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Static dust sphere in Einstein-Cartan theory
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A class of solutions of the Einstein-Cartan theory for the static spherical dust distribution is obtained. The

equilibrium of the distribution is found to be due to the balance of the gravitational attraction and the repulsion due

to the spin and torsion effect.

l. INTRODUCTION

Following the work of Trautman, ' the Einstein-
Cartan equations with special reference to a per-
fect-fluid distribution were studied by Prasanna.
He obtained some interesting solutions adopting
Hehl's3 approach and Tolman's4 technique. If one
assumes that the equation of hydrostatic equilibri-
um holds as in general. relativity, a space-time
metric s'imilar to the-Schwarzschild intel-ior solu-
tion satisfies the. Einstein-Cartan equations. How-
ever, the metric no longer represents a homoge-
neous Quid sphere, and at the boundary of the
fluid sphere the hydrostatic pressure P is discon-
tinuous. Further the general relativistic boundary
condition that the metric potential are C ' is not
satisfied.

In this paper we first make an investigation of
the role of spin and torsion in the case of a purely
static distribution of incoherent dust and are led
to the conclusion that the incoherent dust distribu-
tion may exist in a static condition under the com-
bined effect of gravitation, spin, and torsion when
the metric potentials are no longer C'. We here
make a study of a pure static incoherent spherical
dust distribution.

II. EINSTEIN-CARTAN EQUATIONS

III. SPHERICAL DISTRIBUTIONS

We consider a spherically symmetric dust dis-
tribution represented by the space-time metric

ds2= e2"dt2 e2"d-r~ - r2de2 r~ sin2-&de' . (3.1)

We consider further the simplest case where the
spins of the individual particles composing the
dust distributions are all aligned in the radial di-
rections. However, such an alignment of spins is
completely artificial. Then from Eqs. (2.4) we
get for the spin tensor the only surviving compo-
nent Szs. Since the distribution is supposed to 'be

static, we have the velocity four-vector u'

=5o(goo) ' . Thus the only surviving components
of S'„are

S28 S32 k(goo) (3.2)

Hence from Eqs. (2.2) we get for Q'» the compo-
nents

@tk = -@32= —&&&oo)"
The field equations (2.1) now may be written,
using (3.1) and (3.4), setting

(3.3)

and

[puk —gk'u'V (u S„)]V,u,.

=-V,(u'u&)+ukS, R", kukS—, R™».(2.6)

The Einstein-tartan equations are

R g -3& ~R =-t&t ~, (2.1)

SmG
with 6 =c =1

0 (3.4)

@ fk 5 jQlk 5 k@fl ~S Jk~
l

where t'& for an incoherent dust is given by

(2.2)

(2.3)

S»—u Sz~ with u S&„—0 .
From the Bianchi identities we have

Vk[pu -g 'u'V (u S„)]=0

(2.4)

(2.5)

t'z ——[pu -g' u V~(u S»)]u»

p being the matter density and u' the velocity-four
vector, with u'u;=1, V the usual covariant de-
rivative, and S,~ the intrinsic angular momentum
density. The classical description of spin is then
defined by the relation

1 2~t 2vI 1 t-~+e "( +~
I

=8mp,f' j
2 ~ ~

1v" + v'2 —p, 'v'+-(v' —p') = Bmp,
y

1 2~ 2p, 1~ +e " ——
2

——8',r y y'

(3.5)

(3.6)

(3.7)

dp
dr +(p+p)v'=0. (3.6)

where p= p -2rk2 is the effective density of the
distribution and P = -2m@ is the effective pres-
sure. k The equation of continuity (2.6) becomes
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e 2" =1 -Ar4,

where

(3.9)

Swapo

5a2 (3.10)

To obtain the differential equation for e", we
write the derivatives of v in the combination of
Eqs. (3.5) and (3.6) in terms of derivatives with
respect to x =r2:

4xe "(e")„„+2x(e'")„(e"),

1 -2g
+ —— + (e ~")„e"=0, (3.11)x x

where the subscript x denotes the differentiation
with respect to x. On substitution of (3.9) into
(3.11) we obtain

The set of Eqs. (3.5)—(3.8) describes a system
of classical spin fluid with zero pressure. Al-
though the effective pressure P is found to be nega-
tive, we find that the effective pressure supplies
the necessary repulsion against the gravitational
attraction for the fluid. Equation (3.8) admits
solution corresponding to p & 0 and k2 & 0. Of the
four Eqs. (3.5)-(3.8), only three are independent,
the last equation being a consequence of the Bian-
chi identities. To consider solutions of Einstein-
Cartan equations, we use (3.5), (3.6), and (3.7).
As there are four unknowns, we now have in
principle a completely determined system if any
one of the unknowns is arbitrarily specified.

We consider a simple case where P = (p —2wk')
=p~r~/a~, po = constant. Such a distribution seems
to be reasonable in the sense that at the origin, if
the spin density vanishes, the matter density,
which is intrinsically related with the spin density,
also vanishes. Equation (3.7) can be integrated to
give

4

4 -4tanh ~ sin 'vA, a'& 0.1-Aa4 (3.16)

The equality sign holds for the case k2 =0 at r =a.
However, -the constants A and B can be deter-

mined from the boundary conditions. Assuming
that the sphere has a finite radius r =a, since the
torsion does not contribute for r & a, the metric
is represented by the Schwarzschild solution

2de'= (1 — df' —
~

1 — dr'r
-x d8~ -x~ sin 8dg~, (3.17)

where m is the Schwarzschild mass. With this
we use the boundary condition

I

[e '"].-.=(""].-.=
I,
' —,,I

~ (3.18)

From (3.18) we have

(q smII" cosh~ sin 'vAa'.

Incidentally, for this particular choice of p™one
obtains also the continuity of v„' at the boundary
suitably choosing the constant p(). The continuity
of g« ——-e " is satisfied by m =

&
zp~a3, but its

derivative is discontinuous. A discontinuity in the
derivative of radial gravitational field is usually
encountered on the boundary of systems containing
diffuse distribution of matter. 6'~ However, in our
case, the discontinuity in the derivative of e " is
due to the curvature coordinates and is not incom-
patible with the set of Eqs. (3.5)-(3.7).

-16& k =2' tanh(~ sin 'VAr')(1-A~~)~ -Ay
(3.15)

From (3.15) it is evident that at r = 0, k~ = 0.
Further, to guarantee the real values of k, we
impose the condition

(1 -Ax~)(e")„„-Ax(e")„——,'Ae" =0 . (3.12)

Now making a change of variable vX) = sin %Ax,
we get for (3.12)

[e"(&)]„=-'Ae"(h), (3.13)

e"=8cosh& sin 'WAr', (3.14)

where B is an arbitrary constant of integration.
The other constant of integration has been set
equal to zero to ensure

v' =0 at r =0.
From Eq. (3.5) we have, on substitution of v' from
(3.14) and (3.9),

where the subscript $ represents the differentiation
with respect to g. The Eq. (3.13) can be easily
integrated to give

IV. DISCUSSION

Following the scheme of Hehl et al. , we obtain
a class of solutions that represents a static inco-
herent spherical distribution of dust in equilibrium
under the influences of torsion and spin. From
(3.V) we find that the contribution of the classical
spin density to To is -2' . This negative contri-
bution of the spin density is an important feature
of the Einstein-Cartan theory. Equation (3.8)
gives the condition of balance. It behaves as an
effective repulsive force. 5 We may think of the
effect of spin similar to that of some unconvention-
al matter that produces a repulsive field giving
rise to negative energy density unlike the electro-
static field due to the charged dust. The exact
solution obtained here is based upon an initial as-
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sumption of p =pp'2/a2, which leads to p = 0 at the
center of the sphere. Although such a distribution
is not regarded as physical, it seems useful in
understanding certain aspects of the Einstein-
Cartan theory.

From (3.16) one finds that in the case of the
equality of sign, the effective pressure vanishes
at the surface of the sphere. The density p then
increases from zero value at the origin to a maxi-

mum at some value of the radial coordinate and
then decreases to po at r =a.

ACKNOWLEDGMENTS

It is a pleasure to thank Dr. A. Banerjee with
whom we had many useful discussions. Ne also
express our thanks to CNPq and FINEP of Brazil
for financial support.

'A. Trautman, Nature (London), Phys. Sci. 242, 7 (1973).
A. B.Prasanna, Phys. Bev. D 11, 2076 (1975).

3F. W. Hehl, Gen. Belativ. Gravit. 4, 333 (1973); 5, 491
(1974).

B.C. Tolman, Phys. Bev. 55, 364 (1939).
W. Arkuzewski, W. Kopoczynski, and V. N. Ponomariev,

Ann. Inst. Henri Poincare A12, 89 (1974).
~K. C. Chung, T. Kodama, and A. F. da F. Teixeira,

Phys. Bev. D 16, 2412 (1977).
A. F. da F. Teixeira, I. Wolk, and M. M. Som, Phys.
Rev. D 12, 319 (1975).


