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Using lattice techniques we examine the strong-coupling expansion for the ground-state energy of a g ~x
~

{a&0)
potential in quantum mechanics. We are particularly interested in studying the effectiveness of various Pade-type
methods for extrapolating the lattice series back to the continuum. We have computed the lattice series out to 12th
order for all a and we identify three regions. When a &2/3 the lattice series diverges faster than (2n). and no

extrapolation technique appears to work. When 2/3 &a (2 the lattice series diverges roughly like F((2/a —1)n);
here, diagonal Pade extrapolation schemes give excellent results. When a & 2 the lattice series has a finite radius of
convergence; here, completely-off-diagonal Pade extrapolants work best. As a increases beyond 2 it becomes more
difficult to obtain good continuum results, apparently because the sign pattern of the lattice series seems to fluctuate

randomly. The onset of randomness occurs earlier in the lattice series as a ~00.

I. INTRODUCTION

Strong-coupling approximation schemes" are
complicated because they require the introduction
of a lattice. Once the lattice (of spacing a) has been
introduced it is a relatively routine matter to ex-
press the lattice strong-coupling series in terms
of diagrams and to evaluate the diagrams. It is
difficult, however, to find an extrapolation scheme
that accurately and reliably extracts the continuum
limit (a-0) of the lattice series. Various Padtt-
type extrapolation procedures have been invented
to perform this limit. ' These procedures have
been tested on quantum-mechanical systems for
which the numerical results are already known'
and then applied to model quantum field theories
to obtain new results. '

We are interested in the reliability of extrapola-
tion methods. In this paper we study a class of
one-dimensional quantum-mechanical potentials
and reexamine the various extrapolation proce-
dures currently in use. Specifically, we study
the Schrodinger equation"'

+ +g (x )
—B

) Q(x) = 0, tx & 0
2 dx'

where we have set 5 =m =1. Using a Lagrangian
path-integral formalism we develop a. lattice
strong-coupling series for the ground-state energy
for (1.1) for positive values of cr to 12th order
(that is, we include all diagrams having 12 or few-
er internal lines). Then we compare several meth-
ods for extrapolating to the continuum limit.

Our motivation for this project comes from pre-
viously published work on the anharmonic oscillator
(tx =4). It was noted in Ref. 4 that the sequence of

extrapolants for the lattice series initially ap-
proaches the exact answer, but eventually, starting
in 11th order, wanders away from it. We believe
that this irregularity in the behavior of the extra-
polants is associated with an irregularity in the
sign pattern of the lattice strong-coupling series
(the lattice series for the anharmonic oscillator
alternates in sign until 10th order; the 11th-order
term has the same sign as the 10th-order term).
This kind of irregularity in the sign pattern (as-
suming that it persists) suggests the presence of
singularities in the complex plane off the negative
real axis which could interfere with the convergence
of the extrapolants.

By examining the strong-coupling series for the
ground-state energy of (1.1) for arbitrary u & 0
we have organized our results and obtained a clear-
er picture of the reliability of the extrapolation
procedures currently available. These are our re-
sults:

(i) For 0&n &2, the strong-coupling series has
a zero radius of convergence. The coefficients C„
in this series alternate regularly in sign and are
empirically found to grow roughly like [(2/tx —1)n]l:

C„»curtal'((2/n —1)n)[-21'(3/tx)/I (I/a)]", (1.2)

where A and B are (unknown) constants. Never-
theless, by Pads techniques one can extract the
continuum limit to an apparently unlimited accur-
acy when —,

' & n & 2. When 0& n &
—'„C„growsfaster

than (2n)! as n increases. Thus, the Carleman
condition for the uniqueness of the solution to the
moment problem for a Stieltjes series is violated.
(Of course we do not know that when 0&or & 2 the
lattice series is a series of Stieltjes; however,
the Pade approximants behave numerically as if it
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were. ) For this case (0& n &-', ) we observe that al-
though the Pads extrapolants converge beautifully

. they converge to the wrong limit.
(ii) For n & 2 the lattice series has a finite ra-

dius of convergence. The series exhibits an al-
ternating-sign pattern for the first N terms,
after which the pattern seems to become irregular.
As u increases from 2, N decreases monotonical-
ly from ~ at n =2 to 5 at 0. =~. As a increases it
becomes more difficult to extract the continuum
limit.

(iii) The special case n =2 (the harmonic oscil-
lator) forms a boundary between the above two re-
gions and is also the one case in which we have
been able to sum the strong-coupling expansion
analytically and to obtain the exact answer. Ex-
trapolation procedures give the exact answer when
Q =2.

(iv) The case n = ~ (the square-well) is interest-
ing because the vertices are expressible in terms
of Bernoulli numbers and the resulting lattice ser-
ies is a sequence of rational numbers. This model
is also noteworthy as an example for which the
strong-coupling-expansion methods outlined in
Refs. 2 and 4 work very poorly. The extrapolation
techniques defined in these references give a se-
quence some of whose elements are complex. Con-
ventional Pads approximants appear to be better
because they give real positive extrapolants. How-
ever, this sequence of extrapolants is irregular
up through 12th order and only comes within 25%
of the correct answer.

In Sec. II we review the derivation of the lattice
strong-coupling series. We discuss in Sec. III the
behavior of the coefficients of the resulting lattice
strong-coupling series for various values of a.
Finally, in Sec. IV we compare several different
extrapolation procedures for the lattice strong-
coupling series of Sec. III.

II. DERIVATION OF THE LATTICE
STRONG-COUPLING SERIES

For a general one-dimensional potential V(x) we
derive the strong-coupling expansion for the
ground-state energy from the vacuum functional
Z[J] in the presence of an external source J. In
Euclidean space

z[z]= )212 exPI —Jfde[2 / 2+)) [2+I2.2)(2.1)

Following Ref. 2 we replace the kinematical term
in this path integral by a functional differential op-
erator and obtain

goo 00 5
Z[J]=exp ~ J

dxdyD '(x, y) P[J], '

+«00 «00

(2.2)

where

D '(x, y) =6"(x-y). (2.3)

The remaining path integral P[J] is an infinite
product of ordinary integrals on a lattice having
lattice spacing a:

P[J]= Jt 2,'i, exp[-aV(2)))&) —J,[)[)&a]. (2.4)

Here the symbol [t), means the function 2)))(x) eval-
uated at the ith lattice point.

For a potential of the form

(2.5)

it is easy to express each of the integrals in (2.4)
as a series in inverse powers of g:

P[J]= F(J )/(2+a)2~2' (2.6)

where

F(0) =2(ag) '~ I'(1+ I/n) . (2.8)

Note that the integral in (2.7) ceases to exist when
a &1. Nevertheless, the series coefficients in
(2.7) continue to exist for all n & 0 and, in effect,
provide a continuation' of the strong-coupling ex-
pansion coefficients to values of 0, less than 1.
Although the strong-coupling lattice, series exhi-
bits different types of behavior in three regions of
n (0& n &

—'„—',- n - 2, n & 2), we do not observe
any change in the behavior of the lattice series at
e =1.

The Feynman rules' for the diagrams of the lat-
tice strong-coupling expansion are read off from
(2.2) and (2.7):

for every line D '(x, y), (2.9a)

& ~)~n
for a 2n-point vertex V,„=~~I lnF[J]

J"-0

(2.9b)

In addition, associated with every diagram is a
symmetry number. The techniques for computing
the symmetry numbers and evaluating diagrams
have already been discussed in Ref. 2.

The first few vertices are

~ CX

F(J) = dxe
«00

«)g- «221"((2n+ I )/n)
(2n) tr(1/n) (2 7)
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V, =xa'I'(3/n)/I'(1/n),

V, = x'a'[r(5/n)/r(1/n) Sr'(3/n)/r'(1/u)],

V, = xaa'[r{ f/n)/r(l/n) -15r(5/n)r(3/u)/r'(1/n) + 30I'(3/n)/r'(1/n)],

V, = x a"[I'(9/n)/I'(1/n) —28I'(3/n)I'(7/n)/1"'(1/n) —35I'(5/n)/I'(1/n)

+ 420I'(3/n)r(5/n)/r'(1/n) —8SOr'(S/n)/r'(1/n)].

Here x is a dimensionless quantity,

a (2+a)/a 2/a (2.10)
I

defined so that a disappears from the final ex-
pressions for the energy in Eq. (2.15).

Here are some special cases:
(i) When n = ~ the vertices can be expressed

simply in terms of Bernoulli numbers:

22n-)fl x&asn-2/n
2n 2n (2.11a)

(ii) When n = 2 all the vertices V,„vanish except
for V, =xa'/2.

(iii) When n = 1

V,„=x"a'" '(2n)! /n. (2.11b)

1= lim —-in [E(0)/(2va)'/']
a~p Q

—(the sum of all connected diagrams having

nn external lege)/2 } (2.12)

We have evaluated by hand all diagrams up through
6 internal lines and by computer all diagrams up

through 12 internal lines. '
A dimensional argument shows that the ground-

state energy E, for the Schrodinger equation (1.1)

The rationale for strong-coupling calculations is
this: We develop the lattice strong-coupling ex-
pansion for the fixed-a, large-g domain in which
x is a small parameter. We then seek to estimate
by extrapolation the value of the analytically con-
tinued strong-coupling series for a-0 (x- ~).

To calculate the ground-state energy we note
that Z[0], the vacuum persistence functional at
vanishing external source, is equal to e ', where
T is the volume of space and Ep, is the ground-state
ener gy. Thus,

&o = ——lnZ [0]
1

I

is proportional to a fractional power of g:
e ( )g/( 4242) (2.13)

e(n) = lim x ' ""I 1++x"C„I. (2.15)

This is the basic equation that we study in this
paper.

III. DISCUSSION OF THE LATTICE
STRONG-COUPLING SERIES

In the preceding section we showed that the di-
mensionless ground-state energy e(u) of the
Schrodinger equation

1 d2
——d, + ~x~" —e(n) (!)(x)=0 (3.1)

can be expressed as the limit of the lattice strong-
coupling series in (2.15). We have computed the
first 12 coefficients in explicit analytic form as
functions of a. Here are the first five coefficients
for arbitrary n:

where 4. (n) is a dimensionless number. " To facili-
tate the extrapolation to zero lattice spacing we re-
move the logarithm in (2.12) by taking a derivative
with respect to g [note that gd/dg= -(2/u)xd/dx]:

0 ~ ( )g/( 4242)dE 2n
dg @+2

=4 ' "' )1m x' '" 1 tg aeC„). (2.14)
x~~ n=J,

'The derivation of the leading term on the right-hand
side of (2.14) makes use of (2.8), (2.10), and (2.12).
One cari show that the nth term in the series will
have the form C„x"by evaluating and summing all
vacuum graphs having n internal lines. 'Thus, we
have the dimensionless continuum ground-state en-
ergy e(n) expressed as the zero lattice-spacing
(x- ~) limit of the lattice strong-coupling expan-
sion:

~ =- r(/ )/r(/ ),
(-, = r(/)/ (/ ),
~.= -[r'(I/n)r(//n)+»(1/u)r(3/u)r(5/n) —4I'(S/n)]/r'(1/n),

C, = [r&(1/n)r(9/n)+ 8r2(l/n)r(3/n)r (p/n)+10r2(1/n)r2(5 jn)
—421'(1/n) 1"'(3/n) r (5/n) + 21I'(3/n )]/[sr~(1/n )],
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C, = -[I"(1/n)I'(ll/n) + 15I's(1/n)I'(3/n) I'(9/n) + 601'~(1/n)I'(5/n)I'(7/n) —90I'(1/n) I'(3/n) I'(7/n)

-160r'(I/n)1 (3/n)r'(5/n) + 210r(l/n)1'(3/n)1" (5/n) - 361'(3/n)]/[121'(I/n)].

The complexity of these coefficients C„continues to increase with n so we also display the series in Eq.
(2.15) for several specific choices of n.

Notice that in the following series the coefficients C„will be rational numbers only when 1/n is an inte-
ger or a half-odd integer. For these cases we list, in the examples that follow, the exact rational form
of the coefficients. For other values of n the listed values of the coefficients depend upon the accuracy of
the numerical evaluation of the I' functions. (For the special examples n = —,

' and n = 8 only the approximate
forms are given because the rational forms require integers with hundreds of digits):

e (—,') = " lim x' ~ "(1.0 —1.025 873 7 x 10"x+ 8.094 397 6 x 10"x' —2.519 127 7 x 10' x'+ 5.624 858 4 x 10"x'

3.4850484 )( 10~~~++3.274 768 8 x 10»8&~ 3 072 412 8 x 10»o&~+2.118349 y 10»3/

—8.490 813 3 x 10'"x'+1.644 2714 x 10'"x"—1.324 368 7 x 10"'x"+ 3.920147 3 x 10'"x"—~ ~ ~ )

(3.2)

e (—,') = -' lim x' '(1.0 —1.330 56 x 10'x+ 4.054 836 7 x 10"x' —1.815 215 x 10"x'+5.740 973 3 x 10 'x4

—8.3911538 x 10"~'+4.308 6901 x 1063g' -6.420 531 5 x 10"g'+ 2.412 1134 x 10"~'

-2.051021 5 x 10'"x'+ 3.624 2V x 10"'x"-1.2419182 x 10'"x"+ 7 793 395 8 x 10'"x"—"~ )

(3.3)

e (—') = —,
' lim x' ~'(I —240x+ V 25 760x' —6 350 745 600x'+ 120 922 35V 248 000x4 —4 321 35V 624 627 200 000x'

+ 261 318398 832 231 579 648 000@ —24 758001 241 899 464 180 367 360 000'

+ 3 467 174 428 686 216 66V 014 105 661 440 000gs —686 113651 251 77 3 224 133321 019 831 091 200 000'
+ 185 121 667 331 531 093 557 V28 660 599 212 710 297 600 000@'

—66 153 128 876 623 411 508633 878019212 439 193649152 000 000@~

+ 30 565 246 093 405 286 095 413 S46 V05 V 92 041 733 359 32V 510 528 000 000x" —~ ~ )

105x 135 135x' 173 166 525xs 1 429 7 36 497 875x' 4 348 647 012 504 375x'
4 32 128 2048 8192

36 899 922 214 229 673 375'' 209 453 201 904 396 01331&125@'
65 536 262 144

12 298 364 126 266 132 301 V01 111875' 113475 898 356 688 322 826 658 215 271 875'
8 388 608 33 554 432

2 572 219 107 417 797 820 871 446 728 V41 878 125''
268 435 456

35 130413 968 925 927 062 636 428 231 732 122 671 875@i'
1 073 741 824

2 276 0&V 413 255 141 413 171 683 611 101 573 688 772,109375' '
17 179 869 184

a(1) =-,' lim x'~'(I -4x+ 48x' —832x'+ 1V 968x' -455 904x,'+ 13 189632x' —427 449 600x'

(3.4)

(3.5)

+ 15 337 993 536' —604 283 926 144' + 25 969 690 820 608@'

- 1 210 844 480 455 680x" + 60 960 214 854 542 848x" — ),
e(~) = ~ lim x ~~(1.0 —1.47 6S7 629x+ 4.10 32V 375x' —13.7 985 443x'+ 51.3 826 146x4 —204. 585 909x'

(3.6)

+ 855.578 156x' —3718.65 V38x'+ l6 683.0315x' —76 887.362x'+ 362757.133x'

—1 747 495.45x" + 8 577 625.3x"— ) . (3.7)
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Note that for the examples quoted above with 0& z &2, the numerical coefficients C„in the series grow
rapidly with increasing n. We have done a rough fit to the growth of C„for various values of 0& ~ & 2 and
have arrived at the empirical formula in (1.2), which appears to account for the most rapidly varying
component of the asymptotic behavior of C„for large n. We do not have a good guess for the dependence
of A and 8 on n E.quation (1.2) implies that when 0 &n &2 the series in (2.15) has a zero radius of con-
vergence. Nevertheless, one can treat the series as a formal representation of the ground-state energy
and extract information from it by using Pads approximants. This procedure will be discussed in the next
section.

The choice n =2 corresponds to the harmonic oscillator and the resulting series is

e(2) =lim x'"(1-x+-',x'--'x'+ ~ ~ ~ )

It is easy to see that the full series for this case can be written as

(-1)"(2n) t ~t'x &~" . , ~, 1 1
e(2) = lim x' '~, ,

—
~

—
~

= lim x' '
(

(3.8)

This is, so far as we know, the only case for which the strong-coupling series can be summed exactly.
A few more examples are "iven below for cyy2:

c (3) = -' lim x ~ '(1.0 —0.746 564 44x+ 0.673 95V 504x' —0.6137 56 98x'+ 0.548 324 8x4 —0.477 344 63x'

+ 0.403 976 37x —0.331720 96Vx + 0.263 560 4x —0.201 727 305x + 0.147 674 08x»

—0.102 125 083x"+ 0.065 176 01lx" —~ ~ ~ )

e (4) = —,
' lim x ~'(1.0 —0.675 977 93x+0.5x' —0.352 540 683x'+ 0.232 495 094x4 —0.142 706 048x'

+ 0.080 878 922x —0.041 513 005 3x + 0.018405 315 Vx —0.006 082 864 17x

+ 0.000 335 225 368x"+ 0.001 765 920 3x" —0.002 080 732 32x"+ ~ ~ ~ ),
&(5) =~7 lim x'~'(1.0 —0.648766 264x+ 0.435 649 686x' —0.268 V12 066x'+ 0.149 584 465x4

(3 9)

(3.10)

-0.074 353 69x'+ 0.032 072 78x —0.011005 417 1x7+0.001 967 428 01x'

+0.00105807543x' —0.001 51615968x"+0.0011357235x"—0.000652063 566x"+' )

e (6) = —', lim x'~'(1.0 —0.636 849 925x+ 0.405 577 805x' —0.231 239 712x'+ 0.115773 294x4 —0.049 863 39Sx'

(S.ll)

+ 0.017 328 481 4x' —0.003 V01 166 9x' -0.000 V53 357 273x'+ 0.001 484 098 54x'

—0.001 085 152 02x + 0.000 573 323 9x —0.000 22S 402 24x '+ ~ ~ ~ ),
e (8) = -' lim x4~ '(1.0 —0.629 268 5x+ 0.380 815 08x' —0.199VVO 2x'+ 0.088 575 922x4 —0.031 747 426 4x'

(3.12)

+ 0.007 722 888 5x + 0 000 182 488 064xv —0.001 651 320 37x + 0.001 225 622 06x

—0.000 602 026 02x'o+ 0.000 207 858 828x" —0.000 032 877 5x"+ ~ ~ ~ ) . (3.13)

The limiting value o.-~ corresponds to the infinite square well. The lattice strong-coupling series is

2x 2x' 184x' 206x' 536x' 215 668x' 1552x' 2 943 058x'
3 5 945 2835 Sl 185 212 83V 625 405 405 1 206 079 875

7 353 163 432x' 5 465 896 763 564x' 2 922 973 616x"
7 795 859 096 025 32 157 918771 103 125 39 952 040 821 875

263787 817 V94 533 716x"
3 028 793 579 456 34V 828 125 j

(3.14)

For a ~ 2, the first 12 coefficients C„suggest
that these lattice strong-coupling series have finite
radii of convergence which seem to increase with

increasing 0'.

Notice that in each of the examples quoted above,
the first few terms of the series have signs alter-
nating like (-1)". For o. = 2 this pattern persists fo~

all values of n, and we believe that this is also
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true -for 0&&&2. For n&2, however, only the
first few terms exhibit this simple alternating pat-
tern and after some critical value n=N the pat-
tern is broken. N decreases with increasing n:
N2=~, N4 =10, N, =B, %6=7, N8=6, and N„=5.
From the analytic forms of the coefficients C„(o.)
we have calculated the numerical values of C„(a)
as functions of o, . As already remarked, for
0.&n & 2 the sign of C„(n)is the same as that of
(-1)" so we write

and display in Table I the smallest value of 0. ,
o. =o.„atwhich''„&0. (For n=1, 2, 3, 4, 5, ff„&0.)
%'e summarize these results as follows:

(i) For any value of n, the first five terms in
the lattice strong-coupling series (2.15) will al-
ternate according to C„~(-1)".

(ii) For n & 3.45 (the ~x
' oscillator, for ex-

ample), the first 12 terms (at least) will alternate
in sign.

(iii) For o. &2't. 8 [in particular, for the square-
well series in Eq. (3.14)] only the first five terms
in the series oscillate.

We belabor the issue of the sign pattern of the
coefficients C„because we believe it relates to
the effectiveness of the extrapolation procedures
that will be discussed in Sec. IV. Recall that the
lattice strong-coupling series is derived in a re-
gime such that the expansion parameter x given in
Eq. (2.10) is small and the series (2.15) can be
presumed to converge or to be asymptotic. Then
Eq. (2.15) is an expansion for a function f(x) (anal-
ytic, we hope) with finite limit [the value e(n)]
as x

More precisely, let us remember that c(o, ) has
the form

a(o.) = — lim [Q(x)] ~' "'.
20t g

If f(x) has a pole on the negative real axis, and if
this is the nearest singularity to the origin, then
this singularity should dominate the large-n terms

TABLE I. &„,the smallest value of o.' for which the
sign of the coefficient C„in Eg. (2.15) fails to obey the
rule (—1)".

in the series (2.15) and asymptotically the terms
will alternate in sign. The harmonic-oscillator
result in Eq. (3.8) is an example. The more com-
plicated sign pattern exhibited by the lattice strong-
coupling series for the n &2 oscillators indicates
that f(x) has a, more elaborate singularity struc-
ture and that it will not be easy to extract accur-
ate information by extrapolation.

Because we have only 12 terms in the series it
is not possible to make definite statements about
the singularities and the radius of convergence;
indeed, we cannot even be sure that f(x) is analytic
at x=0. [For o. &2 the radius of convergence is
zero so it must be presumed that f(x) is not analy-
tic at the origin. ]

From the values in Table I, it seems likely that,
as a is increased, the- extrapolants will become
increasingly unr eliable.

The coefficients C„(n)are combinations of I" func-
tions with varying signs. This leads to oscillatory
behavior in n, with a very slow approach to the
asymptotic squar e -well values.

IV. EXTRAPOLATION TO ZERO LATTICE SPACING

The fundamental question is this: How well does
Eq. (2.15) predict the value of c(o.), the ground-
state energy of the Ix~ oscillator for coupling
strength equal to one'P Recall that

OQ++2t(u) = — limx'~' "' 1+~x"C„(n)
2o.„„.„," . (2.15)

Because e(u) is finite, the function represented
by I+K„,x"C„must behave like x ~' "' for large
x. We therefore begin by raising (2.15) to the
power (n+2)/u:

(4.1)

where the coefficients d„areeasily determined in
terms of C„.

One reasonable extrapolation scheme to apply
to Eq. (4.1) is to convert the formal power series
1+Ed„x"into a &~ (x) Pade approximant and then
to take the limit as x- ~ of the expression xP„'(x).
By construction, this limit exists for all N, and
thus one obtains a sequence of approximants defined
by

8
9

10
11
12

27.8
7.82
5.56
4.58
4.05
3.65
3.45

" a/( e+2&

2Q
~

(4.2)

The superscript 2N -1 indicates that all the terms
up through x'" ' are used to construct the approxi-
mant.

Another method for extrapolating the series
was introduced in Ref. 2. The technique proposed
there by Bender, Cooper, Guralnik, and Sharp



2680 BENDER, MEAD, AND SIMMONS

(BCGS) was to construct the extrapolants es"c'«
defined by

o + [D(»]-0./i n 0, +2N& (4 3)
2Q

where D~ ' is the coefficient of x in (1+K,x"d„)
The extrapolants generated by this technique have
been discussed elsewhere. "We have also ex-
plored variants of this technique; we describe some
in the Appendix.

The two extrapolation schemes described above
produce sequences of extrapolants that we hope
converge or come very close to the answer &(o.).
%'e find three separate behaviors for these extra-
polants depending on whether 0& n &-', -', - n - 2

or o. &2. In 'Table II we give the results of both
procedures described above applied to the cases
of o. = —,-'„1,—'„4,6, 8, ~ and compared to the
exact values. ""We observe that when a&-', the

&~"~'; extrapolants converge beautifully but to the
wrong answer. We believe that this happens be-
cause the coefficients &„grow with n faster than
(2n) l, which violates the Carleman condition for
Stieltjes series. When 0& z & 2 the extrapolants
&~",~'; are monotonic and apparently converging
toward the correct answer. Indeed, repeated
Richardson extrapolation" gives the correct ans-
wer to three significant figures. For example,
when u = 1, the first-order Richardson extrapo-
lants,

(4 4)

of the &~"~'; in Table III are 8',"= 0.774 94, B,'
=0.78998, As" =0.79503, R4 =0.797 53, 8,'
= 0.799 06. Performing repeated first-order
Richardson extrapolations of this sequence,

R "=—(K+1)R' " NR-N+j.

TABLE II. The Pz ' Pade extrapolants and the BCGS extrapolants for the ground-state en-
ergy of the ~x~ oscillator calculated from the lattice strong-coupling expansions in Egs.
(3.4)-(3.7). N is the order of perturbation theory. The exact results are taken from Ref. 11
(see also Ref. 12). %hen a complex number arises in a BCGS extrapolant no higher extra-
polants are given.

Pade BCGS Pade

2
Q' = 3

BCGS Pade BCGS Pade BCGS

1
2
3
'4
5
6
7
8
9

10
ll
12

Exact

0.655 19 0.686 52
0.786 84
0.71696 0.721 44
complex

0.731 68

0.60549 0.60549 0.62479 0.62479 0.65519

0.638 95 complex 0.675 44 complex 0.715 06

0.740 04

0.753 79

0.762 53

0.768 62

0.653 27

O.66149

0.666 92

0.670 84

0.698 47

0.712 30

0.721 79

0.728 82

0.808 610.878 94O.922 45

0.686 52
0.717 04
0.725 34
0.730 59
0.733 24
0.735 19

0.735 99 0.736 42
0.737 42

0.738 28 0.738 12
0.738 73

0.739 55 0.739 18
0.739 56

0.743 88

1
2
3
4
5
6
7
8
9

10
11
12

Exact

Pade BCGS

0.743 10 0.743 10
0.697 79

0.666 00 0.685 05
0.680 68

0.686 96 0.679 45
0.679 51

0.476 39 0.680 04
0.680 63

0.676 36 0.681 03
0.681 15

0.670 29 0.680 94
0.680 43

0.667 98

Pade BCGS

0.753 66 0.753 66
0.693 16

0.659 02 0.679 80
0.678 56

0.724 31 0.682 47
0.689 07

0.378 92 0.697 29
0.706 34

0.722 50 0.715 29
0.722 51

0.688 35 0.725 58
0.722 41

0.680 70

Pade

0.757 33

0.660 72

0.762 02

0.330 14

0.787 48

0.71738

BCGS

0.704 05

0.75733
0.690 17
0.67869
0.682 ol
0.692 95
0.71000
0.734 74
0.773 72
0.867 01
complex

Pade

0.750 00

0.700 93

0.973 42

0.364 23

0.990 20

0.957 04

BCGS

0.750 00
0.684 65
0.71147
0.800 27
complex

& /8 =1.2337

This number is given wrong in Refs. 2 and 4. In the notation of these references the correct
value for 4gd&/dg is 0.561073 and not 0.569473.
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gives even better results: R,"=0.80502, R,"
0.80513, R',"0.80501, R4" =0.80518. If we com-
pare these results with the exact answer c(1)
= 0.80861 taken from Ref. 10 we get a relative er-
ror of 0.4%.

The BCGS extrapolants are ineffective when
—,
' (a (2; they form a sequence that eventually be-
comes complex and is therefore not useful.

When n =2 the strong-coupling series may be
summed exactly, as is pointed out in Sec. III; the
a-0 (x-~) limit then gives the exact answer
1/M2.

When n& 2, the BCGS extrapolants at first de-
crease toward the correct answer until they reach
a minimum and then increase away from the exact
answer again (eventually to become complex).
Thus, the BCGS extrapolants in the Q. & 2 regime
behave in a manner reminiscent of the partial sums
of an asymptotic series. If we did not know the
correct answer, our best estimate of the correct
answer would have to be the value of the extrapo-
lant at the first minimum reached. This value in
the BCGS approximants provides. a better estimate
of the answer than the Pads approximants (which
are not as smooth and well behaved, and tend to
jump around irregularly): when o. =4, the relative
error is 1.79', for a = 6 it is 0.49', for n = 6 it is
4. 5'%%uo', however, for n = ~ the error is 55%%uo.

" The
poor result at n = occurs because the sign pattern
of the strong-coupling lattice series becomes ir-
regular before the extrapolants have a chance to
converge.
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APPENDIX

We have considered several extrapolation schemes
other than those used in the body of this paper and
checked their utility by applying them to the most
ill-behaved case, the square-well series, n = ,
in Eq. (3.14). (a) One can first square the series
and then construct the I'"„'Pads approximants.
The resulting sequence of extrapolants, 0.685,
0.672, 0.931, 0.933, 0.926, 0.925, comes fairly
close to the desired result (b.) Another plausible
procedure consists of first exponentiating the lat-
tice series in Eq. (3.14) to produce a series begin-
ning with 1, constructing the diagonal Pads ap-
proximants P„"(~),and taking the logarithm of this
limit. Again there results a series of extrapolants
that come close (this time to within 2'%%uo) to the
exact answer, before veering off. 'These extrapo-
lants are 0.97296, 0.69300, 1.2200, 1.2200,
0.951 01, 0.93393.

Note that the extrapolants from both these Pads
techniques are very irregular and are therefore
impossible to extrapolate to a limit and at best .

only come close to the correct result before turn-
ing away. 'The primary criticism of these proce-
dures, however, is that if the answer were not
known ahead of time it would be difficult to de-
termine from these very irregular approximants.
We have discovered a class of extrapolation
schemes that produces a monotonic and very regu-
lar sequence of approximants with an unambiguous
limit. The drawback is that the limit of these ap-
proximants is not equal to the answer to the prob-
lem, and we do not yet know the relation between
the two quantities. The motivation for this new

procedure is simple. If we raise the series in Eq.
(3.14) to the 2nth power, the first n coefficients
will all be positive. 'This fact suggests the follow-
ing variation on the BCGS procedure:

'TABLE III. Richardson extrapolants [see (4.5)] of. the Pads extrapolants in Table II. The ex-
act values for &(Q) are also shown.

1Q=2

R (2) R(3)
N

Q=—23
R(2)

N R (2)
N

3Q= 2

R(j)
N

0.672 41
0.681 90
0.686 14
0.688 68
0.690 43

0.69140 0.697 83 0.726 09 0.762 99 0.781 57
0.694 62 0.699 68 0.744 54 0.772 28 0.788 09
0.696 31 0.700 77 0.753 79 0.777 55 0.79199
0.697 42 0.759 73 0.781 16

0.764 01

I

0.77494 0.805 02
0.789 98 0.805 13
0.795 03 0.805 01
0.797 53 0.805 18
0.799 06

0.756 36
0.752 16
0.748 92
0.747 44
0.745 90

Exact 0.922 45 0.878 94 0.808 61 0.743 88
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Raise the series to the -2n power, take the nth
coefficient of the resulting series, and finally take
the -1/2n root. (More generally we could raise the
series to the kn power, pick off the coefficient
of x, and take the -1/kn root. Here, however,
we discuss only the k=2 case. ) The extrapolants
produced by this procedure are 0.43301, 0.38501,
0.36544, 0.35436, 0.34711, 0.34192, 0.33801,
0.33493, 0.33243, 0.33036, 0.32861, 0.32712.
These extrapolants are smooth and well behaved
in contrast with those listed in 'Table II. The dif-
ficulty with this technique is that we do not know

how to predict the relation between the limit of this
sequence and the limit of the original function. In
sample problems to which we have applied this
method the relation appears to depend in a compli-
cated way upon the singularity structure of the
function.

Surely the lattice series in Eg. (3.14) must con-
tain an enormous amount of information about its
true value at x = ~. We are dismayed that after
computing the energy to 12th order in perturbation
theory, it is so difficult to extract its zero-lattice-
spacing bmit.
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