
PHYSICAL RKVIK% 0 VOLUME 24, NUMBER 10 15 NOVKMBKR 1981

Coherent-state representation of a non-Abelian charged quantum field
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Quasicoherent states, previously defined for bosons with SU(2) gauge charge (and no other degree of freedom), are
now defined for the general (field-theoretical) case. The coherent states thus constructed form a complete basis in the

Fock space. They transform according to irreducible representations of the SU(2) group and are at the same time
eigenstates of isosinglet pair and isosinglet three-particle annihilation operators. Some physical applications are
indicated in the contexts of multiple particle production and gluon bremsstrahlung by a quark line in e+e
annihilation.

I. INTRODUCTION

In a previous paper two of the present authors
discussed an extension of the concept of coherent
states to a situation where a non-Abelian charge
is involved. ' For one degree of freedom a con-
struction was given of quasi-coherent states
transforming irreducibly under isotopic spin ro-
tations. In the present paper we will extend the
results in Ref. 1 to the field-theoretical case.
Also some applications are discussed at the end
of the paper. %e use the term "quasicoherent
states" rather than "generalized coherent states"
since the latter term has already been used for
a similar construction in the literature. '

As in Ref. 1 we will only consider the rotation
group (the isospin group). A more general treat-
ment of gauge groups such as SU(3) will be discus-
sed in a forthcoming paper. For the reader' s
convenience we here briefly recall the conven-
tional treatment of coherent states' for an iso-
vector boson field with N kinematical states
available. Reference 1 describes simply the
case N=1. In the present paper we keep N finite
only for convenience; clearly N- ~ (field theory)
can be treated in the same way.

The Fock space for the isovector boson can be
generated from a vacuum state l0) by creation
operators at, where i = 1, . . . , N. The corres-
ponding annihilation operators are a, . An or-
thonormal basis for the Fock space is

n„. . . , n„) = [(n, , !n, ,!n&, !) '"
f~l

x (+t )n&&( t )n 2( t )n. s]l 0.)
(1)

We introduce in the usual way the unitary operator

herent state lx) is then given by'

(~l x) = e-(x*-g*&.(x-»&/z e~& (4)

In particular

&xl x) =1 .

The coherent states form an overcomplete basis
with the completeness relation

N

d'x=, ...„,. l
—aRelx, .&drm(x, .}) .

Given a 3N-vector x we may define a matrix
J(x) serving as a "tensor of inertia, " in the iso-
spin space

J„(x)=x,*,x„(o., P=1,2, 3) .
Then

(7)

The tensor of inertia (7) will turn out to be useful
in the normalization of a certain basis of quasi-
coherent states.

In the Fock space we can define the isospin ro-
tation operators (f& = 1)

a~ a
1

esr )I

which obey

lx)=U(x)lo)=e-" -"&'e'-'-I0), n, .lx)=x&. lx) .

(3)
The scalar product then is

U(x)=e '~. &, [I,IBJ =is „I„ (10)
where the 3N-vector x describes a one-particle
state and where x* ~ a=x,*. a, . Here i runs over
1 to N and a over 1 to 3. The conventional co-

Below we will give a decomposition of the state
l x) in terms of a complete set of states (the quasi-
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coherent states) which are diagonal in I', I„and
the isosinglet pair and three-particle annihilation
operators

and

Q3gg = a) ag

&gk apl' & a JB kt (12)

To obtain such a decomposition we make use of
the fact that the signer D' „ functions form a
complete basis for the continuous functions on the
rotation group. For R(= SO(3) we normalize the
invariant group measure O 'R so that

f d R=(.
so(si

(13)

The D', „ functions satisfy (summation over repeat-
ed matrix indices is understood)

eous polynomials of degree I in the matrix ele-
ments M (see Appendix A),

2l
D', „(M)=( ), (f„')* ... (I„')z ..., M M

(23)

where (ID)) are the expansion coefficients of
the spherical harmonics, defined in Ref. 1 as
homogeneous polyomials of an arbitrary three-
vector,

where r=x(sin8cosy, sin8siny, cos8). From
the definition (22) it immediately follows that
I(M) is invariant under left-handed as well as
right-handed multiplication of M by SO(3) ma-
trices

D'.„(R,)D„'„(R,) =D'.„(R,R,),
D' (R)* =D'„„(R ),

(i4) I(M) =I(R,MR, ), R„R,(=- SO(3) .
I

Therefore I(M) is a function only of the three
invariants x, y, and z defined by

(25)

g(2f+1)D' (R)*D' (R') =!)'(R R )
l=o

(i7)

where the group 5 function satisf ies

(21 s 1)f d RDs (R)*D' (R„) il, . , s„„.„s~=„, (16)
8O(s&

x= Tr(MM ),
y =40etM,
z =~2[Tr(MM )] —Tr(MM MM ). "

In fact I(M) = I(x,y, z) ca—n be expressed as a
Fourier-Mellin integral,

(26)

O' R' f(R')5'(R;R') =f(R) .
so(s)

(is) I(M) =I(z, y, z)

Now let M be an arbitrary 3 x 3 matrix and let
R be a 3 && 3 SO(3) matrix (R = R~; R „R~„=5 8) .
We shall need the SO(3) decomposition of exp
[Tr(RM")].

Using completeness (17) and orthonormality (16)
we find

)-0

s +)~
ds e'(s' —2xs' —2ys —2z) "'

27$ s -$~Sp

(27)

where pp has to be chosen in such a way that all
singularities of the integrand are on the left-hand
side of the integration contour. The derivation
of (27) is shown in Appendix B. From (27) we get
the power-series expansion

where

d (M)=f
So(s&

d'R D'.„(R)*e"-zs 8

[2 (j + k+ m) —1]!!"''-„.. I!k!-!(1+2,+3k+4 )! ~~'
7

(2a)

(20)

with the transformation property

(!)' (RMR') =D' (R)*y', , „,(M)D'„, „(R')* . (2i)

In (20) I(M) is the integral

Rdd)= f d'R s".s*.s
so(s)

(22)

and the functions D,'„(M) are defined as homogen-

The mathematical preliminaries have been given
here because I(M) and P'„„(M) defined in terms of
I(M) through (22) play an important role in the
coherent-state formalism to be.developed iri the
following sections.

In Sec. II we construct three types of quasi-
coherent states and derive their properties. In
Sec. III we construct states which are simultan-
ously elgenstates of I2, Is, and the number oper-
ator ¹ In Secs. IV and V we treat a few simple
examples.
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II. QUASICOHERENT STATES FOR SU(2)
GAUGE FIELDS

Consider now an isospin rotation R = (R„())
(()., p =1, 2, 3} acting on a 3N-vector

x —(x,). . . ,x„) .

The result is

(29)

1"I'„„;x&=i(i+1)I„'„;x&,

f. I
'.„;x& = I I.'„;x&,

Q)]g p) g =X) '
X~ ~p) g

(33)

(34)

Rx=(Rx„. . . , Rx„) . (30)

From the corresponding coherent state IRx) we

can project out a certain irreducible representation
by using the D functions,

;x)=e-*'-*~'(2)+))' ' Jd'RQ' (R)" ())x)
(31)

The effect of a rotation on such a state is easily
found

q

U(R)l'; x) =(&)+))"'e-* -*'*I&& &' '(&'')'l&R ))'
=D), (R-) )+ (2$ y 1)'»ex ~ x»

d R'D ' RR' * RR'x

To get a more explicit expression for I„'„;x)we
use (3) and (20) in (31),

x&=(21+ 1)'~' ' d'RD' (R)*e»)"(~PI)) I0)

= (2l + 1)'"y
' (a',.x,.) IO&, (35)

where summation of i over the N degrees of free-
dom is understood in a,.z,. which denotes the mat-
rix (of linear combinations of creation operators)
(a,',x,~) .

Using (35) and (3) we easily get the scalar pro-
duct between a coherent state and a quasicoherent
state,

=D', „(R)I,', „;x) . (32)
(y I„'„;x) = (2f+ 1)~' e -"*' -' ' P' (yf x,.). (36)

The state (31) we shall call a qmasicoherent state.
It is an eigenstate of I' and I, as well as of the
isosinglet annihilation operators w, , and Q;,.„
defined by (11) and (12),

Like the coherent states, the quasicoherent states
-- form an overcomplete basis. Their scalar product

is easily obtained from (31) and (36) with the use
of (21) and (16),

(",„,; y I'„;x)=(2l+ 1) d RD„',„,(R) y„'„(Ry~*x,).
= (2l + 1) cPR D,„,(R)D ' „(R)*0„'..(y & x;)= ~ «. 6...0.. (ytx~ ) ~ (37)

Starting from (6) and using (17) and (31) we can decompose the unit operators as follows:

1= '( d'Rd'R'5'(R;R') d'"xIRx)(R'xI
4

OO

(2l+ 1) (f'"x d'RD„„(R)*IRx& (f'R'D)„(R')(R'xI = g d'"xe" '"- I„„;x-&(,'„;
E=O L=O

(36)

(39)

We can also introduce a somewhat less over-
complete basis by choosing v=0 in I„'„;x). With
a suitable normalization we define a reduced type
of qua'si coherent states,

I
& &' x& = [~g&(x))]

'" I.'.; x)

2l+ 1
(~(.))&

I

Using (37) we get the scalar product for reduced
coherent states,

(il l) I 1$ p x4- 6 6 0 )(y jxj)"' [ (~(x))q (~(y))]"' '

(41)

which for y =x reduces to the normalization

where (f ', p', x
I
f, p, ; x) = 6,~, 5„„. (42)

~,(M) = y.'.(M) = y.'.(M-)

and J(x) is the tensor of inertia defined in (7}.

(40) The states (35) may be expressed in terms of the
new states (39},
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ao

1= P d'"xe "*'-y,(Z(x)) ~l, p, ;x&(l, p, ;x~ .
E=O

(44)

~
„'„;x) = (21+1) d'R D,'.(R)*[q,(RZ(x)R-)]'"~i, I;Rx).

(43)

The completeness relation corresponding to (38) is

X,(R)=D' (R) (45)

isospin space. The transformation property (32)
under rotations and the eigenstate properties (33)
and (34) clearly also hold for the reduced states

~
l, p, ; x& as a special case.
A further reduction can be made. The SO(3)

characters

The quasicoherent states (39) are closely related
to the generalized coherent states as defined in
Ref. 1. They are also a generalization of the
states used by Botke et al.' for the case of one-
particle wave functions that are parallel in the

satisfy the orthonormality relation

d RX,, (R)X,(R) = 6,.,

which follows from (16). The further reduced
quasicoherent states

(46)

2i+1 d'RX, (R)e"* ""
~Rx&

= (2I+ 1)'"[y {J(x))]-'" d3RX(R)e""'"'~" ~0&= (21+ 1)'"[q(J(x))]-' q, (a'x,.) ~0&, q, (~)= y' (~)

(4V)

transform as follows under rotations:

ex+. g/2

V(R) iE;x&=
„. „, d'R X,(R ) ERR x)

eX+.X/2

[ (g( ))]l/2 d R xl(RR'R ') IRR'R 'Rx&

= ~I;Rx&.

It is also an eigenstate of I',

I'~I x&=I(I+1) II x&

but not of I, .
The scalar product is easily found to be

x.,(y*, x, )" [x (~( ))~ (~(y))] ' '

which for y = x reduces to

(48)

(49)

(5o)

(51)

The completeness relation reads

OO

1= Q (2l+ 1) d'"xe-"-* -*X,(J(x)) ~&;x&(l;x~. (52)
l =O

I 1 . . . i
[~ (Z(x))]1/2 wo 1 a&s& Ol+& ig8~ ig„

where

( 11 ~ ~ ~ 1
QV I &181 Q PPt1

n

= (21+ 1)~' FR D„'„(R)*
et='I

(54)

is a generalized Clebsch-Gordan coefficient. The
probability of having exactly n bosons in a quasi-
coherent state can now be expressed in terms of
(54). Let II„be the n-particle state projector,

1
II„=—,~i,o., ; . . . ; i„o.„&(i,n, ; .. . ; i„n„(. (56)8 +

Then the corresponding probability can be ex-
pressed as follows:

It is also interesting to compute the scalar pro-
duct between a Fock state (non-normalized)

~i, o., ; .. . ;i„a„&=a~ ~ ~ ~ at. „~0& (53)

and a reduced quasicoherent state. Using (39) and
(35) we then obtain

&it+it ' ' ' t in+n li& &&x &

)
(2I+ 1)

(2l+ 1)'
nlrb (Z(x)) " 1'i

For a coherent state the number operator

N= a~ ~ a

~ ', , )J,, (x) ~ ~ J „,„(x).

(58)
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has the expectation value

& *l~lx&=x* ~ x. (59)

For a reduced quasicoherent state the corresponding value is independent of p, and can be obtained as the
mean value I

1
&'! xl&l~! x&=e*-*."-[v)(&(x))]'

J
cPRd'R'D„', (R')D„',(R)*(R'xlNlRx)

[P)(&(x))] d RD' (R)(RxlI)I lx)= [y(J(x)))- — d RD (R) 7 (sz(

Thus, because of (40),

8
5'&);„=—

„in', (XJ(x))

Similarly we can determine [(hi)I), .„]'=QP), .„((!)I&,. )2.with the res„lt
(' 82 l

[(~),, „]'=
l
—,+ —„1nq,(u(x)j

(60)

(61)

III. NUMBER-OPERATOR EIGENSTATES

Following the discussion in Ref. 1 we may also introduce states ln, Ip, ; x) which are eigenstates of I, I„
and the number operator (58):

2f +1 lj2 2)( dy
In &! x)= e '"""' d'RD', (R)*e "' 'lR—e«—x) . (62)

y, .„(J(x)), 2)) ~ )'0

Here we have introduced the notation [see E(ls. (3), (20), and (22)]

(t)""(M)= —e '"""~P'„„(e'~M)=Dq„
l

I„„,(M)
0

(63)

q, (M):+ ( )=DM( )
I )(M)

where
2((

I„(M)= —e-"'~ I(e*~M) .2r

Using (28) we obtain I„(M) explicitly as the following polynomial in the invariants (26):

[n/2 l C&n - 2r)/3 l
x" [2(n r —s) —1]!! -x " y' '

(2n+ 1)! (n —2r -3s)!r!(2s)! x' x'
r=0 s=0

(64)

(65)

(66)

~n -ly
,„„(M)=(2

L~ n-l) /2) l~ n -l-2r~/3~
[2(n —r —s) —1]!! & " y'

(n —1 —2r —3s)rr r(2s+ 1)! x' x'
r=0 s=0

The number operator eigenstates (62) satisfy

I'l n, lp. ;x& = l(l+1)~n, lj, ;x),

I, ( n, Ip, ;x &
= p ( n, l!),; x&,

N inly, ;x =)( 2n+l) ln/p;x .}

The scalar product is given by

(67)

I

(n', l'p, '; y l n, lp;x&

(n', I'p;x
~ n, lp;x) = 6„„i6„.5pqs. (69)

The overlap of a state (62) with a coherent state

9 r:n( xy') 6,6,5, (68)
[y, , „(&(x))q,;„(~(y))] '

For x=y this reduces to
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ly) is

+0 k k~j
(V2)

(70)

A completeness relation can also be derived for
the number operator eigenstates in a way similar
to the derivation of (52). One obtains

1= I I fd' xxy, ,„(J(x))~x, lx:, x)(x, )g;x(
n=0 J =0

(Vl)

%'e shall now consider some' specific choices of
one-particle states. As our first example, let
n denote a unit vector in isospin space and let
f =nf (k) be the one-particle state as a function of
momentum. This choice of one-particle states
corresponds to the construction given by Botke
et al. ' and to what is called identical pions in Ref.
8. The matrix J defined in (7) then takes the
form

(73)

IV. QUASICOHERENT STATES AND PARTICLE
PRODUCTION

In discussions of multiple particle production
one usually considers matrix elements of the scat-
tering operator between Fock-space states. At
high energies, when the number of produced par-
ticles is large, it may be useful instead to con-
sider the corresponding matrix elements in terms
of states which are not eigenstates of the number
operator. In quantum electrodynamics (QED) it
is well known (see Refs. 3 and 6) that coherent
states are extremely useful for studying problems
where the number of photons involved is large
(or infinite). In physical processes of pion produc-
tion at high energies a coherent-state basis may
analogously be appropriate. ' These states will
not, however, have a definite isospin content. As
suggested by Botke et al.' one could therefore .

generalize the concept of coherent states in order
to get states transforming irreducibly under iso-
spin transformations. Such an extension was in-
deed given by Botke et al.' %e have now general-
ized their construction to a superposition of one-
particle states which no longer have to be par-
allel in the isospin space. The quasicoherent
states l„'„;x) (or l f, m; x)) which we are using
constitute a complete basis in the Fock space.
The model calculations of Botke et aL ' could now
be reconsidered in terms of quasicoherent states
but we will not develop on this point further here.
Here we notice that the number-operator eigen-
state construction in Sec. III extends the isospin
reduction of Ref. 8 to general m-pion states. It is
of general interest, however, to consider in de-
tail some properties of our quasicoherent states.
For simplicity we will restrict ourselves to the
isospin [SU(2)] singlet state but the extension to
other representations is rather straightforward.
We denote the singlet state by l0; f ). In the iso-
singlet case there is no difference between the
quasicoherent states given by (35), (39), or (47).
Using (35) and (40) we now get

where co is the energy of the particle under con-
sideration. The matrix Ja& given by (73) can
easily be diagonalized. The group invariant y, (J )
can therefore be computed in closed form,

q.(~)=, =- q. (c)

Using (60) we find the expectation value of the
number operator

N, =—( 0; f l N
l 0; f ) = ccoth c —1 .

(74)

(75)

For a coherent state
l f) we would obtain [see

Eq. (59)j

(76)

Comparison of (75) and (V6) then leads to the con-
clusion that quasicoherent states are "less con-
densated" than the coherent states (see Fig. I).

90.

8,0

7.0

6,0

5,0

4.0

3.0

2,0

1.0

1,0 2 0 3 0 4 0 5 0 6.0 7,0 8.0

FIG. 1. The mean value of the number operator N in
the state nf(Tc) as a function of c [Eq. (73)] for a coherent
state and for a quasicoherent state. The two mean val-
ues approach the same value for large c.
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This is an expected result.
The probability amplitude for finding n pions

with momenta%„. . . ,%„and isospin indices
ii„.. . , p, „can be computed from the formula (5V).
If we let n, , n, and n, denote the numbers of
~', vt, and vt' particles, respectively, we find
that n, =n and thatn, is even. The corresponding
probability P(n+, n, n, ) is

c" 1 (n, —1)!~
P(n n no)

( ) ! ( 1)!! y (77)
%I

d3kJ„s= f (k) f8@)=c5 s . (V8)

In this case it is convenient to use the integral
representation (27) in order to compute the group
invariant y, (J ). The corresponding inverse La-
place transform is elementary and the result is

p, (J) = e' [I,(2c) -I,(2c)], (79)

where I„( ) is the nth-order modified Bessel func-
tion. The expectation value. (60) of the number
operator is in this case

II,= ( o'f
I & I 0~f&

= c I,(2c) -I,(2c)
(80)

For the corresponding coherent state l f ) we eai-
ily obtain

where g=pg, +g +g, isthetotalnumberofpions. We'

notice that (74), (75), and (7V) do not depend on
the direction of the unit vector n. This fact is ob-
vious when we realize that l0;Rf) =l0;f) RcSO(3),
according to the definition (72).

As our +econd example of one-particle states we
consider the following form of the matrix J:

V. GLUON BREMSSTRAHLUNG
FROM A "CLASSICAL" QUARK LINE

We have constructed the analog of coherent
states for [SU(2)] non-Abelian gauge fields. The
corresponding construction simplifies if one con-
siders fields carrying an Abelian charge. We re-
fer the reader to Refs. 10 and 7 for a discussion
of the one-particle and field-theoretical situations,
respectively. The corresponding quasicoherent
states can now be used, e.g. , in a study' of soft
emission of charged massless bosons in a scatter-
ing process. If one neglects self-interactions
among the soft bosons and the quantum structure
of their source, then the infrared divergences
exponentiate and can be treated as in QED. Ex-
amples of the relevant Feynman diagrams are
shown in Fig. 3. The emission of self-interacting
bosons can, in principle, be investigated in detail
by making use of functional techniques. A closed
expression for the probability of soft boson emis-
sion up to a certain total energy can be written
down" (also taking the quantum nature of the cor-
responding source into account). Below we will
show that, under the assumptions mentioned
above, the emission of soft [SU(2)] gluons from a
classical quark current exponentiates in exactly
the same way as in QED. Classical quark currents
have been found to be useful in the study of 'the in-
frared structure of non-Abelian gauge theories"
as well as in the study of quark and gluon jets in
quantum chromodynamies (QCD),""Frautsehi
and Krzywicki have discussed. the effect of con-

&N&

18.0

17.0'

&f INlf&=3c (81) 16.g

15.0

We find once again that the quasicoherent state
l 0;g) contains less particles than the coherent
state lf) (see Fig. 2). We notice, however, that
N, N, (if ce0) i.e. , the orientation in isospin
space of the one-particle. state is essential for the
physical properties of the quasi. coherent states.
The probability of finding n, ~ mesons (i = -0, + )
can be computed by integrating (57) over the mo-
menta%„. . . , k„(n =n, +n +n, ). We find that
n, =n . The result of the computation is

2- 2n -~Cn 1

14.0

U, O

12,0

10.0

9.0

8.0

7.0

6.0

5,0

4.0

3.0

2,0

1.0
I

1,0 2, 0 3.0 4 0 5 0 6 0 7 0 8 0

where y, (J) is given by (79). We notice that in-
tegrals of the form (82) occur in the statistical
approach 9 to multiple particle production when
isospin conservation is imposed.

FIG. 2. The mean value of the number operator N is
shown as a function of c in the state f~(k) satisfying (78)
for a coherent state and for a quasicoherent state. The
two mean values approach the same value for large c.
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finement on gluon bremsstrahlung in e'e annihi-
lation. They argued that the confinement mechan-
ism in QCD may provide a natural infrared cutoff
for the bremsstrahlung spectrum. In their analy-
sis the gt.uon radiation emitted by a quark line is
estimated by considering soft emission of pho-
tons from a classical current. As is well known,
the infrared divergences in QED can be treated in
terms of such a classical current. ' The radiation
field is then effectively described by a coherent
state. In QCD the situation with regard to soft
gluon emission is more complicated due to the
self-coupling of the gluons and the color content
of the sources. However, it has been shown" that
properly defined transition probabilities are in-
frared finite order by order in a renormalized
coupling constant. It is possible to develop a
classical theory of Yang-Mills particles" inter-
acting with non-Abelian fields. " The color con-
tent of a given particle can, formally, be des-
cribed in terms of c numbers which after quanti-
zation are replaced by the Lie-algebra generators
of the gauge group under consideration [SU(2) in
our case].

Under the simplifying assumptions mentioned
above, we can use the picture suggested by
Frautsehi and Krzywicki" to compute the proba-
bility for emission of soft gluons from a classical
current,

j "(x, f ) =j„(x,t)I (83)

K
/

/

/
/

/

/

/
/

r
/ /

/

FIG. 3. Some typical Feynman diagrams contributing
to the soft gluon emission from a classical quark cur-
rent are exhibited. The vertices commute due to the
classical nature of the current, and no gluon self-inter-
actions are taken into account.

(other energy intervals can be treated analog-
ously). The density operator describing the
corresponding energy resolution is given by

(88)

where

j,(x, t) =g5'(x —v&),

3 (x, f ) = gv 5 (x —vt )

(84)

where P stands for the momentum operator and
0 is the Heaviside step function. We observe
that (85) is of the form described by the matrix
(V3). The transition probability P(bE) can then
be evaluated with the result

is the conventional form of a classical charged
current (v is the velocity of the particle) and I
denotes the classical color degrees of freedom.
In general I will be time dependent and precess
around the gluon field. For the case when the
coherent radiation field generated by the "effec-
tive current" (83) is proportional to I, than we

may consider I as effectively time independent.
Let us consider the (perturbative) vacuum as
the initial state. The final state of the soft gluons
emitted will then be a coherent state. We have,
however, to take color conservation into account.
The final state will therefore be a quasicoherent
isosinglet state

el+. 3/2
(85)

where j is the classical current (83). Following
the procedure of Ref. 7 we now compute the
transition probability for the source (83) to emit
soft, gluons with a total energy not exceeding 4E

I(nE)=(0;j [ p(~E))0;~)

where

dP, dte"o' 'I " y,(c(t))
2v, ' „p,(c) (87)

c{t)=I f e 'j (k) j(k)', (88)

"d'a .c=i j„(k) j (k) . (89)

In the analysis by Frautschi and Krzywicki, (88)
and (89) are finite integrals (with an appropriate
ultraviolet cutoff) due to the confinement mecha-
nism. It is instructive to compare (87) with the
corresponding result in QED (see, e.g., Ref. 7
and references cited therein). Then (88) and (89)
are infrared divergent. By making use of (74)
and its asymptotic form we then obtain
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1 ~~ " . 2 d3k
P(bE) =— dpo dt e '~0' exp P (e'"' —1)j (k)*j'(k)

2m ~ 2m
(90)

which is finite and of the same form as the corre-
sponding expression in QED.

In a more refined analysis one could (in the lead-
ing logarithm approximation) take self-interac-
tions into account by replacing the coupling con-
stant g in (84) by a running coupling constant as
in Refs. 12 and 13.

VI. FINAL REMARKS

In Ref. 7 one of the present authors showed
how quasicoherent states can be constructed
in Abelian field theory where a conserved Abelian
charge is present. Owing to superselection rules
conventional coherent states are not appropriate
as was noted by Bhaumik et al." Here we have
demonstrated a similar construction for [SU(2)]
non-Abelian charges and for one-particle states
(gauge bosons or pions) transforming under the
adjoint representation of SU(2).

This is also a generalization of Ref. 1 which
deals with the case of one single available kine-
matical state, and our construction also extends
the work by Botke et al.'

From our presentation of the construction of
quasicoherent states it is clear that our results
can be extended to any compact group. Work
on this extension is in progress. "

The construction in Sec. 0 of quasicoherent
states can also easily be carried over to the case
when the one-particle states transform according
to the fundamental representation of SU(2) (appro-
priate for K mesons or in general two-level sys-
tems.""The corresponding complete set of
states is by definition

e)=(2}+1)' e-" *-fdgD& (g) )ge). (21)

The isospinor integral that corresponds to I(M)
in (22) and (28) for isovectors now depends only
on one variable. R' (See Appendix B.) Most of
the results in Secs. II and III can now easily be
carried over to the set of states given by (91).

We expect that quasicoherent states constructed
in the present paper also may be a useful complete
set of states with regard to physical applications.
In Secs. IV and V we have indicated some prop-
erties of these states as well as some physical
situations where they describe relevant proper-
ties of the system under consideration. The
method can clearly be applied also to more com-
plex situations.

With regard to the study of gluon condensates2'
and quark condensation" in QCD, quasicoherent

l

states may simplify the analysis [when extended
to the SU(3) case~'). We intend to study these
questions elsewhere. Finally, it is amusing
to notice that invariant integrals of the form (22)
or (B9) frequently occur in the analysis of gauge-
field theories in the Wilson lattice approach. "
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APPENDIX A

In this appendix we shall show how D,'„(M) as
homogeneous polynomials (23) are obtained.

I et

U(R)=e "'
be a unitary rotation operator. The Winger D
functions are defined by

(A1)

&.'.(ft) =(IV IU(&)l I&&.

Then'

(A2)

(As)

l.e o)

D' „(R}=—fdD(e)g' (Re) Y'(e) . (A4)

Since &„(e) is a homogeneous polynomial in e by
equation (24) we obtain

D' (ft) = (t~ l* (t')
)e}e (et 12 ' )2 '22 ~ ~ .(2 }e g ...(} 222 I2 eg gel. j & . i 1 g l

dQ(e)e„~. . .e, e~ e~ .
4m

(A5)

which can now be extended to be valid for any
3 x 3 matrix

(A8)

APPENDIX B

In this appendix we shall derive an explicit ex-
pression for the invariant integral

I(M) = d'A e g(~~ '
SO(3 &

(Bl)

The integral in equation (A5) can easily be evalua-
ted and the result is
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in terms of the three invariants

x=Tr(MM ), y=4DetM,

g = ~[Tr(MM )] —Tr(MM MM ) .
(B2)

Now I(M) is an analytic function of M. We can
therefore assume that M is real and generic, i.e.,~ is such that x,y, s are all nonzero. We there-
fore consider the case when M is a diagonal ma-
trix:

/m, 0 0)
M~! 0 m, 0

ko 0'
(B3)

SO(3) is the adjoint group of SU(2). Since, topo-
logically, SU(2) ~ S' we can therefore rewrite
the invariant integral (B1) as follows:

3

I(M) = v IJtd4u5(u'-1) exp —, m, Tr(o ~ e,uo' e,.ut) .

(B4)

Here pe, ]. is an orthonormal basis in R' and o =(a„
o„e,) are the three Pauli matrices; u is a general
element of SU(2), i.e., u=u, ~ 1+io 4 and u'=u',
+~u& For the 6 function we use the integral re-
presentation

where

f(s;m„m2, m, ) = [s~ —2(m, m+ m22+ m, 2)s2

-8mxm2m3s+m, +m2 +m3

-2(m m '+ m 'm '+ m 'm ')] ' '

and s, has to be chosen in such a way that all
singularities of f(s, m„m„m, ) are to the left
of the integration contour. Inserting (BV) into
(B6) and expressing the polynomials in m„m„
m, in terms of the invariants (B2) for the matrix
(B3) we finally obtain

f's
I(M) = . I ds e'(s4 —2xs' —2ys —2z) '~' .

S
Q 3

(B8)

By analyticity (B8) is true for any 3 && 3 matrix
M. Expanding (B8) in terms of x/s, y/s', and

z/s and evaluating the integral term by term we
obtain the expansion (28).

For isospino~ bosons the relevant matrix is
a 2 &&2 matrix m and the integral corresponding
to I(M) in (22) and (28) is

5(u' —1)=— d $ e'«" -»1 3-
23

X(m)= f dye '"
SU(2 )

(Be)

So+j~
I(M) = . ds e'f (s;m„m„m, ),

S0

(Be)

The u integral in (B4) is then a Gaussian integral
which is easily evaluated with the result (s = i))

(B10)

By invariance arguments it may be shown that
K(m) is a function only of Det m. One obtains

I,(2(DetM)' ') " (Detm)"
(DetM)'" „n!(n+ 1)!'
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