e"—" e'" g(-ieBsvo)(K, —2Ks) + (4ieBto's)Ks]('Pk —y k')
o s o

+(2eBs}(K,+ 2K,)(y'k' y'k-'))
~

'
I ~(k) .(I —y, )

2

The integrals over s and t can be evaluated upon setting is =Xv and it = A(1- v). If k' = 0, we finally arrive
at the expression

&1 —y,at=
)6 i(k)[-,'(tc, —6' )b'0' —y'a')a, +){Ic,+ etc)(y'))' —9),') jl

&
') v(k) . (1"t}

Equation (1V) gives the correction to the neutrino
propagator to lowest order in B.

The equation of motion of a neutrino in an ex-
ternal magnetic field will effectively be altered

from the free field equation of motion (y ' k —m) v

=0 as a result of this effective interaction. The
phenomenological consequences are currently being
examined.
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