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This is the third of,three papers on the strong-coupling expansion of the renormalized effective potential in gP'
quantum field theory in d-dimensional Euclidean space-time. %e first assume that the renormalized strong-coupling
expansion for the coefficients of the effective potential in the continuum field theory is a series in powers ofM' /g,
where M is the renormalized mass and g is the bare coupling constant. The first term in this series was obtained in
the previous paper. Here we estimate the next terms in the series. The results indicate that our assumption is
unlikely to be true. Some alternatives are briefly discussed.

I. INTRODUCTION II. HIGHER TERMS IN THE STRONG-COUPLING
EXPANSION

In the previous two pape'rs of this series we as-
sumed that in the continuum triti' field theory the
strong-coupling expansion for y,„, the mass-re-
normalized dimensionless scattering amplitudes
at vanishing momentum on the external legs, is a
series in powers of M' s/g. We then computed the
first term in this expansion for y4, y„and y, . In
this paper we concentrate on the problem of com-
puting the next three terms in the series for y, .
Specifically, in Sec. II we write down the mass-
renormalized series for y4 on the lattice and in-
dependently extrapolate each of the coefficients
of the power series in M' '/g. We give extensive
numerical results. We also calculate the critical
exponent p for each of these series. It does not
appear that the dimensionless coupling constant
is a power series in. M' e/g for d = 1 and 2, while
our series are too noisy to conclude anything for
d=s and 4. In Sec. III, we discuss the possibility
that the corrections to the g- ~ limit of y,„do not
take the form of a power series in M' '/g. We
show how the correction to the g- ~ limit could
have the form (M' e/g), with n & 1, for example.
In Sec. IV we assume that y4 is a power series in
M~ e/g. We discuss the p function and show that
it can be written as a power series in (G ~,.„—G),
where G

~ „is the dimensionless renormalized
coupling constant at the fixed point g= ~. This
leads to the wrong slope for P at its zero.

In the first paper of this series' we sho~ed how

to develop the lattice strong-coupling expansion
for the coefficients y,„of the effective potential.
We expressed y,„as a double series in powers
of the two variables n = —stt'ae '/g and b =gm 'a '
[ttt is the bare mass, a the lattice spacing, g the
bare coupling, and g the dimension of space-time;
see (4.42) of Ref. 1]:

N

Ma =n P Pb, ( )dna'b, (2.1)
&=0 l=0

N L
tf/ 2-fly/2 b(n) (d) %bikl (2.2)

b = x Q Qh„(d)ynx'
a=0 l ~0

(2 2)

N L

n=yQ Qj„,(d) 'y', x
/=0 l =0

(2.4)

where x=M' 'y sl'/g and y=M 'a '. Below we
list the first few terms in the series:

In the above series g is the maximum number of
lines in the diagrams contributing to y,„and I. is
the number of corrections to the Ising field theory.

In the second paper of this series' we showed
for the purpose of mass renormalization how to
solve for ~ and 5 in terms of the renormalized
mass M using (2.1). The general form of the an-
swer is

N L
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and

(2.5)

5 = [1 + 4dy + (12d —12d + 4)y'/3 —(180d' —300d + 136)y»/15+ (720d ~ —1200d'+ 544d)y'/15]x

+ [-2 —20dy+ (- 72d'+ 20d —8)y + (- 112d'+ 104d' —40d)y'

—(2880d —5760d '+ 1800d'+ 3060d —2056)y»/45 + (2160d ' —4680d '+ 3128d —720)y'/45]x'

+ [-1+ (216d'+ 16)y'/3 + (1248d' —432d'+ 296d)y'/3 + (15 120d' —l4 400d '+ 8520d' —960d —92)y'/15

+ (51 840d ' —95 040d '+ 60 960d'+ 5040d' —18 728d +3600)y'/45]x'+ ~ ~ ~

(2.6)

N L

a =y —2dy + (12d +6d —2)y /3+( —8d3 —12d +4d)y +(80d +240d' —20d2 —70d+26)ys/5

+ [y+ 4dy'+ (- 4d+ 2)y'+ (8d' —4d)y —(720d'+ 360d' —1260d+ 626)y'/45]x

+ [2y+ 12dy'+ (72d' —36d + 10)y'/3+ (48d' —72d '+ 20d)y /3 + (- 24d'+ 48d —22)y']x'

+ [14y+ 140dy'+ (560d' —140d+ 46)y~+ (1120d' —840d'+ 276d)y

+ (3360d —5040d '+ 1656d'+ 1256d —802)y'/3]x'+ ~ ~ ~ .

We then eliminated n and 5 in (2.2) in favor of x and y. This gives a series for G, the coupling constant
/

at zero external momentum, of the form

G =24y, =y '~' QP'"(d)y'x'
l=o

(2.7)

To order y' and ~' this series is

G = y»~'{2 +8dy+ (8d —20d)y'+ 32dy'+ (—160d'+ 60d)y'+ (512d'+ 208d' —384d)y'

+ [-2 —16dy —(144d —120d+ 8)y'/3 —(192d 3 —480d + 256d)y'/3

—(480d' —2400ds+1800d'+640d —272)y'/l5 —(36480d' —37 568d)y'/45]x

+ [-2 —24dy + (- 120d'+ 36d)y' —(960d —864d'+ 128d)y'/3

—(21 600d» —38 880d ~ + 12 600d '+ 4860d —304)y»/45

—(5760d ' —17 280d '+ 9120d'+ 6480d' —3904d —480)y'/15]x'

+ [-14 —224dy —(4704d ' —1104d + 128)y'/3 —(18 8 16d ' —13 248d
' + 2944d)y'/3

—(235 200d» —331 200d 3+ 133 280d'+440d —3736)y'/l 5

—(376320d' —883 200d +579840d'+15680d' —85 376d —480)y'/15]x + (2.8)

G =G(~)+Q G, (M' /g)'
g=1

(2 9)

Note that we have already performed the extrapo-
lation leading to G(~) in Sec. Hj of Ref. 2.

The assumption that the renormalized strong-
coupling series takes the rather natural form in
(2.9) is motivated in part by the lowest-order con-
tinuum mean-field-theory result for G in gp' field
theory:

To obtain the continuum limit of (2.7) or (2.8) we
replace x by y»~'M»»/g and assume that we can
extrapolate the series in y multiplying each power
of M' »/g to y =~. With this assumption the final
continuum result is a series of the form

%hen /&4, the integral is proportional to ~" '.
Thus, G to leading order in the mean-field ap-
proximation has a series expansion of the form
(2.9). We begin by assuming that in going from
the leading-order mean-field-theory result to the
exact result the coefficients in (2.9) change but
that the analytic structure remains the same.

'This assumption is apparently incorrect in one
dimension because of the effect of instantons. For
example, in one dimension mean-field theory
leads to an algebraic relation between the bare
and renormalized masses; namely,

M = + dK
(2v)(ff'+ M')

=m'+ -~-
2M

However, a semiclassical calculation which can
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be done using the notion of instantons gives an
exPonentially small mass gap as g- ~.' Specif-
ically, if we take g/

hami'«

I,
m & ~ 64e 4 2 gyes

The process of mass renormalization consists of
eliminating m in favor of Iusing the above rela-
tion. Thus, we are not surprised to find logarith-
mic departures from the form of the series in
(2.9). However, it may be that when d8-'1 there
are no such logarithmic terms and that the series
in (2.9) is correct.

To better understand whether the extrapolation
procedure gives a finite expression for G, in (2.9),
we comp'ute the critical exponent for the series
in (2.8) multiplying (~ d/g)' before computing
Q, . There are two methods for computing the
critical exponent v: (i) directly. extrapolating to
v =~ or (ii) conformally mapping the point at y =~
to 1 and then computing Pade approximants for the
logarithmic derivative of the resulting series.
Both of these methods are extensively discussed
in Secs. lII and IV of Ref. 2. We determine the
critical indices p, by fitting the behavior of Q, at
small lattice spacing a (large y) by an algebraic
form

G -(I'a')"2 (~-0) (2.10)

Since the series for Q, already contains a term
y

('+ )"-~', it is convenient to determine the index

p, of the power series in y without this term. That
is, we assume that

Z P'"(d}y'-y" (y- "»
where the connection between the critical indices
p, and p, is

(2.11)

v, = (I+1)d/2 —p, . (2.12)

Recall that the lattice expression for r (~) had an
index po which extrapolated between the two
straight lines p =d/2 and p = 2. That is, the extra-
polants to p, approach the line p = d/2 for d(2.5,
which gives p=—0, and for d~4 they approach the
line p=2, which gives v=d/2 —2. Thus, for d &2.5
Q(q) approaches a constant as g- ~, and for d)4,
Q- zero as g- ~. We will look for a similar be-
havior for the correction terms G, .

p| =y —» g P.'i'«}y"
dv y=o

The first five terms in this series are

(2.13)

Calculation of GI and its critical index p&

The series for pi is obtained by taking the loga-
rithmic derivatives of (2.11):

p| = 8dy —(48d '+ 120d —8)y'/3+ (32d'+ 240d'+ 96d)y'

—(2880d +43 200d +77040d —8640d+1792)y /45

+ (1152d '+ 28 800d '+ 1,17 600d'+ 34 560d' —17 440d)y'/9 + (2.14)

As in Sec. IV of Ref. 2, we find that retaining the highest power of d for each power of y in (2.14) gives a
simple geometric series. The sum of this series is

p, (d- ~) =lim =4.8dy
1'+2' (2.15)

Thus, from (2.12)

v, -d-4 (d- }. (2.16)

If we apply the same reasoning as in Sec. IV of Ref. 2, we expect that G, vanishes for d ~ 4. [We conclude
in Ref. 2 that G(~} also vanishes for d )4.]

Here are the first five extrapolants to p, evaluated at y = ~ as functions of g:
24d

6d'+15d —1 '

x/a

(124'+1414 —30d+1'
20 j,/3

540d'+ 2025d + 25 515d' —12 177d'+1125d —25og0 ™12d (2.17)

1 1/a

1296d + 74 520d 5+ 217 323d —203 220d + 37 242d —2100d+ 35Px 0 ~ =24d

3024
3024d" —83 160d'+1 275 435d '+1 686 573d

' —2 766 878d'+ 874 650d' —91 532d'+3635d —49)
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For all values of d, 0 &d &4, these five approximants lie above the line p=d for 0 ~dc 2.5 and slightly
below the line p=d for 2.5 &d ~4. They become level, p=4, for d&4, just as in Fig. 3 of Ref. 2 (see Fig.
1).

Next, we conformally map the series for p, and compute the [2, 2] (fifth-order) Pade extrapolant at 1.
The result is

(810000d ' —3 866 400d '+ 10 790 100d ' —12 085 020d '+ 4 064 100d '+ 380 940d
' —404d + 2840)

(202 500d
' —966 600d 3+ 2 697 525d ' —996 255d ~ —2 718 750d '+ 1 984 560d' —143 666d + 15 904)

(2.18)

fn Table I we compare the two extrapolation methods by evaluating (p, )3(~) in (2.17) and (p, )3[2, 2] in (2.18)
for various values of d. The close numerical agreement gives us confidence in the consistency of our ap-
proach.

In Table I we see that pg ='d py ls slightly negative for d & 2, which suggests that the extrapolants might
diverge there. Such a divergence would indicate that the first correction to G(~) goes to zero slower than
M4 ~/g. This possibility is discussed in detail in Sec. HI.

The analytic form for the first five extrapolants to G, at y = ~ and also the [3, 2] Pade extrapolant for the
conformally transformed series for Q~ evaluated at 1 are

(G,),(-) = —2(8)",

—48d'+ 264d+ 8
~d

2
32d' —336d'+960d+96

1 3 d 7

—2880d '+ 41 280d —238 320d'+ 452 160$'+ 101 888d+ 640
(G,).=-2 45d'

1152/ ' —19 200d '+ 165 600$ ' —670 240& '+ 884 960d '+ 391 680/+ 8000
(G,).= -2

9 2

(G,),[3, 2] = —2[(1920d"+172 800d '+ 1 563 840d '+ 8 164 800d' —54 093 000d '

+ 75 828 000d —35 921 120d + 3 967 680d + 361 568d ' —48 000$

+ 800)/(2160d '+ 131040d ' —118440d '+ 505 560d '+ 4 666 305d '

+ 8 281 620d —5 367 420d + 1 455 900d
' —232 744d + 8240d —100)]~ .

(2.19)

The numerical values of the extrapolants to |",in
(2.19) for various values of d are given in Table
H. Observe that the extrapolants (g, )„(~)appear
to converge for increasing n when dc 3.0 and do
not converge when d~ 3.0. The region of d where

TABLE I. Comparison of the two different fifth-order
extrapolants to p& for various values of d. The numer-
ical values of (p&)5() and (p&)5I2, 2] obtained by two

.totally different extrapolation procedures are quite con-
sistent.

Dimension d (Pg)5( ) (p,), I2, 2j

d =1.5
d=2
d=2.5
d=3
d=3.5
d=4
d=~

1.2784
1.7217
2.0728
2.4231
2.7587
3.0499
3.2825
4

1.2798
1.6442
2.0369
2.4154
2.7632
3.0664
3.3154

I28
I IQ

FIG. 1. Plot of {p&)5(~) vs d. In (a) we compare
(p~)5() with p =d for 1 d ~ 4. In {b) we compare
(p~)5(~) with p = 4 for 1~d ~ 10.
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TABLE II. I'he extrapolants in (2.19) to Gg evaluated for d ranging from 0 to 4. The [3,2]
Pads extrapolant has a zero between d=0 and d=1 so it is not reliable until d=1.5. The ap-
proximants appear to converge well until d=3. For values of d larger than 3 the approxi-
mants do not converge with increasing order; this is consistent with the value of the critical
exponent v& being positive. A comparison with the second coefficient in (2.12) of Ref. 2 shows
that the result for d=0 is exact.

Dimension d (Gg)g( ) (Gg)g( ) (Gf)3( ) (G()4(~) (~i)s( ) (G~)s E3, 2l

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

-2
—5.657

-16.00
-45.25

-128.0
-362.0

-1024
-2896
—8192

-2
-6.078

-17.28
-46.15

-114.7
-259.7
-522.9
-897.3

-1217

-2
-6.316

-18.19
-48.66

-115.9
-269.0
-544.0
-986.7

—1622

-2
-6.848

-18.85
-50.43

—122.5
-262.5
-468.6
-581.2
-24.53

-2
-6.612

-19.35
-51.64

-123.5
—255.9
-435.8
-584.2
-879.8

-2
complex

-2.912
-59.20

-131.6
-259.6
-492.2
-869.2

-1443

the extrapolants converge (do not converge) is the
same as the region where p is near zero (positive).
Note that (G,),(~) rises until it reaches a maxi-
mum at d = 3.4 and then decreases to zero at d
=4.01. This behavior is similar to that of several
of the extrapolants to G(~) (see Ref. 2, Fig. 1)
and, as we will see, it also resembles the behav-
ior of some of the extrapolants to G, and G3.

Also observe that the convergence of the extra-
polants for Q, is not as good as the extrapolants
for G(~) in Table II of Ref. 2. We will see that
the convergence of the extrapolants for G, and

Q, is even worse. To get the same accuracy for
the higher-order corrections to G we would have
had to compute more terms in the lattice strong-
coupling expansion for y4.

For completeness, we have listed the series
for p, and p, together with a brief analysis in Ap-
pendix A.

To understand the convergence of higher-order
extrapolants, we restricted our attention to inte-
gral dimensions (d=1, 2, 3, 4). Here we were able
to use the tables of Kincaid, Baker, and Fuller-
ton4 to extract results for up to ten orders. The
technique is described in Appendix B and the re-
sults are presented in Table III. These results
are also a useful consistency check on our results
for arbitrary dimension.

%e see that the series for G, are much too noisy
for d =3 or d = 4 to conclude anything about con-
vergence on the basis of only ten lines. The esti-
mates for G~ for d = 1, 2 do seem quite stable, al-
though the nonzero value of p, for d = 1 makes the
result for d'=1 suspect.

Similarly for Q„ the series for d=. 1, 2 do seem
to be converging, while those for d =3 and 4 are
very noisy. For G„however, p, appears far from
0 both for g = 1 and 2.

The negative values of p, and p, for d =1 and of

p, for d = 2 suggest that the presumed expansion
(2.9) is incorrect. For d= 1, we have already
argued why this is so. If however, we take the
estimates in Table III seriously, we see that the
estimates for G, grow rapidly with I, so that (2.9)
is a series with zero radius of convergence, just
like the renormalized weak-coupling' expansions,
but unlike the unrenormalized strong-coupling
expansion. ' %e have verified6 that this is the case
in zero dimension, where

G, --
&

4'1(I).1

ml2e

Thus the series (2.9) for d =0 is not even Borel
summable, because the coefficients do not alter-
nate in sign.

III. POSSIBLE DEVIATION FROM POWER SERIES
IN M /g BEHAVIOR

In Sec. II we saw that our numerical predictions
for the critical exponents p„are negative for d&2
and we-remarked that this might be a signal of the
lack of power-series behavior. In this section we
discuss the possibility that the lattice series for
G —G(~), which has the form

(3.1)

might sum to a quantity which, as p- 0, has the
leading behavior (M' "/g)".

Suppose (3.1) does sum as y- ~(g- 0) to (M' /
g)". Then in the vicinity of the lattice limit (large
y, small g) one might find, for ex'ample, that

G —G( )- [M /g+ (M a )"j (a- 0) . (3.2)

However, prior to taking the lattice limit we treat
g as a large parameter. Thus, on the lattice, the
right side of (3.2) has the form
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(M' ')""+gC (M' ')'"-"(M'-'/g)'
)=1

(3.3)
In our lattice expansion (2.8) G is a function of y
and M» "/g =u. Using the chain rule we find

This is a lattice series which for large y yields
negative indices v, of the form

8P=M G —2y —G
3t fixed ~ 7 u fixed

(4.2)

v, =rn -rl (l&0) . (3.4)

At d = 1 we find that the critical exponent vp for
the series for G(~) is -0.008, which suggests
that v0=0. However the v, are negative for $~ 1

and the extrapolants do not appear to be approach-
ing zero. In particular, we find that

But, as y- ~, Q is finite. Thus, the second term
in (4.2) must vanish as a- 0. This implies that
the order in which we perform the two operations,
a- 0 and MB/BM, is irrelevant. It is convenient
to take the continuum limit first and apply MB/BM
to G in (2.9) [here we assume the validity of
(2.9)]. Doing this, we obtain

v, = —0.289, v, = —1.30, v~ = —2.09, . . . .
(3.5)

P =(4-d) g fG, (M'-'/g)'.
l =l

(4.3)

Those indices v, might well have a behavior simi-
lar to that in (3.4), namely a negative linear
growth with &:

v, = —bl+c, )~ 1. (3.6)

The behavior of v, in (3.6) is consistent with an
algebraic dependence of G G(~) upon M»-'/g.
Assuming (3.6) (and taking d= 1) we have for small
Ma

It remains to express P as a function of g. To
do this we solve (2.9) to obtain M' »/g as a series
in powers of G(~) —G:

M'-'/ =- — ' [G( )-G]'
Gq Gq

+ ' ', ' [G( )-G]'+ ~ ~ ~ . (4.4)
Gg'

G —G(-) = gG, (M'a')(M'/g)'

C, M'a'" M' g'

M'a' ' M'a' -'M' g . (3.7)

Substituting the right side of (3.4) into (3.3) gives
p in terms of the renormalized coupling constant
G:

0 [G[ = (4 —&) (- [G (-) —G I+ - *. [G (-) —G['
Gq

f ( ) ]3 G3GQ 2G2
4

We know that for d& 4, G is bounded as g- ~.
Thus the only way for (3.7) to give a finite and
nonzero result is that for small Ma

This implies that

P'(G(-)) =4-d.

(4.5)

f[(M'a') 'M'/g] [(M'a') 'M'/g]'I'.

This shows that the fir'st correction to G —G(~)
has the form

G —G(-) —(M'/g)" . (3.8)

IV. CALCULATION OF THE P FUNCTION

The Callan-Symanzik p function is defined as

g=—M Q
g, a fixed

(4.1)

It is clear that as long as our extrapolants give
negative exponents, which do not converge to zero,
then we must conclude that G —G(~) is not a power
series in M»»/g, but instead has an algebraic
behavior like that in (3.5), and perhaps even a
logarithmic behavior' like 1/ln(g/M'). This ques-
tion can be settled only by calculating more terms
in the series for the critical indices v, to see
whether or not v, - 0, just as the first critical in-
dex vp was very close to zero for d «2.5.

But weak-coupling renormalization-group cal-
culations give'

P'[G(~)]=1.3y0.2 (d=2),

=0.79y0.03 (d=3).
This is further argument against the validity of
(2.9).
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APPENDIX A

In analogy with (2.14), the first five terms in
the series for the critical index p, are

p, = 12dy —(24d'+36d)y'+ (48d +216d'+64d)ys —(4320d +38 880d8+ 50040d' —9720d+608)yd/45

+ (192d '+ 2880d + 8560d' —240d' —448d —80)y'+ ~ . .

This series is summable for large d; the analogs of (2.15) and (2.16) are

12dy
p, (d- ~) =lim — =6

1+2' (A2)

and

p, -3d/2 —6 (d- ). (A3)

Here, as is the case with p in (4.9}of Ref. 2 and )2, in (2.16), we see indications that v, is positive for
d & 4. This suggests that G, like G(~) and G, vanishes for d & 4.

We list below the first five extrapolants to p, computed at y = ~.
12d

(P.),( ) =
2d ,3 ,

Sd
(9,),(")=

(124, ,49

180d X/3

(180d'+ 945d' + 540d + 76

27d' 1/ 4

(432d'+ 22 680d'. —l7 447d+ 2544
( )=12

3024d 1/5

(3024d '+ 37 80 0d ' + 535 3 95d
' —579 264 d + 1 26 488

(A4)

Observe that these extrapolants are consistent with (A2) in that they approach 6 as d- ~.
The sequence of extrapolants in (A4) has the property that for dc 3.0 they all lie above and are apparent-

ly decreasing towards, the line p =3d/2 (see Table III). However, to this order in perturbation theory p
is not yet very close to 3d/2, so v, in (2.12) is not yet near zero. This suggests that the extrapolants to
G, will converge slowly, or that the series is trying to have a different form than that suggested by mean-
field theory.

In analogy with (2.14) and (Al), the first five terms in the series for the critical index p, are

p, = 16dy —(672d'+ 1104d —128)y'/21+ (448d'+ 2209d'+448d)y'/7

—(282240d +2782080d +3470400d' —725040d 19+7872)y /2205

+ (112896d '+ 1 854 720d + 5 596 800d'+ 620 640d' - 412 160d —5040)y'/441+ (A5)

Once again, the series for the critical exponent is summable for large d, the analog of (2.15}and (A2)
being

p, (d- ~}=lim =8.16dy
1 + 2{gg

(A6)

Evidently, the formula for all n is

lim p„=2~+2.
g~ co

Also, the general formula for p„ is

(A7)

(A8)

The first four extrapolants to p, are
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TABLE III. Values of Gi, v» G&, and vz up to ten internal lines for d=1, 2, 3, and 4. These numbers are calculated
using method 1. The first number in each column is the extrapolation at y=. The second number is the improved ex-
trapolant (Ref. 8) evaluated at y=n, where n is the number of internal lines.

Number
of

lines Gi

For d=1

vq = 3/2 —pq

2
3

5
6
7
8
9

10

-16.00
-17.28
-18.19
-18.85
—19.34
-19.74
-20.06
-20.32
—20.54

-18.00
-17.75
-18.37
-18.94
-19.40
-19.77
-20.08
-20.34
-20.56

-0.2000
-0.2443
-0.2667
-0.2761
—0.2799
-0.2823
-0.2853
-0.2893

-0.0435
-0.1962
-0.2432
-0.2623
—0.2708
-0.2759
-0.2805
—0.2855

-45.25
-57.46
-65.81
-71.78
-76.27
-79.80
-82.64
-85.00
-86.98

-54.00
-59.44
-66.58
-72.16
—76.49
-79.93
-82.73
-85.06
-87.03

-0.9000
-1.116
-1.316
-1.374
-1.357
-1.319
-1.297
-1.295

-0.5000
-1.008
-1.228
—1.318
-1.322
-1.297
-1.281
=1.283

Number
of

lines
~W

G,

For d=2

vi -2 —pi vp =3 —pp

2
3
4
5
6
7
8
9

10

—128.0
-114.7
-119.9
—122.5
-123.5
-124.7
-125.8
—126.7
-127.5

—162.0
-122.8
—123.4
-124.4
-124.7
-125.5
-126.4
-127.1
-127.8

0.1887
-0.0994
—0.1435
—0.0604
-0.0370
-0.0702
-0.0914
-0.0773

-0.3729
-0.0228
-0.1053
-0.0425
-0.0263
—0.0619
—0.0848
-0.0725

-1024
-1222
-1493
-1696
-1854
-1984
—2093
-2186
-2266

-1458
-1327
-1539
-1721
-1870
-1994
-2100
-2191
-2270

-0.4286
-1.2207
-1.3015
-0.9690
-0.9299
-1.1089
-1.1480
-1.0039

0
-1.0058
-1.1931
-0.9271
-0.9047
-1.0850
-1.1289
-0.9932

Number
of

lines
Alt

Gi

For d=3

vi 3 pi Gg

2
3

5
6

8
9

10

-1024
—.522.9
-544.0
-468.6
—435.8
-443.8
-392.8
-526.5
—396.5

-1458
-602.8
-579.6
-489.4
-449.9
-453.5
-401.2
-530.6
-402.0

0.7959
0.3117
0.1940
0.2677
0.2368
0.1636

-0.0385
-0.0595

0.9813
0.4001
0.2423
0.2920
0.2543
0.1775

-0.0208
-0.5341

-23 170
-17 160
-20 680
-21 780
-22 960
-24 080
-24 900
-29 360
-26 370

-39370
-20 090
-22 020
-22 530
-23 440
-24 410
-25 130
-29 520
-26 510

0.5000
-0.4764
-0.5276
-0.2860
-0.3433
-0.4330

imaginary
-0.3512

-0.9000
-0.2727
-0.4287
-0.2416
-0.3129
-0.4090

imaginary
-0.3449

Number
of

lines Gi

For d=4

vi 4~ pi v2 =6 —p2

2
3

5

7
8
9

10

-8192
-1217
-1622

-24.53
-879.8
-575.0

imaginary
-2608
imaginary

-13120
-1651
-1840

—144.3
-954.1
-635.3

imaginary
-2614
imaginary

1.5226
0.9282
0.7628
0,7887
0.6848
0.5814
0.6266
0.6024

1.7006
1.0165
0.8130
0.8165
0.7064
0.6002
0.6392
0.6127

-524 300
-128 000
-142 200
-80 330
-80 390
-59 390
-44 800
-56 000
-84 440

-1063 000
-171100
-161700
-89 210
-86 170
-63420
-47 980
-58 360
-85 980

- 1.6364
0.6446
0.6064
0.7206
0.6154
0.5673
0.5850
0.3484

2.0000
0.8209
0.6904
0.7636
0.6463
0.5903
0.6015
0.3669
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336d'
'P ""'=42d"69d S

3 I

(5SSd +2913d' —1104d+64)

(p, ), ( ) = sssd' 5 1/3

370440d +1950480& +3485565d' —3684159d +662400& —25600

(A9)

(P2)4( ) =46d'
444 528d '+ 15 973 200d ' —956 007d —14 840 424d + 6 556 128d' —706 5604 + 20 480

Notice that as d- ~ each of these extrapolants
approaches the limiting value 8 which agrees with
the exact result for p, in (A6).

APPENDIX B

In this appendix, we indicate how to use the
tables of Kincaid, Baker, and Fullerton' to derive
the series in the texts for integer dimension.
These tables give the high-temperature series
expansion coefficients for the susceptibility X,
second moment p, „and second derivative of the
susceptibility with respect to an external field
X"', for any continuous-spin Ising model with an
even spin-density function E(s }. The results are
given in terms of the moments I,„of the spin-
density function

f"„s'"E(s)dsf"E(s)ds

The translation to our language for simple cubic
lattices of dimension d is as follows. In Euclidean
space, the propagator in momentum space is
given by

G(P') =- Qe'2'"(s(0)s(%))

ZS

(P )2+(M )2 (P ) t

where g is the lattice spacing. Clearly

Observing that on a function of p'

2 d
&2 1,~=2dd 2

dp'

we find that

and

P2
3 2d 2

X

2dX

The coupling constant g„ is defined by

g„a' '= Z, '[G '(0)]'G, (0),

where

G, (0) = g (s(0)s(%,)s(%2)s(%2)),
82XS

so that

X()

4d ~XII ~)

ggQ
Ps

The dimensionless quantity G is given by

g -4d2X(2)
M' '

p,,'(Ma)' ' '

(as)

(a9)

(B10)

(B11)

(B12)

(al5)

(B14)

-j. -1z2 '= —.
qp. G '(P'}

a dp

M'a' = Z,G -'(0} . (B4)

To compute the moments of the spin-density
function, recall that the interaction term in our
Lagrangian is

The susceptibility ~ is given by e gled g0 a')' (B15)

X =Q(s(0)s(&)) =G(0),

while p, is defined by

p2 =Q (s(0}s(x})= ——,&,'G(fP)
a 8

(B5)

(B6)

where p,. is the field p at lattice site 2. The last
term of (B15) comes from absorbing the "diagonal
part" of the kinetic energy term into the local
interaction.

%e are interested in the large-g limit of
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, .„ f,
"y'"«p[ a-'(gy'/4 g-u' 'y'/2+de'/a')]dy

f, exp[-a (gp /4-g(u' '(I))'/2+de'/a')jdp

For large g, each integral is dominated by its saddle point at

Define a new integration variable u by

y =y, (1+us 8),
1

4 ~

(B16)

(B17)

(B18)

(B19)

This gives

where

fdu() +use)*" expI eu'v e ex'+du(puWe eu'e)u 5
4

f puexpI eu'Weeu'+pu(puW()eu'e)
(B20)

n = (ga)' '. (B21)

With these identifications, we can use the tables of Ref. 4, to generate the series (2.1), (2.2) and proceed as
in the text.
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