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Scale covariance, nonrenormalixable interactions, and high-temperature expansions
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Modified (scale-covariant) Heisenberg operator equations of motion, derived on the assumption that local products
are based on an operator-product expansion, are shown to exhibit a nonclassical, one-parameter degree of freedom
in their functional integral formulations. By a proper choice of this freely adjustable, scale-covariance parameter the
suitably normalized, connected (truncatedI four-point functions can be changed from a bounded negative quantity to
one that is positive and arbitrarily large. For nonrenormalizable, or possibly for nonasymptotically free
renormalizable models, which when conventionally formulated as lattice theories violate hyperscaling and exhibit a
trivial continuum limit, the previously stated property suggests that the scale-covariance parameter can be chosen to
achieve nontrivial results for such models. This conclusion is supported by results of a high-temperature series
analysis that incorporates the efFects of the additional parameter.

I. INTRODUCTION

A. Operator heuristics

According to the arguments of scale-covariant
quantum field theory' ' the usual Heisenberg op-
erator equations of motion are modified whenever
local products are defined by an operator-product
expansion. In particular, for a ((I) )„, P even,
scalar field theory with action functiona1

I = ~ ~p —nZ -A. d"X,

the modified, scale-covariant, equation of motion
is given by the formal expression

s'(s)=s(f exp(if [sp+ ,'[(eep)*--m S']

—Xpe}S"x)SPP,
I

where 6I is chosen so that Z '(0) = 1 and O'(t) is left
unspecified for the ~oment. If we change the in-
tegration variables according to P(x) -S(x)P(x),
S(x)&0, then

z'(s)=s( fexp[if[esp+
—', [(e„sP) —m s S ]

]S'y')d—"x I&'Sy)

(I)+m'Q'+][)x(I)~ =0. (2) =Ks exp i h$ +~ ep$ —m $

This equation arises from the stationarity of I un-
der infinitesimal scale transformations of the form
6(II)(x) =6 S(x)p(x), 6S being a c number. In (1) and

(2) it is understood that local products are obtained
from an operator-product expansion and not from
any sort of normal ordering; as a consequence (2)
cannot be interpreted simply as (1) times the usual
operator equation of motion —even in the special.
case that X -0. The usual equation of motion
arises from stationarity of I under the c-number
variations 6$(x) =6A (x) appropriate to normal-or-
dered local products, but such variations yield
nothing if operator-product expansions are appro-
priate. "

—](.S'y')d"x
~

&'y (4)

exp g 2 8 $ —sz$

(6)

where in the last line we have assumed that the
formal measure fulfills a condition of scale co-
variance,

(5)

and the factor E(S) has been absorbed in X~.
Clearly an expression for X~ is given by

B. Functional formulation

Operator field equations such as (2) may be re-
cast into coupled sets of Green's-function equa-
tions' or into other equivalent reformulations such
as that provided by functional integrals. In the
latter approach one may consider the formal ex-
pression for the Green's functional

The expression (4) [with (6)] for Z'(h) seems to
depend on $ but in fact does not, and so

(
-)Z '(h) —=0,

a relation thai leads in the usual way to a function-
al differential equation ' given by
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(
*

aYr (x) eh(x) Iig5h(~) il +

-h(~) .
h

—Z'(h) =0. (8)

In this expression we have set

Z (h), (8)

etc., with the subtractive term arising from the
normalization factor X, . Equation (8) may be
recognized as the formal, functional differential
equation equivalent to the formal operator field
equation (2}.

C. Scale-covariance parameter

The Green's functional Z'(h) provides a solution
to the operator field equations for any choice of
formal measure I)'(p that satisfies (5}. A little
reflection shows that

(10)

satisfies (5) for any B ~ 1, and that there are no
other homogeneous solutions (however, see Ref.
23). Thus there will be a complete family of
Green's functionals of the form

2 (e)=e(, f exp[ lf [~pe*e[( pl eee p*]

—y(p')d"x Iu~(p (11)

each of which is a solution to the functional dif-
ferential form of the scale-covariant operator
field equation. We observe that (8) or its equiva-
lent expression in terms of coupled Green's-func-
tion equations does not uniquely determine a so-
lution, a point that has been emphasized by Nouri-
Moghadam and Yoshimura, ' by Ebbutt and Rivers, '
and also in the simpler context of a discontinuous
perturbation of a harmonic oscillator by Kay. '

In our previous work on this subject" we have
chosen B =1 so that the measure S'.(P is formally
scale invariant. This choice was suggested by the
fact that B =1 is the correct choice for the math-
ematically interesting but nonphysical independent-
value models which are defined as in (11) except
that all space-time gradients are dropped. ' Since
such models are highly nonrenormalizable and that
problem is successfully overcome by choosing 8
=1, it was deemed appropriate to choose B =1 for
other nonrenormalizable models. This hypothesis
naturally led to the proposal to restore the dis-
carded space-time gradients by a strong-coupling
perturbation analysis about the independent-value-

model: and such an analysis was admirably
studied by Kovesi-Domokos. '

In the following we will be led to give up the
hypothesis that B =1 for covariant models and to
choose B on other grounds. In fact we shall be led
to conclude that B is not fixed at all but rather is

, a function of the parameters of the model such as
X, P, and n. The freedom to choose B as we see
fit exists because each quantum theory described
by (11) corresponds to the same classical limit
and satisfies the same basic operator equation of
motion (8), which is just a reformulation of (2).
Of course, for all B &0 the formal measure $~(p
is not invariant under field translations, and con-
sequently the associated field operators do not
sati. sfy the canonical commutation relations. How-
ever this is to be expected for operators for which
the operator-product expansion is appropriate to
define local products, since if we assume that

[(p(x), v(y)] =N(x -y),
then it follows for all q~ 2 that

[(p'(x), m(y)] =0,

a consequence which for any reasonable field op-
erator contradicts the assumption (12).

D. General remarks

The arguments presented above are meant to
apply to any model for which normal-ordered lo-
cal products are inappropriate, i.e., for models
which are not asymptotically free. Typically such
models are those generally classified as nonrenor-
malizable as well as some renormalizable models;
super-renormalizable models are asymptotically
free and may be conventionally defined as has been
rigorously shown in several cases." For the
scalar field in question, renormalized covariant
perturbation theory leads to the following conclu-
sions: nonrenormalizable if p &2n/(n —2}; renor-
malizable if p =2n/(n —2); super-renormalizable if
P &2n/(n —2}. Our view of nonrenormalizable
theories is that the interaction is a discontinuous
perturbation, "and in the context of functional in-
tegration it acts partially as a hard core project-
ing out certain field histories that would otherwise
be allowed. Such histories remain projected out
even as the coupling of the nonrenormalizable in-
teraction tends to zero, and so the limit of zero
coupling of the interacting theory is not the free
(unperturbed) theory but a so-called pseudofree
theory. Such a hard-core picture suggests that a
good place to begin the study of a nonrenormaliz-
able model is with the pseudofree model, and
idealized model studies indicate that large classes
of nonrenormalizable models are continuously
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connected to the same pseudofree model. '
Vfith the foregoing as motivation we are led to

consider a class of models with Green's functional
given by

(
Zo~ =N ' exp II~$1, +K $~y$~

+2 [(s„e)'-~'4'9d"~ l&s4

(14)
which for B 0 describe nonfree theories. To this
starting point we imagine introducing the inter-
action P~ and renormalizing various parameters
(including B) as needed. We shall study this prob-
lem in the context of a statistical-mechanical ana-
log of the Euclidean-space, lattice-space version
of the models.

II. ANALOG SPIN PROBLEM

with a suitable adjustment of N as needed. In
these variables the problem is equivalent to a con-
tinuous-spin statistical-mechanics model with
nearest-neighbor ferromagnetic coupling (K & 0}
and a single-site spin distribution given by

dg=Me ~i isi ~ds, (19)I being a normalization factor.
Whena p~ term is present then (18) is changed

to

g 8 =N ~ exp P q +K Sq+Sq —2 S~

A. Formulation

The Euclidean-space, lattice-space formulation
of (14) may be taken as

ZoB=N ' ' ' exp kg pk-gZ

In this expression k =(k„.. . , k„) denotes a point of
a large but finite (hyper-) cubic lattice, k* denotes
—,
' the nearest-neighbor points to k, e is the lattice
spacing, ~ -=c" the cell volume, N is a normaliza-
tion factor, and Z and mo are the usual parame-
ters chosen to achieve consistency. Our goal is to
seek a suitable continuum (and eventually a thermo-
dynamic) limit of (15) as e -0, choosing Z, m,m,

and B as necessary —always bearing in mind that
a P~ term is to be added, or is even implicitly
present with an arbitrarily small coefficient.

Let us first rearrange the exponent in (15) in
the form

Qkqg~b +Zggqsggb/e -Z(nh/e +Pleo b/2}ggq
(16)

In terms of the new variables

(20)

which is an analogous spin problem with a single-
site distribution given by

dg =M ' ~' " (s( ds. (21)

Here g is a dimensionless coupling constant given
by

g =-x,Z'kn. /C'. (22)

The critical region is characterized by the di-
vergence of the (dimensionless) correlation
'length" g, which is defined by

5'=-~J(AX)

where (for Jf, =-0)

(28)

It is important to observe that the local product
definition of an operator-product expansion which
is being modeled here on a lattice does not entail
the additional lower-order polynomial terms as
are required for normal ordering. '

The continuum limit of (15) corresponds to going
to the critical region of the statistical-mechanics
problem (18}. If an interaction is present, then
one is interested in the critical region of the prob-
lem describe by (20).

B. Critical regime

z =-zz/(~a)',

(1Va}

(1Vb)

x -=g(s, sg,

K2 SOS

(24}

(25)

FI~ =- k~6/t

0' = 2Z (nb, /e' +m, 'n. /2),

it follows that (15) takes the form

(1Vc)

(1Vd)

q"&-=g& s,s,s„s,&. , (26)

One is also interested in higher-order correlation
functions and their divergence, in particular (for
0,=-0}
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)t -const(K, -K)

p. , -const(K, -K) y '",
y~2~-const(K, -K) y '

(28)

(29)

(30)

where c denotes the connected (truncated) part.
A convenient dimensionless measure of this quan-
tity is given by

(2V)

which is invariant to spin-size and lattice-size
scaling. The vanishing of g implies under suitable
conditions that the theory is actually trivial (Gaus-
sian}."

It is the usual assumption of the approach to
criticality as K increases (temperature decreases)
toward the critical value of K (-=K,) that divergence
occurs with characteristic critical exponents,
namely,

+ 0.003 for n =3 (for maximum coupling constant)
and that ~ =0.30+ 0.04 for n =4 (also for maximum
coupling constant). On the other hand, high-temp-
erature series analyses of Nickel" suggest that z
is consistent with zero for n =3. In any case, the
particular hyperscaling violation t(. 40 seems to
be possible for n =3, quite likely for n=4, and
inescapable for n& 5. Our approach, which will
include the additional variable B, will also make
use of hyperscaling violation.

(S'") =(1-B)(3-B)~ ~ ~ (2n -1-B).
As a consequence

(37)

C. Role of the scale-covariance parameter

We note first of all that the moments of the dis-
tribution (19) may readily be worked out, and are
given by

and thus that & S'), =2B(1-B), (38)

$ -const(K, -K) ",

g-const(K, -K}""'&'~.
(31)

(32)

and hence in the interval 0& 8 &1 this distribution
mal violate the I ebomitz inequality, and measured
in "natural units",

&S,.S,S,S,), ~ 0,
it follows with only minor assumptions" that

(34}

(35)

(36)

We note further that 2v & y does not entail (34)
and holds under fairly general conditions.

High-temperature expansions provide an impor-
tant tool in the study of critical exponents, and
there is evidence from the work of Baker and Kin-
caid" on conventional (P')„models that z =0.028

This last relation is particularly significant for if

g:nv + y —2+ &0,

then g-0 as K-K, and the theory is potentially
trivial. On the other hand if & ~ 0, then the theory
would be nontrivial in the continuum limit.

According to mean-field theory the classical
exponents for polynomial continuous-spin models
are given byy, =1, v, = —,', A, =-'„and so for these
z, = —2+n/2. For n &4 mean-field theory suggests
the triviality of the usual theory, and this has now
been proved rigorously for pure (P~)„models for
n &4 in the single-phase region. " As a next step
we remark that the scaling hypotheses that enter
the renormalization-group approach imply that
z =0; this is one of the so-called hyperscaling
equations. However, the hyperscaling condition
z =0 has only been rigorously proved for n =2.'
Finally we recall that for suitable spin distribu-
tions —e.g. , of the ($4)„ type —which imply the Le-
bowitz inequality"

«'} /& S')' =2B/(1 -B),
this violation can become arbitrarily large. This
is in sharp contrast to the situation for B «0 for
which

o-&S')./&S')'- -2; (40)

in fact, as B--~ this model effectively tends to
the spin- —,

' Ising model. "
As a consequence, when 0 &B &1, it follows that

y & 1, v &—'„and I(, &0 become possible, and our
analysis of high-temperature series for this model
suggest this is exactly what occurs. The results
of our high-temperature analysis are summarized
below, and some additional details are given else-
where ao

The features outlined above for vanishing non-
linear term suggest, when we consider the mea-
sure (21) for a given interaction but arbitrary g,
that we can choose B =B(g) in order to obtain ~
=0. In other words, we shall choose B—which
has the tendency to lower ~—to compensate the
tendency of the interaction P» —which has the
tendency to increase ~—the desired net result
being g =0."

Our numerical results are neither as extensive
nor as accurate as we would like, and so let us
first indicate some qualitative properties that we
expect may hoM. For n~ 5, where mean-field
(classical} arguments (for B =0) are basically
correct and g, &0, we expect in the limit that g-0
that B(g) -B&„&&0, a number depending on the
space-time dimension n, but not on the power p of
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the interaction. '2 If this proposal is correct then
for n & 5 the pseudofree theory wouM differ from
the free theory as expected. For n =4, which is
the expected lower limit for mean-field behavior
and ~, =0, we expect as g-0 that B(g}-B«&=0.
For n =4 this proposal suggests that the pseudo-
free theory coincides with the free theory. " If
these ideas have any validity in n =3 then the si-
tuation is possibly similar to that for n =4. While
we have predominantly stressed our approach for
nonrenormalizable models, it is possible that the
scale-covariant parameter 8 may be successfully
exploited to deal with nonasymptotically free re-
normalizable models. This view is suggested be-
cause it is the (p'), model for which Baker and
Kincaid found strong evidence for hyperscaling
violation & & 0, and a trivial theory in the con-
tinmm limit. If this is true then perhaps (p'), is
also a theory that could become nontrivial for the
proper choice of B.

9
10

2

1
2,

0.40

0.26

0.21

0.14 0.084 0.36

0.52 0.26 1.06

0.74 0.37 1.20

-0.25

-0.58

-0.16
i
io
i
io

0.136

0.116

0.0686

0.0472

0.0147

0.98

1.01

1.07

1.09

1.10

0.49

0.51

0.51

0.55

0.58

1.41

1.45

1.49

1.49

1.50

0.12

0.14

0.27

0.33

0.42

~For g =4, f(: =—4v+y -26.

TABLE I. Critical temperature and critical exponents
for various B. Apparent error estimates for the critical
exponent K range from + 0.2 for B=i- to + 0.1 for B=-9;
for the other exponents these error estimates are to be
halved as they range from B=ieo to B=-9.

D. High-temperature series

Baker and Kincaid have calculated high-temper-
ature series expansions up to 10th order inK for
X, p2, and X

' for a variety of lattices and a gen-
eral, even single-site spin distribution. We have
particularly studied their series for the hypersim-
ple cubic lattice in four dimensions. D log Pade
approximants have been utilized to analyze these
series and to estimate. the critical exponents. We
have concentrated on the single-site spin distri-
bution (21) with an arbitrarily small coefficient
of the interaction term g. This has the feature
that the moments may be taken as those of the dis-
tribution (I9), namely the simple quantities in (37),
but that the model will be defined according to
(20} for arbitrary values of K. The main results
of this analysis are summarized in Table I.

Several points regarding Table I are worth no-
ting. First, the appearance of nonzero z values
supports the contention that hyperscaling is vio-
lated for n =4. Second, the appearance of nega-
tive I(. values —albeit with less apparent accuracy
than that for positive g values —arises from the
violation of the Lebowitz inequality. Nonpositive
g values are those that lead to nontrivial continuum
theories. To the accuracy available, it is consis-
tent that x =0 occurs for B =0 (m=4}, as expected.
Observe for B & 0 that y & I and v & ~ (yet y & 2~ }
supporting the contention that both y and v de-
crease if the Lebowitz inequality fails.

Unfortunately, the apparent error for the criti-

cal exponents (and forK, as well} increases due
to poorer convergence of the Pade approximants
as B increases toward 1. In fact it is not clear
that the simple asymptotic behavior of (28)-(30)
is appropriate as 8 approaches 1, and perhaps
confluent singularities are present. We intend to
study this point further by analyzing the 21-term
series for y and p, (for body-centered cubic lat-
tices) kindly provided by ¹ckel.

Preliminary evidence of the analysis of high-
temperature series based on a perturbation with
a large value of p suggests that by choosing 8
suitably close to unity the value of I(. can indeed be
lowered through zero. These data support the con-
tention that by exploiting the classically-invisible,
scale-covariance parameter B we can obtain non-
trivial behavior for general nonrenormalizable
theories and possibly for certain (nonasymptoti-
cally free) renormalimable theories as well.
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~~It is of course conceivable that the desired net resuIt
for the particular dimensionless coupling constant
g is ~ &0, in which case the precise value ofB will be
set by the finite nonzero value of some other dimen-
sionless coupling constant for which, for some suitable
&', the criterion &' =0 fixes&. We shall ignore that
alternative possibility here.
It is suggestive that asn , B&~& 1, since for in-
creasing space-time dimensionality the models ap-
proach the independent-value models. This behavior
is suggested by the fact that the criterion for nonre-
normalizability, p & 3c/(s-2), tends top & 2 as & —~,
which is exactly the criterion for the independent-value
models. The viewpoint of field theory as noise theory
) J.R. Klauder, Phys. Lett. 56B, 93 (1975)] provides
strong additional arguments for this conclusion.

~3There are solutions (10) that are best not written in
that form, namely

DB &i/ =exp[-b' ln Q(x) d"x] dp(x) pg)

where b' is an arbitrary constant with dimension
(length) ". Even if we suspect B~4~ = 0, we cannot
rule out the appearance of a term with b'&0. Actually
such a term cannot be ruled out for any n. Indeed, just
such a situation effectively happens at n = ~ (independ-
ent-value model) where& =1 andb'=-. 2b, b&0; b is
the parameter that plays such an important role for
these models (cf. Ref. 3).


