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Phase-integral calculation of the energy levels of a tiuantal anharmonic oscillator
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The phase-integral method developed by N. Froman and P. O. Froman is used for solving the quantal eigenvalue
problem of an anharmonic oscillator with quartic anharmonicity. The generalized Bohr-Sommerfeld quantization
condition up to the seventh-order phase-integral approximation is expressed explicitly in terms of complete elliptic
integrals. Solving this quantization condition numerically, and comparing the results with recent very accurate
numerical results obtained by Banerjee, we present curves exhibiting in a general way the accuracies of various
orders of the phase-integral approximations. These curves clearly illustrate the utility of higher-order phase-integral

approximations for the treatment of anharmonic oscillators. '

I. INTRODUCTION

The phase-integral method developed by N.
Froman and P. O. Froman (see Refs. 1—4, pp.
126-131 in Ref. 6, and Refs. 6—9) has in many
important cases proved to be a very accurate ap-
proach for solving physical problems that can be
reduced to the solution of one-dimensional, linear,
second-order differential equations of the Schro-
dinger type. The phase-integral approximations
used in this method, which for the higher orders
have a considerably simpler analytic structure and
greater generality than the corresponding higher-
order JWKB approximations (cf. Ret's. 3, 8, and

10), have been calculated explicitly by Camp-
bell" up to very high orders. To a large extent
one uses in principle exact solutions in the phase-
integral method in question, and hence strict upper
bounds for the errors can often be given. Fur-
thermore, with the aid of this method the connec-
tion formulas for the first-order SWKB approxi-
mation can be generalized to the arbitrary-order
phase-integral approximations in a rather straight-
forward way. ' The investigations on a variety of
models already made exhibit clearly the accuracy
of the method, and its usefulness in various phy-
sical problems is well established. In view of
these successes, it is of interest to apply the
method in question to the solution of the eigen-
value problem of quantal anharmonic oscillators,
which play an important role both in quantum field
theory '~ and in chemical physics. "' 'The

phase-integral method to be used is very system-
atic, and therefore one can push the calculations
on the anharmonic-oscillator models up to rather
high orders of approximation, which is important
in view of the interest to obtain very accurate re-
sults for such models.

In the present paper we shall treat the eigen-

va1ue problem of a quantal anharmonic oscillator
with quartic anharmonicity by means of phase-
integral approximations up to the seventh order
and express the generalized Bohr-Sommerfeld
quantization condition in terms of complete ellip-
tic integrals. With the aid of the formulas thus
obtained the eigenvalues can be evaluated numer-
ically. General information on the dependence of
the errors of the eigenvalues thus calculated on the
parameter values and on the order of approxima-
tion is then obtained by comparison with the re-
cent very accurate numerical results of Banerjee."

The plan of. the paper is as follows. In Sec. II
the generalized Bohr-Sommerfeld quantization
condition for the eigenvalue problem of a quantal
particle in a smooth single-well potential is ex-
pressed in convenient form up to the seventh-
order phase-integral approximation, and the use
of the solutions of the classical equation of motion
for evaluating the integrals in the quantization
condition is discussed. In Sec. III we express,
for the orders 1, 3, 5, and 7, the quantization
condition for an anharmonic oscillator analytical-
ly in terms of complete ell. iptic integrals. The
numerical analysis of the quantization condition is
dealt with in Sec. IV. The accuracy of the eigen-
values for various values of the parameters of
the anharmonic oscillator and various orders of
the phase-integral approximations is calculated by
comparison with the numerical resuI. ts of Baner-
jee." The general information thus obtained on
the accuracy of the quantization condition is dis-
played by means of suitable plots. The essential
formulas and relations for elliptic functions and
elliptic integrals which are needed in the present
work are collected in Appendix A, which also con-
tains a derivation of a general decomposition for-
mula involving certain elliptic functions which is
needed for the evaluation of the integrals in the
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quantization condition. Some other decompos ition
formulas are given in Appendix B. In Appendix C
we give the results for the limiting cases of a
simple harmonic oscillator and of a pure quartic
oscillator.

Using the fact that the path of integration I' in the
quantization condition (3) is a closed loop in the
complex z plane, and that the quantities y„are
single-valued functions of z on this path of inte-
gration, we obtain from (6a)—(6d) the formulas

II. THE GENERALIZED BOHR-SOMMERFELD
QUANTIZATION CONDITION

FOR A QUANTAL PARTICLE MOVING
IN A SMOOTH SINGLE-%PELL POTENTIAL

Consider the one-dimensional Schrodinger equa-
tion

do

da , + Q'(z)/=0,

where

Zd& = —,
' dg,

1 Z dy 1 1 2dg
r r

1 Zdy 1 1
X 4+~2

r r

Zedf=-p ~2 2XO +10X,O &1 +&2 df.
r r

Defining

(7a)

(7b)

(7c)

(7d)

Q'(a) = ~. [&- V(a)] (2)

with obvious notations. When phase-integral ap-
proximations of the order 2N+1 are used, the
quantization condition for the bound states in a
smooth single-well potential is

N

Z2„dg= n'+ 2 n, n'=0, 1,2, . . . , 3

'dz
Q(a) '

and noting that according to (4) and (8)

dl = Q'dv,

(8)

(9)

we can express the first few of the quantities de-
fined by (5a)-(5b) as

where, if the function Q,o(a) defined in Refs. 4
and 5 is chosen to be equal to Q(a),

z dz (4)

1 d
Xo —

2qo d7

1 d'Q 3 dQ» 2q5 d~2

(1Oa)

(lob)

and Z,„, for 2n ~8, can be obtained from Eqs.
(9a)-(9e) and (10) in Ref. 7 and Eq. (11")in Ref.
5. The contour T' is a closed loop in the complex
z plane encircling both classical turning points
but no other zeros or singularities of Qo(g). Choos-
ing, as just mentioned, Q,o(a) =Q(a), and intro-
ducing the quantities

1 d'Q 11 dQ d'Q 9 (dQ '
2Q' dv' 2Q'dv dv' Q'Idw

(10c)

Zod& = -', Q'dv',
r r

(11a)

Substituting (10a)-(10c) into (7a)-(7d) and using
(9), we obtain after some partial integrations

1 dq'(a)
4Q'(z) da

(5a)
1 d'Q

o Zodf= 4s o odv)
r r

(11b)

and

XO
XP de 7 V 1 7 2 7 ~ ~ ~ (5b)

we can write the expressions for Z„.. . , Z, . as

35 (dq&'d'Q 12 (O'Q '
4 768 9 Id~ d 2 8

(11c)
5005 /dQ &('d 'Q——

4~44 Q» l,d, &~ d, o

Zo =1,
1 dip
2

1 d

(6a)

(6b)

(6c)

372 (dqIo (d'Q)'

528 dQ d'Q d 'Q 24 (d'Q
&~

Q" d7' d&'d~' Q" kdv'j
(11d)

z.= -m(2X. '+ lox.'x, '+ x.')

1 d 2

80 ~~ (3Xo + Xoxz (6d)

The integrals in (11b)-(11d)are those that give
the simplest expressions for —,

'
fr Z»df Further.

simplification is not obtained by more partial in-
tegrations. For 2N+1 =7 we have thus expressed
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dz—=Q.
d7

(i2)

From this equation in turn it easily follows that

d'z 1 d(Q')
d72 2 dz

the integrals in the left-hand member of the quan-
tization condition (3) in terms of integrals involv-
ing the variable ~. The evaluation of these inte-
grals can be related to the solution of the classical
equation of motion"' as we shall now further
elucidate.

The connection between the variables z and 7.

is given by Eq. (8), from which it follows that

Q'(z) =a —bz' —cz',

where

a = 2mh/h',

b =m'(u'/8',

c =my/(2h') .

(2Oa)

(2ob)

(20c)

The zeros of the equation Q'(z) =0 are the classi-
cal turning points

z =+(f[b/(2c)]'+a/c]' ' —b/(2c))' '

and the purely imaginary transition points

z =+i(([b/(2c)]'+ a/c]' '+b/(2c))' '.
Using (2) and defining

(i4)

The general solution of "the classical equation
of motion" (13), when Q'(z) is given by (19), can
be expressed in terms of a Jacobian elliptic func-
tion (see Appendix A for some useful formulas)" "

we see that (13) is formally equivalent to the clas-
sical equation of motion

d z dt/"
m 2= ~

dt dz

z =A cngg,

where

u=yw+5 . (22)

Suppose now that the solutions of the classical
equation of motion are known, which, according
to the above discussion, means that the solutions
of the differential equation (13) are known. Every
such solution satisfies the differential equation

(i6)

Here A is a constant amplitude, and 5 is a constant
phase. In order that (21) with (22) will satisfy (13),
when Q'(z) is given by (19), the "frequency" y and

the square of the modulus of the elliptic function
A' will be given by the formulas

(23a)

and

which one easily sees by multiplying (13) by 2dz/
d7. From (16) it is obvious that (dz/d7)' —Q' is
constant for every one of the solutions considered.
In order that (12) be satisfied (dz/dv) —Q' must be
equal to zero, which means that

cA' cA.'
(23b)

respectively. In order that (17) be fulfilled, the
amplitude A will satisfy the equation

dz/d7 = 0 when Q' =0,
i.e. , that dz/dr is equal to zero at the classical
turning points. It is therefore precisely the clas-
sical solution of the problem which gives the ap-
propriate connection between the variables z and

The solutions of (15) give all possible classi-
cal orbits without specifying the energy, but (12)
selects the orbit with the actual energy.

Q'(W) —= a —bA' —cA =0.
From this equation we obtain

Inserting (25) into (23a) and (23b) we get

y = (b'+ 4ac)'"

(24)

(26a)

III. THE GENERALIZED BOHR-SOMMERFELD
QUANTIZATION CONDITION

FOR AN ANHARMONIC OSCILLATOR

1 f b

2 i, (b'+ 4ac)'" )I' (26b)

We shall now consider the quantal anharmonic
oscillator described by the potential

respectively. The complementary modulus A' is
given by .

V(z) = ~~m&2z'+ rXz', (18)
b"=1—b'= — 1+(, 4 ),g, ~. (26c)

where ~ and y are positive constants. Inserting
(18) into (2), we get

By means of (12), (21), (22), and formulas in

Appendix A we obtain
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dz
Q =—=—(A cnu) = -Ay snu dnu,dt dt

—= -Ay'(dn'u —k' en'u) cnu,dt
d2

dt
2=&y'(1+4k' —6k sn u)snudnu,

d'

dt ~=Ay [1+4k +4k (1 —2k2)sn2u

—24k sn udn'u] cnu.

(27a)

(27b)

(27c)

(27d)

Complex z- plane

--C

e

0

(a)

The path I in the quantization condition (3) is a
closed curve in the complex z plane which en-
closes the two classical turning points but none of
the two purely imaginary transition points [see
Fig. 1(a)]. The corresponding path of integration
in the complex u plane is shown in Fig. 1(b}. It
shall proceed from a point uo [the point a' in Fig.
1(b), which can to a large extent be chosen arbi-
trarily] to the point u, + 4K [the point a" in Fig.
1(b)] by proceeding above the points in the complex
u plane which correspond to the classical turning
points in the z plane, but below the points in the
complex u plane which correspond to the purely
imaginary transition points in the z plane. Here
K is the complete elliptic integral. of the first kind.

Inserting (27a)-(27d) into (11a)-(11d) and using
(22), we get

0

Complex u-plane

C

(b)

b' c' A d e S
I

0 2K 4K
FIG. l. (a) The complex z plane with the classical

turning points A, &, and the purely imaginary transition
points C, D. The closed loop ~ is the path of integration
in the complex z plane, and a, b, c, d, and e are certain
points on this path. (b) The complex I plane IN being
connected with z according to (21)] with the points A',
B, which correspond to the classical turning points A,
B, and the points C, D', which correspond to the purely
imaginary transition points C, D. The points a, b', c',
d', e', and a' on the path of integration in the complex
I plane correspond to the points a, b, c, d, e, and a,
respectively, on the path I' in the complex z plane fsee
F g. 1(a)j.

J

g go+4K
sn udn udu,Y 0

r 12K sn2u dn2u

1 "o'4" t'35(dn~u —kssn'u) (1+4k' —6k' sn'u)cnnu 12(1+4k —6k sn'u) &

du,
12m sn udn u sn udn'u

1 o'4» ( 5005(dn'u —k' sn'u)4(1 + 4k' —6k' sn'u) cn u
6 6 5Z df=—

sn udnr Np

+(372(dn2u —k' sn'u)2(1 + 4k2 —6k' sn2u}2 —528(dnnu —k' snnu)

x (1 + 4k' —6k' sn'u) [1 + 4k' + 4k'(1 —2k') sn'u —24k' sn'u dn'u]

+ 24[1 +4k'+ 4k'(1 —2k~) sn'u —24k' sn'u dn'u]~)»» ~du,sn udn u)

(28a)

(28b)

(28c)

(28d)

where

II. =4yA (28a)

I

sn '"udn '"u according to (A13), we can write
(28a}-(28d) as (see Appendix B)

i.e. [cf. (25) and (26a)],

» =—(b'+ 4ac)' [(b2 + 4ac)' ~' b]
C

8a(b'+ 4ac)'~4
(b'+4ac)'"+ b

' (28b)

Using (A5) and (A6a)-(A6d), and decomposing

g dg 2P&2P + g
r

du-~.
i, Z~-,"fV No

""K du+ dn'"u )
2P = 0, 2, 4, 6, (30)
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d, = i(/8,

d, = 1/(12'(),

d, = -1/(12'('),

d, = -1/(6~'),

(31a)

(31b)

(31c)

(31d)

(32a,)

(32a,)

(32b)

fo, 2=1

f2 2 = 1 +4k, g, ,= -k'(1 + 4k"),

f», =2k»(71 —296k' + 296k»),

g» 2 =2k'(7l —296k" + 296k' ),
f»»=2k'(51 —1V9k +148k ),

g»» =2k'(51 —179k"+ 148k' ),

(32c,)

(32c,)

and the nonvanishing ones of the quantities f» 2„
and g2p 2 are

2~=-k

f2 io: 4873 81 954k 20 674k + 75 856k

g» „=-k"(-4873 —81 954k" —20 674k' + V5 856k"),

(32d8)

f, ,2 =9878 + 74 019k' + l7 908k»,

g, ,2
= -k"k' (9878 + 74 019k" + 17 908k'»), (32d, )

f2 i»: 5005(1 + 4k )~ gt i»:5005k k (1 + 4k ),

(32(17)

Formula (30) can be written

2 2'~ d2P 2Pt 2 p ~2/ 2g 2g

where we have introduced the quantities

"o' dQB2' sn '4
QO

f» 2
= -23 —254k' + 192k,

g, ,= k'(-23 —254k" +192k"),
(32c,)

n= integer (not necessarily positive), (34)

f, , = 35 (1 + 4k'),
t 32c»

g, =35k'k"(1+4k' ),
f, , = —2k'(5725 + 113906k' —376 068k» + 250 V12k'),

g, 2
=2k"(5725 + 113906k" —376 068k'» + 250 V12k"),

(32di)

f, » = -2k (15 826 —47 950k' —83 131k» + 125 356k'),

g, » = 2k"(15 826 —47 950k'2 —83 131k'»+ 125 356k"),

(32d, )

f», =- 2k (-2765 —65 548k' + 81 209k» + 15 796k'),

g =2k"(-2765 —65 548k" + 81 209k'» + 15 796k"),
t

(32d, )

f, , =k'(2V 955 —2764k2 —175 300k» + VV 968k'),

g, ,= -k'2(27 955 —2764k" —175 300k' + 77 968k"),

(32d, )

I

I2m= „
go

du

dn Q

tn =.integer (not necessarily positive), (35)

obeying the recurrence relations [cf. (A9) and
(All) in Appendix A]

2n(1+ k') - (2n —1)k2~
+ g 2n 2~+

2ni(1+ k") 2tn —1I2N»2 (2tn+ 1)kl2 2m (2nt+ l)kl2 2N 2 'I

(36)

(37)

Using (A8b)-(A8c) and (A10b)-(A10c), we can
express B„B2 Io and I2 in terms of the com-
plete elliptic integrals K and E of the first and
second kind, respectively. By means of (36) and

(37) we. can then obtain the expressions for those
quantities B,„and I, which are needed in our cal-
culations. 'The results thus obtained are

B = [(2+ k )K —2(1+k )E], (38a)

B,= —,(K-E),

Bo= 4K
~ Io 4K (38c)

B,= 4(K E), I2= ,2E,—— (38(i)

B,= —,[(2+k')K —2(1+k')E], I,= „[2(1+k ')E —k"K), (38e)
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Be + [(8+ 3k + 4k )K (8+ 7k + 8k )E]

I,= —„[(8+7k"+ 8k")E —4k"(1+k")K], (38f)

B,= +g [(48+ 16k + 17k + 24k')K —(48+ 40k'+ 40k'+ 48k')E]

I,= „[(48+40k" + 40k'~+ 48k")E —k "(24+ 23k"+ 24k'4)K], (38g)

B,o= ~~ [(384+ 120k'+ 117k~+ 132k'+ 192ks)K —(384+ 312k~+ 297k'+ 312k'+ 384k')E],

I i [(384+ 312k + 297k e+ 312k + 384k 8)E k (192+ 180k a+ 180k' + 192k 6)K] (38h)

B„=„„,[(3840+ 1152k'+ 1074k + 1113k + 1296k'+ 1920k' )K

—(3840+ 3072k'+ 2850k + 2850k'+ 3072k'+ 3840k' )E]

I,i= „,[(3840+ 3072k"+ 2850k' + 2850k"+ 3072k"+ 3840k"0)E

—k' (1920+ 1776k"+ 1737k' + 1776k' + 1920k' )K]

B,~ = „,'„,[(46 080+ 13440k'+ 12 192k'+ l2 087k'+ 12 936k'+ 15 360k'0+ 23 040k")K

(46 080+ 36 480k'+ 33 312k + 32 463k'+ 33 312k'+ 36480k' + 46 080k' )E]

I,4=, „~[(46 080+ 36 480k"+ 33 312k"+ 32 463k'6+ 33 312k"+ 36 480k "0+46 080k"')E

—k "(23040+ 21 120k '+ 20 376k"+ 20 376k"+ 21 120k"+ 23 040k" )K]

(38i)

(38j)

Using (31a)-(31d), (32a, )-(32d, ), (38a)-(38j), and (A5), we obtain from (33), after some lengthy calcula-
tions, the fol.lorving explicit formulas:

g g
6r

~e'

—
J ZPC= —(1+4k'), —(1+4k ) —,
r

(39b)

k'
Z,df = —,„(56—153k'+ 285k' -9320k'+ 32400k' —37 632k'0+ 14 336k")

+ (56 —153k"+ 285k' —9320k' + 32 400k" —37 632k" + 14 336k"')— (39c)

2k'
Zedf =

315&'k" (3968 —12 952k'+ 19 393k'+ 4342k' —222 227kB+ 17 667 524k|o 141 913296k'a

+ 459 879 744k' —766 823 424k' + 699 572 224k'8 —333 185 024k~0

+ 65 011712k") —(3968 —12 952k"+ 19 393k' + 4342k" —222 227k"

+ 17 667 524k" —141 913296k" + 459 879 744k" —766 823 424k"

+ 699 572 224k'" —333 185 024k'"+ 65 011712k'")—
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82 a.
2m

We remark that 8 is also given by the formula

S=. &rn('d A + —'XA

(40)

(41)

which one obtains by inserting (20a), (20b), and
(20c) into (24), and that A' is given by (25).

IV. THE DEPENDENCE OF THE ACCURACY
OF THE QUANTIZATION CONDITION

ON THE PARAMETERS OF THE ANHARMONIC
OSCILLATOR AND ON THE ORDER

OF THE PHASE-INTEGRAL APPROXIMATION

In the manner described at the end of Sec. III we
have evaluated the eigenvalues of the anharmonic
oscillator numerically in the first-, third-, fifth-,
and seventh-order phase-integral approximations.
The calculations were carried out on an IBM 3VO

computer in double precision, which gives an ac-
curacy of 15-16digits. The time required for cal-
culating one single eigenvalue was about 10-
20 msec, and this time was almost independent of
the order of approximation used. For evaluating
the complete elliptic integrals appearing in (39a)-
(39d) standard library routines were used. The
nonlinear equation for the eigenvalue a, given by
the quantization condition (3) with (39a)-(39d), was
then solved by means of a standard iterative rou-
tine.

It is worth mentioning that in the first- and
third-order approximations the above-mentioned
calculations can be carried out on a small pro-
grammable calculator, e.g. , Hewlett-Packard HP

We recall that k', k", and z are given by (26b),
(26c), and (29b), respectively. Formulas (39a)-
(39d) are written in such a way that there appear
no singular expressions when one approaches the
harmonic-oscillator limit (b4 0, c 0), (K -E)jk'
being finite as k 0. This limiting case, as well
as the limiting case when one approaches the quar-
tic oscillator (b-0, c0 0), is discussed in Ap-
pendix C with the aid of formulas (A2c)-(AM)
and (A3a)-(A3b) given in Appendix A.

Using (39a)-(39d), we can write the quantization
condition (3) in explicit, analytical form up to the
seventh-order phase-integral approximation. Its
left-hand side is a function of the parameters k,
k', and z and hence, according to (26b), (26c),
and (29b), of the parameters a, k, and c, which
appear in expression (19) for Q'(z). For given
values of b and e one can thus determine the ei-
genvalue a by solving the quantization condition
numerically for various orders of the phase-inte-
gral approximations. 'The energy eigenvalue 8
can then be calculated from formula (20a), which
gives

67/97. The accuracy of the evaluations is then
limited to at the most ten digits, and the time re-
quired for evaluating one eigenvalue is generally
1-2 min.

We shall in this section show in a simple way
how the accuracy of the eigenvalues obtained by
means of the generalized Bohr-Sommerfeld quan-
tization condition depends on the parameters of
the anharmonic oscillator and on the order of the
phase-integral approximation. To this purpose we
compare the numerical values of the eigenvalues
$ pi determined from the quantization condition,
given by (3) and (39a)-(39d), with corresponding
eigenvalues SB with 15 digits obtained by Baner-
jee" in very accurate numerical calculations, As
a measure of the accuracy of Sp, we introduce the
quantity

I Spy —S~ tD= —logyo ~ p
CPg

(42)

C
Q'(z) = a —bz' —cz4, A. B

= (43b)

Hioe and Mpntrpll

Q'(z) = 2Z gM
—z' —2AH~z', A. ~ = 2A.„„. (43c)

which can be considered as a rigorous definition
of the number of significant figures in Bpi valid
also when D is not an integer. By plotting (for
each order of approximation and each eigenvalue)
D against the parameter describing the degree of
anharmonicity of the oscillator we obtain curves
displaying the accuracy of the phase-integral
eigenvalues.

Since the parameters describing the degree of
anharmonicity used by us differ from those used
by Banerjee" as well as from those used in earlier
well-known papers by Chan, Stelman, and Thomp-
spn'5 and by Hioe and Montrpll, ' we shall npw
show how these parameters are related to each
other. When different authors have used the same
letter for denoting a parameter, we shall indicate
the names of the authors Py appropriate sub-
scripts. Banerjee" uses the following expression
for the function Q'(z) appearing in our differential
equation (1):

(43a)

To relate Banerjee's parameters to those used by
other authors, we introduce in their differential
equation for the anharmonic oscillator a new in-
dependent variable (proportional to the original
one) such that the coefficient of the square of the
independent variable becomes equal to -1. Alter-
natively one can use the scaling relations (2) in
Ref. 19. The results are presented below.

The present work:
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Chan, Stelman, and Thompson":

In Figs. 2(a)-2(d) we have plotted the quantity D,
defined in (42), as a function of the parameter
()I., = c/tI'/', X«, or a), describing the degree of
anharmonicity of the anharmonic oscillator, for
various values of the quantum number n' and for
the orders 2%+1=1, 3, 5, and 7 of the phase-
integral approximations. As we have already ex-
plained, the parameters ~B, ~«, and u are those
used in Befs. 18, 21, and 15, respectively. From
the definition (42) it is obvious that the larger the
value of D, the better is the accuracy of the phase-
integral eigenvalue. From the curves in Figs.
2(a)-2(d) it is seen that, for a given value of n'

and a given order of the phase-integral approxima-
tion, the quantity D is almost constant when X~ ~ 1
(for large values of n' even for much smaller
values of Xs) but increases rapidly (especially for
the higher-order approximations) when A. s de-
creases towards ~~ = 0. It is also seen that D in
general increases (although not very rapidly) when

e increases, but the increase of D with increasing
order of the phase-integral approximation is more
pronounced. Already in the first-order approxi-
mation the "number of significant figures" D is
reasonable even for X~ & 1, if one disregards the
few lowest-lying energy levels. When one pro-
ceeds from the first- to the third-order phase-
integral approximation, the accuracy increases
considerably for the excited states, D being larger
than 4.5 for every value of As when n'& I [see Fig.
2(b)]. The crossing of the curves for n'=2 and
n'= 3 in Fig. 2(b) seems to be accidental and we do
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FIG. 2. (a)-(d) The "number of significant figures" D, defined as D= -logIO( (Sar Ss)/Ss~, in the energy eigenvalue

Spf obtained from the phase-integral quantization condition (3) with (39a)- (39d) is plotted as a function of the parameter
describing the degree of anharmonicity of the oscillator for various quantum numbers n and the orders 2N+1=1, 3, 5, 7
of the phase-integral approximations. As the parameter which describes the degree of anharmonicity (and increases
with increasing anharmonicity), one can choose the parameter X used by Banerjee (Bef. 18), which we denote by Az„or
the parameter X used by Hioe and Montroll (Ref. 21), which we denote by AHM, or the parameter n used by Chan et gl;
(Ref. 15). Figures 2(a), 2(b), 2(c), and 2(d) refer to the phase-integral orders 2N+1=1, 3, 5, and 7, respectively.
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not attach any particular significance to it. When
one proceeds to the fifth- and seventh-order ap-
proximations the accuracy increases further, ex-
cept for the few lowest-lying energy levels; see
Figs. 2(c)-2(d}. From Figs. 2(a)-2(d) it is seen
that when ~~ & 1, the accuracy of the eigenvalue of
the ground state (n'= 0), as well as of the next
lowest state (ri'= 1), is practically independent of
the order of the phase-integral approximation used
(for 2N+1 (7). This is not surprising in view of
the asymptotic nature of the phase-integral approx-
imations.

E(u) E(q-=l) =,f () —).' sin'a)'i'da
0

. 8
dn'u du,

0

m/2

E = E(K—) —=E(v/2, k) = (1 —k' sin'3)') 'd6
0

K

dn udu
0

1

1 1x3'=- 1-(-')'k'-- k4- ~ ~ ~

2 3 2x4

(A2a)
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E=m/2 when k=0,

K nE=—+—
2 4Z

(A2c)

. [r(I/4)]'
+

[& 1 4 ~, when k=1/v 2, (A2d)

E;-E ~ . . . , 5 1x3',= —1+—', (-,')'k'+- ~ ~ ~

k2 4„'' 3 2x4

K-8
k2 4

as k-0 (Asb)

Note that Bowman" (Example 1, p. 24) gives this
expansion incorrectly.

APPENDIX A: SOME USEFUL RELATIONS
AND FORMULAS INVOLVING ELLIPTIC FUNCTIONS

AND ELLIPTIC INTEGRALS

In this appendix we first collect the relevant
formulas involving elliptic functions and elliptic
integrals which are needed in the present paper.
Then we derive a decomposition formula for the
function sn '"u dn '"u (n and m being positive in-
tegers), which is used to evaluate the integrals
(28b)-(28d) in Sec. III.

From Refs. 22 and 23 we collect the following
formulas:

snu = siny,

enu= cosy,

dnu = (1 —k' sin'y)' i',
k'= (1 —k')'i',

SIl Q+ Cn u= 1
q

k2 sn'u+ dn'u = 1,
dn2Q —k2 en2Q = k'2

k" sn'u+ en'u = dn'u,

—(snu) = cnu dnu,
du

(A4a)

(A4b)

(A4c)

(A5)

(A6a)

(A6b)

(A6c)

(A6d)

(A7a)

da
u —= (y, k) =J (1 k2 s. 2@)) /

0
(Ala) d—(cnu) = —snu dnu

du
(A7b)

K=F(m/2, k)= (, , ),i,0

=—1+ (-,')'k'+ k4+ ~ ~ .
2x4

—(dnu)= —k snucnu.
d = 2

du
(A7c)

For m positive, negative, or zero we in'troduce
the definition

=-&(2, 2;1;k'),
2

(A1b) dQ

sn u
(A8a}

K=w/2 when k=0,

K= when k= 1/W2,
[r(l/4)]'

4 w

(Alc)

(A1d)

by extending the corresponding definition used by
Byrd and Friedman, "p. 192. From (A8a) we ob-
tain the particular formulas
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BD= u,
1 cnu dnuB,=, du=u-Z(u)-

Sn Q snu

and the recurrence formula

2m (1+k') (2m —1)k'
+2

2ppg + ] 2m
2ppg + ]

cnQ dnu
(2m+1}sn' +'u'

(A8b)

(ASc)

(AQ}

which can be proved by complete induction. To
prove that if (A13} is valid, the formula obtained
by replacing n by n+ 1 in (A13) is also valid, one
uses (A12c), with m replaced by p, and p, replaced
by p, ', and the formula

m m-X

g (n-1+m —p)! g (n-1+ a)!
q(n —1}!(m —p)!, (n —.1)!a!

(m —X+n)!
(m —X)!n!

dQ
m d m (Aloa)

from which we obtain the particular formulas

Following Byrd and Friedman" p. 194, we use the
definition

(A14a}

To prove that if (A13) is valid, the formula ob-
tained by replacing m by m + 1 in (A13) is also
valid, one uses (A12b), with n replaced by v and
v replaced by v', and the formula

Io=u,
1 1 k2snu cnu

(Alob)

(A10c)

rn-1+n- v f ~ m -1+a I

q (m —1)!(n—v)! ~0 (m —1)!a!
(n —A. +m)!

and the recurrence formula

2m(l+ k") 2m —1
(2m+1)k" '" (2m+1)k"

k'-snu cnu
(2m + 1)k"dn'""u ' (All)

(A14b)

which is the same formula as (A14a), although

different notations are used.

We shall now decompose the expression
sn '"udn ' u (n) 1, m ) 1) into terms containing
sn '"u (1 & v & n) and dn '"u (1 & p, &m) separately
Using (A6b), we obtain the formula

1 1
+snudnu snQ dnQ

(A12a)

by means of which one can easily prove the more
general formulas

I 2(n-V) )Pn+, , n~1
sn QdnQ ~ —i sn Q dnQ

(A12b)

1
2m 2 + 2Psn'u dn' u sn'u dn'"u ' (A12c)

by complete induction. The formulas (A12a)-
(A12c) are particular cases of the formula

1 ~ (m —1+n- v)! k'i" "~

sn'"udn'"u ~ (m —1)!(n-v)! sn'"u

(n —1+m —v.)! k"
„,(n —1)!(m —!j.)!dn'"u '

n) 1, m )1, (A13)
I

APPENDIX 8: DECOMPOSITIONS
OF THE EXPRESSIONS IN THE INTEGRANDS
ON THE RIGHT-HAND SIDES OF (28a)-(28d)

Since most of the expressions in this appendix
require large space, we shall here use s, c, and
d as short-hand notations for snu, cnu, and dnu,
respectively.

Using (A6b), we can write the integrand in the
right-hand member of (28a) as

s'd' =s' —k's'.

Using (A12a), (A6b), and (A5), we can decom-
pose the integrand in the right-hand member of
(28b) as follows:

1+4k' —6k's' 1+4k' k'(1+4k ')
S2d2 S' (Blb)

The decompositions of the expressions which ap-
pear in the integrand in the right-hand member of
(28c), obtai. ned by means of (A13) and (A5}, are

(d' —k's')'(1+4k' —6k's')c' 1+4k' 1+10k' 2k'(3 —k' —4k ) 2k (1+8k' —Sk )
ssds S S s' s

2k'(1+8k ' —Sk ) 2k'(3 —k ' —4k ) ke(1+10k ') k'k '(1+4k ')
d d d (B1c)
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(1+4k —6k s')' (1+4k )' 3k'(1+4k )(1 —4k ') 6k (1 —16k +16k )
s'd' S6 S S2

6k'(1 —16k'+ 16k ) 3k'(1+ 4k")(1 —4k'} . (1+4k")'k'
d2 d

(Blc )

Similarly we obtain the decompositions of the expressions which appear in the integrand in the right-hand
member of (28d),

(d' —k's') (1+4k' —6k's')c 1+4k' 2+15k'+4k 1+18k'+10k» —16k'
,14d14 S'4 S" S 10

k'(7 + 8k' —52k'+ 16k') 2k'(1 —28k'+ 29k»+4k')
S8 +

S 6

2k'(-10 + 34k' + 7k» —2&k') 2ko(13 + 2k' —84k + 56k')
. S4 +

S2

2k "(13+2k ' —84k +56k ') 2k'o(-10+34k '+7k —28k ')
d2

2k'o(1 28k' +29k' +4k' ) k o(7+8k' 52k' +16k
d' d'

k' (1 + 1&k '+ 10k —16k ') k' k '(2+ 15k"+ 4k' ) k' k '(1+4k ')
d12 14 (Bld)

(d' —k's')'(1 + 4k' —6k's')'c' (1 + 4k')' (1 + 14k' —8k )(1 +4k')
12d12 S 12 S10

k'(10+45k' —120k'+16k') k'(l3 —144k'+96k»+64k')
+

S 8 S 6

2k'(-28+ 75k'+ 72k' —112k') 2k'(35+42k' —336k'+ 224k')
+

S4 S2

2k'o(35+42k ' —336k '+224k ') 2k"(-28+75k '+72k —112k ')
d2 d'

k' (13 —144k '+96k +64k ') k' (10+45k ' —120k +16k )
d' KL78

k'o(1+4k ')(1+14k ' —&k ) k' k '(1+4k ')'
dIO dl2 (Bld )

(d' —k's') (1 + 4k' —6k's ') [1+4k '+ 4k'(1 —2k')s ' —24k's 'd'] c'
S 12d7

(1+4k')' (1+4k')(1+ 26k' —8k») k', (22+ 129k' —264k + 16k')
S 12 S10 +

S8

'

k (49 —444k'+ 336k» + 64k') 2k'(-106 + 345k' —4&k» —112k')
S 6 +

S4

2k'(1 —2k')(-185 —112k'+112k ) 2k'o(1 —2k ')(-185-112k '+112k ')
+

S2 d2

2k' (-106+345k ' —4&k —112k ') k' (49 —444k '+336k +64k ')

kio(22+ 129k' 264k' +16k'o) kro(1+4k )(1+26k' &k' } kook (1+4k' )
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[1+4k'+ 4k'(I —2k')s' —24k's'd'] 'c'
S12d 12

(1+4k')' (1+4k')(I+38k' —8k~) k'(34+357k' —408k +16k')
S 12 s 10 s 8

k (229 —1320k'+576k +64k') 2k'(-472+1335k' —168k —112k')
s 6

- + s

2k'(1055 —1998k' —336k~ + 224k') 2k'0(1055 —1998k ' —336k ~ + 224k ')
s 2 + 2

2k'o(-472+1335k ' —168k '- 112k 8) k'0(229 —1320k '+576k +64k ')
+

d 6

k'0(34+357k ' —408k +16k ') k'0(1+4k ')(I+38k ' —8k ) k'Ok '(I+4k ')'

APPENDIX C: THE LIMITING CASES
OF THE SIMPLE HARMONIC OSCILLATOR

AND THE PURE QUARTIC OSCILLATOR

1 l1'K '1fQ
lim p &pdf =—=
A~p p 2~b

(Cla)

The right-hand side of each one of the formulas
(39b)-(39d) is the product of k' and a factor that
remains finite as k'- 0, and therefore we obtain

The harmonic-oscil. lator limit: The harmonic-
oscillator limit is attained when ~-0, i.e. , c-0,
which according to (26b) and (29b) implies that
k'-0 and»-4a/~b. Then k - I, E-ri/2, and

(K —E)jk'- rr /4, and from (39a) we obtain

which according to (26b), (A5), and (29b) implies
that k-k - I/~2 and»-4(4a'/c)' Using. the
values of K and E obtained from (Ald) and (A2d),
we obtain from (39a)-(39d) in the limit of the
quartic oscillator (b- 0)

[r(1/4)]'» [I'(I/4)]' /4a'

r 24~ir 6~ir ( c

(C4a)

2rr~ir rr~ir 4a' ) -'4
[r(I/4)]'» 2[r(l/4)]' c ]

(C4b)

lim ~ z2d&=0,
0 r

(Clb)
Z4d

ll[I'(1/4)]' 11[r(I/4)]' 4a'l
r 12& n»' 768Vrr c j

(C4c)
lim 2 z4dg=0,

0 r
lim Z6d'g = 0.
k~0 I"

(Cl c)

(Cld)

= (n + 2) rr, n = 0, I, 2, . . .
2 b

(C2)

Inserting here the expressions (20a)-(20b) for a
and b, we get the well-known result

h = (n + —,') trid, n = 0, I, 2, . . . (C3)

The quartic-oscillator limit: The quartic-
oscillator limit is attained when +-0, i.e. , b-0,

In the harmonic-oscillator limit we thus see that
the quantization condition (3) is the same in every
order of approximation and is given by

18788rr Wm

15[1(I/O) ] '»'

4697'~~ 4a' -"
3840[r(I/4)]' (C4d)

Krieger et al "have s.tudied the pure x'" oscillator
and given a quantization condition [their Eq. (6)],
which, when specialized to 2v =4, is equivalent to
the fifth-order quantization condition obtained
from our formulas (C4a)-(C4c) and (3) with N= 2.
When (C4a)-(C4d) are inserted into (3) with N= 3,
the resulting seventh-order quantization condition
is equivalent to the one obtained by truncating Eq.
(14) in Ref. 25 after the term corresponding to
n=s.
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