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%'e study two continuum methods of regulating the formal strong-coupling expansion

of the Green's functions, obtained by expanding the path integral in powers of the kinetic

energy {inverse free propagator). Our continuum regulations amount to introducing either

a hard (0 function) or soft (Gaussian) cutoff A in momentum space. The cutoA' takes the

place of the usual spatial cutoff, the lattice spacing, which arises when the path integral is

defined as the continuum limit of,ordinary integrals on a Euclidean space-time lattice.
We find, by investigating free field theory and g$4 field theory in one dimension, that the

8-function regulation is more accurate than the Gaussian and, unlike the Gaussian,

preserves certain continuum Green s-function identities. The extension to field theories

with fermions is trivial and we give the strong-coupling graphical rules for an arbitrary
field theory with fermions and bosons in d dimensions.

I. INTRODUCTION

The strong-coupling expansion for quantum field

theory is derived from the path-integral representa-
tion for the generating functional for the Green's
functions by treating the kinetic energy as a pertur-
bation. ' For a general interacting field theory of
bosons and fermions, the Lagrangian density in
Euclidean spacetime is

W = l(tjff —, ( t)qtti ) —Wo(P,ttj,—g,g, A, m ), ,

where Wo contains all the local interactions and
mass terms. The idea behind the strong-coupling

expansion is to treat Wo as the unperturbed
Lagrangian and

~'=glib ——,'(a„y)' (1.2)

as the perturbation. A regulation scheme must be
adopted to ensure that (1.2) is bounded, so that an
expansion in it makes sense. The choice of regula-
tion is the subject of this paper. In a previous
work we discussed difficulties inherent in many
continuum regulation schemes. To obtain the for-
mal strong-coupling expansion, sources for the dif-
ferent fields are introduced by adding a term
Pri+riib+ JP to Wo so that the path-integral
representation of the generating functional may be
written

Z[rl, rl, J]=exp f d"x ddy W'
6g'6&'6J

&& f Dtti Dp Dfexp f d x[&o(p, iTt, p)+ittrl+rig+Jtti] ',

where

5 6 6
5n

'
5n

' 5J
(1.4)
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S '(x,y) =jk(x —y),
G '(x,y) =5'5(x —y), (1.6)

f d'x a'y„

and we have suppressed any I.orentz or group-
theoretic indices which might be present.

Because W0 is local one can evaluate the path
integrals in (1.3) by considering them to be the lim-

it of a product of ordinary integrals obtained by re-

placing Euclidean space-time with a hypercubical
lattice of spacing a, so that

and

where i labels the lattice sites. The lattice version
of the path integral in (1.3),

Zo[r), q,J]=ID/DQDP exp I d x[&o(P,g,P)+Jr)+r)P+JQ] (1.7a)

1s

Zo[g, g,J]=g I d~~d~;dP;expIa~[W (P;,P, ,P;)+f,-rl, +r7, $, +J,.P, ]I . (1.7b)

Here Z0 is the product of ordinary and Grassmann integrals,

Zo[rl, q,J]=Pf (q;, rl;,J;)=exp g lnf(r);, q;,J; )
l

where

f(r7, rl J)= J dpdgdpexp[a [Wo(p g p)+prl+W+Jp]]

lnf (rl, rI,J) has a Taylor series expansion:

(1.8)

(1.9)

lnf(g, rl, J)= g vi, i
k, 1=0

(1.10)

The vkI, which are the vertices of the strong-coupling graphs, are the connected Green's functions of the
theory with no internal or external kinetic energy, having k fermions, k antifermions, and I bosons. The
number of fermions at a point is limited by the Pauli exclusion principle.

Zo has a formal continuum limit,

Zo ——exp 5(0) I d xlnf(i)(x), g(x),J(x))

where we have identified

5(0)= 1 (1.12)

Thus, a formal continuum strong-coupling expansion may be obtained from
r

Z[9,rl, J]=exp I d x d y — Q(x —y) +— 5 5(x y) Zo[r) rl J] .(1.13)1 6 2 5
5'9(x) 5q(y) 2 5J(x) 5J(y)

The result is a set of graphical rules organized in
terms of the number of free inverse propagators,
i.e., in the lines S '(x,y) and G '(x,y) defined in

(1.5) and (1.6), connecting the vertices vki defined
in (1.10). The explicit rules for gP field theory in

d dimensions are given in Ref. 2.
The lattice can be thought of as a particular way

of regulating the Dirac 6 functions occurring in the

expansion, as well as being the actual definition oi'

the formal expressions for the Green's functions
obtained from (1.13) by functional differentiation.

II. THE CONTINUUM STRONG-COUPLING
DIAGRAM RULES

The formal continuum diagram rules were ob-
tained by making the replacement



24 CONTINUUM REGULATION OF THE STRONG-COUPLING. . . 2695

g lnf (2);,q;,J; )

~5(0) f d xlnf(2)(x), ri(x),J(x)) (2.1)

etc., implied by (2.1), introduces divergences in the
contribution to Green's functions from the bare
vertices. %e propose to identify the lattice sources
with smeared continuum sources via

ri1~ g(x), (2.2)

in Eq. (1.8). However, we will see that this does
not result in a completely finite theory, even

though a suitable regulation of the Dirac 5 func-
tion has been chosen. The identification of lattice
with continuum sources,

ri;~ ri, (x)= f d z 5(x —z)ri(z), (2.3)

etc., i.e., with the "average over the unit cell."
In order to illustrate this point we write the for-

mal expression for the vertices as

k, I =0 f d X1 ' ' f d X2k+1

f d x lnf(2i(x), 2)(x),J(x))

V(X1 " »2k+1)
9(X1) 9(xk)"7(xk+1) )(X2k) (X2k+1) J(X2k+1)

(2.4)

where

2k+i
V(x„...,x2k+1)= f d x Uk1 g 5(x —x;)

(2.5)

are the local vertices, which are actually the con-
nected Green's functions for the theory without
internal or external kinetic energy.

The lattice regulation scheme makes the inter-
pretation x~i and

I

(2.6)—(2.8) become

5,(k)=1,
sink&ad.

S.-'(k)= g )„
p, =1

4f

G, '(k) = g sin (kqo j2) .
a

(2.10)

(2.11)

(2.12)

The lattice cutoA regulates the inverse free propa-
gators as we11 as the vertices

6"
5(x —y)~ 5, (x —y)—:5, (1',j)=

a

(2.6)

V(X1, . . . , X2k+1)=
2k+1 —1

1

a

2k+i
Uklg g 5ii i

i j=l

(2.13)

So the inverse free propagators (1.5) and (1.6) be-
come

—1
' &'5;1+i 5i, +i)—

S (x —y)~)5, (x —y)= g 2a

(2.7)

so that (2.4) is just

f d x lnf(g(x), 2)(x),J(x))
k 1

Uki(n n ) J
a11,. (2k)!1!

6 '(x —y) 5 5, (x —y)

and we recover (1.10). The lattice regulated 5
function, Eq. (2.6), obeys two properties of the
Dirac 6 function. First, it obeys the convolution

, +p+5. , +„-—2d5ij

a +
p, =1

(2.8)

where p are unit vectors in the pth direction on

the lattice. In momentum space, using

ad +5, (i j)5,(j,k) =5, (i,k) .
1

Also, the inverse exists,

5, (i,j)=5,(i,j) .

(2.14)

(2.15)

P(k) ad@ P eik ma (2.9) In attempting to find a continuum regulation of
the Dirac 5 function, one must at least give up
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having an inverse exist. The true Dirac 5 function
obeys f d"y 5A(x —y)5A(y —z) =5A(x —z) (2.18)

f d y 5(x —y)5(y —z) =5(x —z) (2.16) so that 5A(p) is a combination of 1 and 0, such as

and
5A(p) =@A—

I p I » (2.19)

5(p)=1=5 '(p) .

Even if the A-regulated 5 function obeys

(2.17) then, except for 5(p) = 1(A~ ao ), there is no in-

verse to 5A(p). Thus, if we consider regulating the
harmonic-oscillator potential energy

exp 5(0) f dxlnf(J(x)) =exp 5(0) f dx
2m 5(0)

=exp f f dxdy J(x) y J(y)
2m

(2.20)

by replacing

5(x —y)~ 5A(x —y) = f dz 5A(x —z)5A(z —y),

it is not true that this comes from smearing the products of fields in the original path integral:

Zo ——N f Dgexp —f f dx dy[(m /2)P(x)5A(x —y)P(y) —J(x)5A(x —y)P(y)] . (2.21)

III. THE GAUSSIAN REGULATION
SCHEME

In the Gaussian regulation of the continuum

strong-coupling series the Euclidean d-dimensional

regulated 6 function is defined as

d
—A ix —yi (3.1)

so that

(p) e
—p2/4A~ (3.2)

The inverse free propagators (1.5) and (1.6) become

because 5A(x —y) has no inverse. Consequently,

taking the continuum limit of the lattice-generating

functional lnZ and then smearing the sources is not

equivalent to smearing the products of fields in the

original path integral. Unlike the lattice-regulation

scheme, which is the definition of the path integral

as the limit of a product of ordinary integrals, any

continuum regulation scheme is an a posteriori re-

gulation of the formal continuum limit of the lat-

tice strong-coupling expansion.

SA '(x, 0)=)QA(x)

= —2A &5A(x),

G, -'(x,o) =a'5, (x)

=2A (2Ax2 —d)5A(x)

or, in momentum space,

g —1( ) @—p /4A~

(3.3)

(3A)

(3.5)

G
—1( ) p 2e p2/4A2—(3.6)

As we have mentioned before, it is necessary to
smear the sources via Eq. (2.3) where the 5 func-
tion is given in (3.1). This has the effect of smear-
ing the vertices V(x&, . . . , x2k+I) in Eq. (2.5) ow-
ing to the replacement

2k+I 2k+1

g 5(x —x;) g 5 (x —x;). (3 7)
i=1 i=1

In momentum space, this multiplies every line
entering or leaving the vertex and carrying momen-

-t;2/4A2 .
turn p; by e ' in addition to the overall
momentum-conserving 5 function 5(g,. +& p;).

Because each inverse propagator' connects two
vertex legs, the effect of smearing the vertices in



24 CONTINUUM REGULATION OF THE STRONG-COUPLING. . . 2697

this way is to modify the inverse propagators
represented by internal lines to

S '( )=p'

G
—

( )
—p /4h

(3.8)

(3.9}

5,(x)= f P
(2m)

2 ~~-iin
~ f dg iprcos8 ~ d —2g

r d —1

2
Hence, the effective momentum cutoff is changed
from 2A to 2A/~3 on internal lines in diagrams.

The Gaussian cutoff is extremely easy to work
with in arbitrary space-time dimension d. Even
multiloop diagrams only require the Fourier
transform of a polynomial times a Gaussian in d
dimensions, which is simple. So this regulation
scheme would seem ideally suited to carrying out
strong-coupling expansions for gauge theories in-

volving fermions where it is desirable to avoid the
lattice and necessary to work in arbitrary dimen-

sion. Unfortunately, there is a major deficiency of
the Gaussian cutoff in that 5&(x —y) of (3.1}does
not obey the convolution property. In fact

(4.4)

~here r =
I
x I. Then, using

~
~eiPr cos8S&nd —2g d g

0
' d/2 —1

r

2 d —1 1r r —J„, , (p )

and

)

x "+'J„(ax)dx =—J„+&
(a)

0 y v+

we obtain

f ddy 5~(x —y)5„(y —z) =5i„&~2~(x —z),

(3.10)

4(p)4(p) =5ipgy g )(p) =e

5p(x) = A
2n. lx I

When d = 1, using

' d/2

Jdn(A I" I
) . (4.5)

Because of this it is possible to get quantities such
as [5~(p)—5~+&~&~(p)] appearing in integrals in

such a way that the result does not vanish as
A~ 00. This problem will be discussed later in

the context of the harmonic oscillator.

J&~2(x) =(2/mx)' sinx

we obtain

5p(x)= (d =1) .
7TX

(4.6)

IV. THE 8-FUNCTION
REGULATION SCHEME

The Feynman rules in momentum space are very

simple for the 0-function regulation. The legs of
each vertex carrying momentum p; have a
8(A —

I p; I
) attached to them, together with an

overall momentum-conserving 5 function at the
vertex. The internal lines represent

Because of the importance of the convolution

property one would like to have at least one con-
tinuum regulation scheme that obeys

S„'(p)=iong(A I p I
)-, —

G~ '(p)= —p'8(A —Ip I
}.

(4.7)

(4.8)

4(p)4(p) =4(p) (4.1) Since

5p(p)=8(A —Ip I
) .

In coordinate space, this is

d"p
5~(x )= f d

e'P '"8(A —
I p I

) .
(2~)d

(4.2)

(4.3)

Introducing d-dimensional spherical coordinates,

The solution to this equation is either one, the non-

cutoff 5 function, zero, or any combination of one
and zero. Thus, a cutoff 5 function which statisfies
(4.1) is

[8(A—lp I
)]"=8(A—lp I

) &» (4.9)

the regulation of the vertices does not modify the

cutoff on internal lines, but does regulate the

theory without kinetic energy. A simple form of
0-function regulation which ignored the need to re-

gulate the vertices is found in Refs. 8 and 9.
In order to understand the difference between the

lattice regulation and the continuum Gaussian or
8-function schemes we turn our attention to the

harmonic oscillator.
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V. THE HARMONIC OSCILLATOR

In order to understand how the lattice regulates the strong-coupling expansion let us first consider the
:harmonic oscillator. The formal generating functional is

mZ[J]=exp —, f f dxdy 6 '(x,y) . — — f Dgexp —f dx +JP5J (x)
' 5J(y) 2

=exp —, f f dxdy 6- (x,y) exp f dx
1 J(x)

(5.1)

where 6 is given in Eq. (1.6). The two-point function

Wz(x,y) = lnZ [J]5 5

J=0

has a strong-coupling expansion given by the sum of diagrams in Fig. 1, i.e.,

(5.2)

Wz(x, y) =
z 5(x —y)+ ~

6 '(x,y)+ 6 f dz 6 '(x,z)G '(z,y)+
Pl m m

Employing a lattice regulation (2.6)—(2.8},

(5.3)

1
5(x —y)~ —5"

a "'
6 '(x,y)~ (1/a3)(5;~+, +5~;+,—25;1 ) .

(5.4)

(5.5)

In momentum space,

6 '(p)= —(4/a )sin (pa/2)

and Eq. (5.3) is a geometric series,

(5.6)

00 1
Wz(p)=(llm ) g [—(4/m a )sin (pa/2)]" =

zm +(4/a )sin (pa/2)
(5.7)

So, in coordinate space,
m/a

Wz(x,y) = f (dp/2n )e
1

m +(4/a )sin (pal2)

m/a 00

= f (dp/2m)e '~" "(1/m ) g [—(4/m a )sin (pa/2)]" (x=ia, y=ja) .
n=0

(5.8)

We note that every term in this strong-coupling
series exists for nonzero a. In particular,

m Wz(x, x)=—+—g z
—

z
. (5.9)

1 1 ( —1)" (2n)!
a a „& (ma)" (n!)

It is obvious from the sum of the geometric series
in Eq. (5.8) that as a~O

Wz(x, y) ~ p e
d

a —+0 00 2K ~ +p
(5.10)

FIG. 1. Strong-coupling diagrams for the two-point
function of the harmonic oscillator.

1
~z(y, y}

a O2m
(5.11}
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We can extrapolate the series in (5.9) to obtain the
correct continuum (a ~ 0) result (5.11) as follows.
Let

then

X:—
m a

m W2(y, y)=mvx g ( —1)"(2n)!x"
(n!)'

(5.12)

(5.13)

and the lowest-order approximant to the right-
hand side,

' 1/2

mvx (1—2x) =m
1+4x

~ —,(5.14)
m

Z~ tN 2

is exact.
We notice that the lattice does two things. First

it regulates the inverse free propagator G '(x,y) so
that the momentum-space loop integrals such as

G '(x,x}=f G '(p)

dp 4 . 2pa —2
—~/ 2m a2 2 a3

then the integral for W2(x, x) in (5.18) would
diverge. Thus, it is insufficient to regulate the ki-
netic energy alone. In a related attempt at contin-
uum regulation, Benzi, Martinelli, and Parisi' ob-
tained

1
W2~(p} =

2+(p/2d/2)e —p R /4
(5.20)

which also suffers from having the wrong ultravio-
let behavior as p ~ m for fixed cutoff R.

In quantum mechanics one can calculate the
ground-state energy from the Green's functions us-

ing certain formal identities proven in Ref. 11. We
will show that only the 0-function regulation
preserves these identities and that for some forms
of these identities the Gaussian regulation leads to
an asymptotic, rather than convergent, sequence of
approxim ants.

For quantum mechanics (d = 1 field theory) with
potential gP, one can prove" that the ground-
state energy obeys

dE dp G

(5.15)
exist. But it also regulates the bare two-point ver-
tex

in the continuum, where

'(p) = —p'

(5.21)

(5.22)

1 1 ~IJ
5(x —y) —+

m m2 a
(5.16) and F2 is the exact two-point function. The har-

monic oscillator has N =1,g =m /2, and

This second property is necessary if one wants to
evaluate W2(x,x) from a regulated strong-coupling
series. We pursue this point further. We have
seen [Eq. (5.11)] that W2(x,x) is related to the
ground-state energy of the harmonic oscillator. So,
in general, how do we regulate the formal strong-
coupling series for

DD

dp e EP(Z P) cD G 1(p)
W2(x,y) =

2
n=0

So

and

1
W2(p) =

2
p +m

T

2 2 dE "
dp 2 1 1

2m = p
dm —~ 2~ p p +m

m dp m
2'' —

p +m 2

(5.23)

(5.24)

(5.17}

such that each term exists for finite values of the
cutofF? First, note that

2dE m
m = W2(x, x) .

dm

Thus, in the continuum we have the identity

(5.25)

"d 1
W2(x, x)=

2—~ 2~ m —G '(p)

W2(p) . (5.18)

2 dE 00

2m
2

——5(0)+ f G '(p) W2(p)

=m W2(x x} . (5.26)

G
—

1(p) p2e —P2/4A2 .
(5.19)

If all we did was to regulate the kinetic energy
G '(p), for example, by means of a soft Gaussian
cutoff A in momentum space (3.6),

We would like to see under what conditions the
theory with a continuum cutoff also obeys relations
such as Eq. (5.26).

In general,
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GA '(p)= p—'5A(p}

so that the strong-coupling expansion (5.17) is

(5.27) where we have used the smeared two-point vertex
( I/m )5~(p) . Thus using

4(p}'
Wq(p) =

m n O

—p'4(p}'
m 4(o}=f 4(p» (5.29)

4(p)'
m '+p'4(p}' (5.28)

we have

dp, "
dp P'4(P)'

5p(0)+ f GA '(p)Wpp(p)= f 4(p}—
2% —~ 2m. m +p 5a(p)

dp 5 (P) dP P t.4(P) 5 (P} 1

—m 2n m~+p35~(p)3 —~ 2m. m +p 5A(p)

whereas from (5.28)

dp 4(P)'
m Wz(x, x) =m —"2~ m'+p'5~(p)'

Hence, for the formal continuum identity to hold

in the cutoff theory we need

ing the integration is, at least, asymptotic even for
the Gaussian regulation.

First, let us calculate the ground-state energy of
the harmonic oscillator using the Gaussian cutoff.
If we use one part of the continuum identity (5.26)
and Eq. (5.28},

5A(p»'=5/ (p»}

or, equivalently,

dz 5~(x —z)5A(z —y) =5~(x —y) .

(5.31a)

(5.31b}

2m =m Wz(x, x)2 dE
dm

oo
dp e

—p /2A
=m

2n 2+ 2 —3p /4A
I

(5.32)

~ As we have already remarked, this can only hap-

pen if 5x(p) is a combination of zero and one, such

as 5~(p) =8(A —
~ p ~

). We conclude that only the
Dirac 6 function itself and the step function
preserve the continuum Green's-function identity
(5.26).

Of course, it would be sufficient for the extra
term in Eq. (5.30),

dp P'[5~(P)' —4(P)'1
m'+p'4(p}'

then it can be shown that

—p /2A

2+ 2 —3p ~/4A~ + 2mm +pe
(5.33)

Thus, we want to see how the extrapolants of

f p e
—p~/2A~ g p —3p~/4A~

m —~ 2m m2n=0

n

to vanish as A~ oo. This may, not be the case. In
fact, for the Gaussian regulation scheme

5A(p)=e ~ this integral actually diverges as
A~ ao. Nevertheless, we will see that the se-

quence of approximants obtained by expanding
these integrands in powers ofp and then perform-

behave. Substituting

4A3'=
m

we have

(5.34)

(5.35)
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1I (n +—) 3/2yn+1/2
X(A) = ( —1)"

v 2~ „, I ( —,
'

) (2+3n)"+'"

1/2
' 1/2

:1—
' 1/2

y 3y 15 2
10 512 10648 11

' 1/2
15 y 945 2

87808 v 7 45435424 17

y6
1/2

2079 2
1 638 400000 5

135135 2
435 817657216 23

1/2

y

y—
1/2

155925 2

4 112286 810 112 26
34459425 2

7 427 658 739 644 928 29

1/2
654729075 10

4611 686018427 387 904

' 1/2 ' 1/2
11223927 2 11 16643902275 2

161414 428 000000000 35 1 954 382 235 431 342 178 304 38
12+

Using our usual procedure to extrapolate this series to y = 00, we obtain

1.1217,1.1121,1.1057,1.1001,1.0973, 1.0944, 1.0920,

1.0900, 1.0881,1.0866, 1.0852, 1.0840, . . . ,

a sequence which is converging very slowly to one, just as the integral (S.33) converges very slowly as
A —+ 00. If, instead, we use the other part of the continuum identity (5.26),

(5.36)

2m =5a(0)+ f Gg '(p) W2p(p) (5.37}

which actually diverges as A~ ao, the corresponding series is

e& g+ ~ e
—p /4A ++2(e —p /A e

—3p /4A }X(A)=-
Pl — 2K + 2 3p 2/$/2

y'" " „"«+z } „r(n+3/2)
=o I(—,)(3n+1)"+' ' I ( —, )

n+1

(3n +4)n+3/2

n+1

(312 + 3)n +3/2

y 1
3 3y 3/6y 5y (353/3)y (7v 15)y' (3853/2}y (7153/21)y2

v ~ 18 288 5832 663 552 2 700000 483 729 408 25 615 481 472

(2S 025~6)y (425 4253/3)y
4 174708 211 712 433 811768034 816

(5.38)

We would like to compare this with the correct
continuum result X(A= no)=1. The series (5.38)
does not converge as y~ ~. However, the first
five extrapolants are

1.2861, 1.1468, 1.0770, 1.0357, 1.0008

and appear to be converging to one. But the next
four,
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0.9888,0.9740,0.9625,0.9532, . . .

overshoot. So the series of extrapolants is asymp-
totic, at best. Our explanation for this behavior is
the following. Because of the failure of the convo-
lution property (5.31) for a Gaussian regulation
scheme the second integral in (5.30) diverges in-

stead of vanishing as A~ ao. This divergence is
coming from the ultraviolet region p &g A and so
the low orders in the p expansion do not know
about this ultimate divergence and give quite
reasonable results.

Next, let us turn to the 0-function cutoff. Now,

p „(p)—,(5.39)
m'+p'e(A —

/ p [)

answer.
Thus, in this example we see the advantage of

the 8 function over the Gaussian regulation
scheme. Because it obeys the convolution proper-
ty, the correct ultraviolet behavior of the Green's
functions is ensured and one expects that continu-
um Ward identities will be preserved in the cutoff
theory. With the Gaussian scheme there is always
a danger of having terms which are not quite zero
for p ~g A and one expects eventual asymptotic
rather than convergent sequences of approximants.

VI. THE ANHARMONIC OSCII.I.ATOR

G~ 'V»= J'@~— lp I—), (5.40)
The calculation of the ground-state and the

first-excited-state energies of the anharmonic oscil-
lator with Hamiltonian

&A(0)= f — — e(A —
~p ~). (5.41) H= —+—xp g 4

2m 4
(6.1)

Because this cutoff preserves, the convolution prop-
erty,

using a lattice-regulated strong-coupling expansion
was discussed in detail in Ref. 2. The exact nu-

merical resu'lt for the first excited state is
4(0)+ f Ga 'V»~zaV»

dp P(~ —Ip I
)=Pl —"2~ m+@ 8(A —~p~)

m =1.0808. . .g'"
and for the ground state

(6.2)

=m W2A(x, x) . (5.42)
4g =0.569 473g '

dg
(6.3)

To obtain the strong-coupling expansion we use
Pl

2 A d 1 A oo p2
2m' —~ P2+m 2 2m' —A „O PyZ2

dp g

In this section we would like to compare results
from continuum regulation schemes with the
same-order results from the lattice calculation.

The formal generating functional for the strong-
coupling expansion of gP field theory is

with

co
( 1 )ny 2n +1

(5.43)
Z [J]=Xexp —f d~x d y2 5I(x)

Thus, we wish to compare the extrapolants of

(5.44) X G '(x,y) Z, [J],5J y

(6.4)
00

( 1 )Ily 2'

m „o 2n+1

with unity. We obtain the following sequence as
JP~ oo,

where

Zo[J]=exp a f d x ln-F{J(x))
F 0

(6.5)

0.7797,0.8524, 0.8931,0.9331,

0.9439,0.9517,0.9576,0.9622,

0.9659,0.9690,0.9715, . . .

which appears to be converging to the right and

n=0

g25

"(2n)! ' (6.6)

00 PlF(J)= f dx exp —a —x"+ x —Jx
oo 2
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n/2+1/4 Gh '(p)=5A(p)'GA '(p) (6.13)
a2„=2(a")'"

ga

—m a I'(n/2+1/2+1/4)
4—d 1/2 Ip

(6.7)

and the continuum-regulated Dyson equation is

(6.14)

~2A(p) 5A(p) [A2A(p)+A2A(p}GA (p)~2h(p}]

5A(P)'

A2A '(p) Gh —'(p»}

Here a is the lattice spacing. The formal vertices
of the theory are defined by

lnZo[J)=a f d xln g ~2m [J(x)] "
2n.

=a ~ f ddx g [J(x)]".
, (2n)l

(6.8)

Here A2A(p) is the sum of all 1PI diagrams with
the momentum dependence of the two external legs
removed as shown in Fig. 2. That is, as in Ref. 2,
and setting d =1,

L2 " dp—
A2A ——L2+ GA P

r

The first few vertices L2„are

—1/2 d/22@

L4 g'a "(1—1——2R ), .

Ls ——g a (240R —24R),

Ls ——g a "(—10080R +1344R —30),

where

(6.9)

L2L4 "
dp+ 6 p + 0 ~ ~

2 co 2%

(6.15)

The only difference here is that Gh '(p) replaces
Gh '(p) for the case of a Gaussian regulation
scheme. The first-excited state is the lowest zero
in [A2A '(p) —Gh '(p)], 2

In the Gaussian regulation scheme

I ( —, )
R=, =0.337989 120 .

r(-,') (6.10)

G
—

1(p) p2e —3P /4A

e
—p 2/4A

(6.16b)
Our prescription for performing a continuum regu-
lation of (6.8} is to replace

—A2x 2

5A(x) =
1

~
—+ 5A(0),

G '(x,y) = i} 5(x —y)~ 5 5A(x —y)

and to smear the vertices via [cf. Eq. (2.3)]

J(x)—+ J,(x)= f d z 5A(x —z)J(z) .

(6.11a)

(6.11b)

(6.11c)

and

2A
2 4

Lp
L2 L2

8
L

To calculate the two-point function it is suffi-
cient to realize that 8'2(p) obeys a Dyson equation
in the continuum

ff'2(p)=A2(p)+A2(p)G (p)W2(p), (6.12)

2 L4 2 L4

I l

6
L L 48

4

where A2(p) is the sum of diagrams one-particle ir-
reducible (1PI) in G '. Because of our smearing
process the two external legs of W2(p) each pick
up a factor of 5A(p} while each internal line picks
up a factor of 5A(p) . So Gh '(p) is effectively re-
placed by

FIG. 2. One-particle irreducible strong-coupling dia-
grams for the self-energy in gg4 field theory.
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[8—v 6+(8()—12V 6)R ]x

3 /

[476v 3 —243V 2+R (17496& 2 —22 656&3—2880}52488R

+R~(172224@3 —151632@2+34560)]x + ' ' ' (6.17)

where

(0) 1 /3x 3/31/3 2/3

7r
(6.18)

Using the same extrapolation procedure described
in Ref. 2 and the value of R given in Eq. (6.10},we
obtain the following three x~ oo estimates for M:

the series we obtain is

g3 ~ (12R —1)xx'/3=1+
2R~2

m4
+ (7R —1)x +

15

(6.23)

(6.24)

Mi ——1.21729g'/ (12.6% error),

Mz ——1.14662g' (6.1% error),

M3 —1.10961g'/3 (2.7% error),

(6.19)

which has the following two extrapolants,

Mi ——1.03026 (4.7% error),

Mz ——1.07483 (0.6% error} .
(6.25)

as compared with the lattice cutoff calculation

ai ——1.1194 (3.6% error),

a3 ——1.1021 (2.0% error),

lx3 —1.0973 ( 1.5% error)

(6.20)

The exact answer is 1.0808g' . So we see that the
Gaussian regulation scheme is quite reliable in
determining the position of the pole, but not as
good as the lattice. If, instead, we use a 0-function
regulation, where

4=@A—Ip I »

j

Thus we see that the 8-function regulation scheme
is quite accurate at second order.

A more stringent test of our procedure is to cal-
culate the ground-state energy of the anharmonic
oscillator as g~ 00, since this is not just obtained
from the position of the pole in Wz(p). From Ref.
2 we have the continuum formal identity

4g =5(0)+ I Wz(p)G '(p)
dE "

dp

(6.26)

which we regulate as

(6.21) 4(0)+ I 2
Wza(P)Ga '(P» (6.27)

so that

slnAx
8"X

and

A
&p(0)=-

m'
(6.22)

remembering that in the case of the harmonic os-
cillator with Gaussian cutoA' this prescription only
leads to an asymptotic sequence of approximants.
Wzz(p) is obtained as a power series in x using Eq.
(6.14). The diagrams which contribute are shown
in Fig. 3. For the case of Gaussian regulation we
obtain

x 1 — x+ [1+(6~6—24)R ]x + .
dg

(6.28)
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Ly
W2A

---0--- +
Lp Lp

The sequence obtained from the lattice calculation
was

FIG. 3. Strong-coupling diagrams for the fu11 two-
point function in gi)) field theory.

at ——0.6242g'~ (9.6% high),

a2 ——0.5861g' (2.9% high)
(6.32)

The first two extrapolants are

0.8729g'~ (53% high),

0.6948g'~ (22% high)
(6.29)

compared with the exact result 0.5695g' . We see
that the lattice calculation is more accurate than
either continuum scheme for the ground state.
Remember that for the harmonic oscillator the lat-
tice cutoff has exact extrapolants. "

dE i/3 2/3 2m' R
4g =g x 1 — x

crag 3

m4
+ (5+12R )x +90

(6.30)

The first two extrapolants are

0 4479g' ' (21.3% low),

0.4810g' (15.5% low) .

(6.31)

compared with the exact answer 0.5695g' . Us-
ing the 0-function regulation, which should lead to
a convergent sequence of approximants if the har-
monic oscillator is a good guide, we obtain

VII. CONCLUSIONS

We have shown how to carry out continuum
strong-coupling expansions for quantum field
theory. In particular, we showed that it is neces-
sary to regulate both the kinetic energy and the in-
teraction vertices in order to have a finite theory.
The Gaussian and 0-function schemes were investi-
gated in detail for one-dimensional field theories.
We found that the 0 function is generally more ac-
curate numerically and has the advantage of
preserving certain formal continuum Green's-
function identities. Neither is as accurate as the
lattice cutoff at low orders. However, we take the
existence of a well-behaved 0-function regulation
scheme as an encouraging. sign for the development
of a continuum strong-coupling expansion for fer-
mionic field theories which avoids species dou-
bling.

'On leave from Los Alamos National Laboratory.
S. Hori, Nucl. Phys. 30, 644 (1962).

~C., Bender, F. Cooper, G. S. Guralnik, and D. Sharp,
Phys. Rev. D 19, 1865.(1979).

H. Kaiser, Zeuthen Report No. PHE 7411, 1974 (un-
published).

4B. F. L. Ward, Nuovo Cimento 45A, 1 (1978).
5P. Castoldi and C. Schomblond, Nucl. Phys. B139, 269

(1978).
C. Bender, F. Cooper, R. D. Kenway, and L. M. Sim-

mons, Jr. (unpublished).

F. Cooper and R. D. Kenway, following paper, Phys.
Rev. D 24, 2706 (1981).

N. Parga, D. Toussaint, and J. R. Fulco, Phys. Rev. D
20, 887 (1979).

F. Guerin and R. D. Kenway, Nucl. Phys. B176, 168
(1980).

oR. Benzi, G. Maitinelli, and G. Parisi, Nucl. Phys.
B135, 429 (1978).

' C. M. Bender, F. Cooper, G. S. Guralnik, D. Sharp,
R. Roskies, and M. L. Silverstein, Phys. Rev. D 20,
1374 (1979).


