
'-VS CA- .&=V. =W
PARTICLES AND FIELDS

THIRD SERIES, VOLUME 24, NUMBER 10 15 NOVEMBER 1981

Effect of curvature-squared terms on cosmology
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We consider the effect on Friedmann cosmology of adding all possible algebraic terms quadratic in the curvature
tensor to the usual Einstein-Hilbeit action for gravitation. Assuming that the vacuum energy density (cosmological
constant) is not extraordinarily large in any phase of the evolution of the universe, we find that the cosmological
solutions of this more general theory are indistinguishable from standard Friedmann models all the way from the
initial singularity to the present.

In quantum gravity it has become fashionable re-
cently to consider Lagrangians constructed from
curvature-squared terms in addition to the usual
term linear in the scalar curvature R. The cou-
pling coefficients appearing in these Lagrangians
can be chosen so that the resulting gravitational
theories possess several desirable features: re-
normalizability, asymptotic freedom, and a Eu-
clidean functional integral convergent on the metric
conformal. factor. ' lt is consequently of interest
to compare classical solutions of these more gen-
eral theories to the usual solutions. In this paper
we consider Friedmann cosmologies. These are
of particular interest because of the importance of
the early universe in grand unified theories of ele-
mentary particles, 4 and, of course, only near a
singularity (such as that at t =0) should we expect
to see deviations from Einstein's theory. This is
because a typical quadratic action density, R', is
comparable to the Einstein-Hilbert action density
(1$rG) 'R only in a region of extreme curvature
where R & (16m G) ~ (taking c =S= 1).

The most general algebraic gravitational action
Sc which is at most quadratic in the curvature
tensor can conveniently be written as~'

ated into the matter action.
Isotropic, homogeneous cosmological models

are based on' the Robertson-%alker metric'.

ds'=df —Q (t)(1 —kr') 'dr' —Q (t) r d8

—Q'(t) r'sin'8dy',

where f is the cosmic time, Q is the (dimension-
less} cosmic scale factor, normalized to unity at
the present, and k is the present radius of
curvature of three-space. If we introduce "con-
formal time" v'= J dt Q '(f), Eq. (2) becomes

ds2 = Q2 (&)[d&2 —(1 —kr2) ~cgr2 —r2d8~

—r' sin'8dg'] . (3)

In these coordinates, the entire dynamics of the
gravitational field is carried in the metric con-
formal factor A. I

If a metric g„„is a conformal rescaling of anoth-
er metric g„„,g„„=~'g„„,then the associated
curvature scalars R(g) and R(g) are related by
R(g}=Q 'R(g) —6Q 'CIQ, where & is the covariant
d'Alembertian operator formed from g„„.The
Weyl tensor scales under a conformal transforma-
tion, C„„„(g)= Q'C„„~(g).Applying these relations
to the Robertson-Walker metric (3),

$ = d4gl g —'nR2 +
& C C""~~

Qvty+

+(16 G)-'R]

where &„„„is the Acyl conformal curvature tens-
or' and o', p are dimensionless constants. We have
not included an explicit cosmological constant term
in (1) since such a term may instead be incorpor-

z„.= Q'(r)Z„.,
g„„=diag[1, —(1 kr') ', r'-, -r's-i 8]n,

&-g=Q' 'sin8(1-kr') '~',

R(g) =-6k,
R (g) = —6(kQ 2+ Q SQ),

(4a)

(4b)

(4c)

(4d)

(4e)
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(4f)C„„„(g)=0,
where a dot means d/d&. It is a remarkable fact
that relations (4c), (4e), and (4f) can be inserted
directly into the action (1); the equations of mo-
tion for are still the same, but the action sim-
plifies greatly:

So(ll)= p, I d{T1 a8{1+1)t(t'(]+((1 'tt) ]
—3(8vG) '[hQ' —(0)']}, (5)

where we have integrated by parts and discarded a
boundary term to transform QQ to -(Q)', and
where V3 is the present volume of three-space:

2 'h-"' (h&0),
P3 —= dy d Q d y $ july' ~ s intdI

(h-o).
(8)

In fact, splitting g„„into Q and g„„(wheredetg„,
is a specified function) always preserves the equa-
tions of motion and has equivalent action for any
spacetime dependence of Q. Ifg„„is fixed a priori,
the theory is called scalar gravity [see Eq. (8) of
Ref. 3 for the general formula].

Since all dependence on P has disappeared from
(5) by virtue of the conformal flatness (4f) of the
Robertson-Walker metric, we conclude that any
isotropic, homogeneous cosmology u)hich satisfies
the field equations arising from (1) or (5) is inde
pendent of p. (More generally, any geometry for
which C„„„C""~vanishes will not depend on p. )

We add to S~ the matter action S„describing the
material content of the universe. The energy-mo-
mentum tensor T""of matter, defined by

—,& gT "~N & Pl]

5g„„
acts as the source of the gravitational field and is
covariantly conserved,

TPP 0 (8)

For the Robertson-Walker metric only the con-
formal factor Q is dynamical, and (7) simplifies to

5S„ '4 g60

P]d = 0 (matter),

Ps = ps/3 (radiation),

P y = —p„(vacuum),

(1Sa)

(lsb)

(13c)

p„(Q)= p«A (matter),

p„(Q)= p,„Q' (radiation),

Py(Q) = Pay (VaellUX11) 1

T)d(Q) = p«A ' (matter),

Ts(A) = 0 (radiation),

Ty(Q) =. 4P()y (vac]llllll) 1
~

(14a)

(14b)

(14c)

(15a)

(15b)

(15c)

where p, is the density when ~=1. In all three
cases T is independent of time derivatives of ,
so (9) may be integrated directly:

S„((t)= -V, f dr dtd m'T(m),
0

where & is an integration variable. In particular

tion of state relating pressure and density:

P =P(p)

There are three principal fluids of interest in
cosmology: one, a cold, pressureless dust appro-
priate to the matter-dominated era, two, radia-
tion, consisting of massless or ultrarelativistic
massive particles, believed to characterize the
early universe, and, three, the "vacuum fluid" of
constant density and pressure. This third case
has traditionally been interpreted as describing
an empty universe with a nonvanishing cosmologi-
cal constant. More recently, it has been sug-
gested' that if spontaneously broken gauge theories
undergo a symmetry-restoring phase transition in
the early universe, a large vacuum energy density
should appear, possibly dominating the evolution
of the universe for a brief period. "

Substituting the equation of state (12) for each
fluid in the conservation equation (11), we may
solve for the density and pressure as functions of
Q, and thereby determine via (10) the trace T(Q)
of T„'in each of the three cases:

where T —= g„„T""is the trace of the energy-mo-
mentum tensor.

For the purposes of cosmology, the matter con-
tent of the universe is assumed to be a perfect
fluid of density p and pressure I', for which

(' p, „ fdr(t (mtttter),

~ ~S„=—V3 x 0 radiation,

, poy dy Q (vacuum) .

(1'la)

(17b)

(1.7c)
T„"= diag( p, -P, -P, -P) .

The energy conservation equation (8) becomes

(pQ')+3PQ2=0. (11)

To supplement (10) and (ll) we must give the equa-

Equation (17b) seems to suggest that the radiation
content of the universe is irrelevant to its evolu-
tion. This apparent paradox is resolved below.

Combining (5) with (16) we arrive at the total
action Sr(A):
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s,(Q) -=s, (Q) +s„(Q)

= —) . Jl drI(8G[k +kkG 'G+(G 'G) ) —8(8rG) '[kG —(Gl ]+ I dials 8'(al)I
0

V3 dvL O, , Q . (18)

Evidently, I is a one-dimensional, higher-deriva-
tive Lagrangian. Varying Q in (18) yields a fourth-
order equation of motion. However, because L has
no explicit time dependence, by analogy to ordinary
mechanics, there exists a constant of the motion
(energy), V~, which depends on derivatives of Q

no higher than third. The constant density p is
easily found to be

I BL l(sl.
i.eg &egj . eQ

=18&[-h +(Q Q) +2h(Q Q) 2(Q-oQ)' Q]

0
+3(SING) '(hQ2+Q2) d(8) (8)'T(oo) .

0

Note that the kinetic contribution to the energy ~,p
is not positive semidefinite, which is characteris-
tic of higher-derivative actions. From (15),

P~Q (matter),

Jl d[o (O'T((d) = , 0 (radiation),
0

p«Q (vacuum) .
(20)

Setting o' = 0 and using (20), Eq. (19) can be written

pouQ '+pQ ' (matter),

Q '(hQ'+Q') = & pQ ' (radiation), (21)4 2 2 SING

3
por+pQ ' (vacuum}.

This is just the first-order Friedmann cosmology
equation of standard general relativity, the 00
component of the Einstein field equations, which
requires us to identify the constant of the motion p
with the radiation density constant p,~. Radiation
thereby contributes to the equation of motion fear
A.

When o'& 0, we seek solutions of the generalized
Friedmann Eq. (19) which can be rewritten as

Q '(Q'+hQ') +48vGoQ '[ h'+ (Q-8Q)' 2h(Q-~Q)' 2(Q-'Q)' Qj- p (22)

(23)

with solution Qr
-=Q(7, h, pos, p«, 0). By substitut-

ing Qr into the full equation (22), and using the
fact that Qr satisfies (23), we verify the remark-
able result that G~ is also an exact solution of the
generalized Friedmann equation provided that

poR= pos[1 — (8v } ~por~ ~G

That is,

(24)

where p is the total density of matter, radiation,
and vacuum energy. For a universe predominantly
filled" by radiation and/or vacuum energy,
p=p,„ '+p«, where p,~ and p,& are, respective-
ly, the radiation and vacuum densities when =1
and where the solution Q of Eq. (22) is a function
of rk h, poz, por, and &; i.e., Q=Q(r, h, po„,p«, o'.).
To proceed, we set c( = 0 in (22) and replace p» by
a different constant p,~, which results in the ordi-
nary Friedmann equation

Q(&» pox por c()=Qr

=«&,h,pos[1 »«)'&poet-',por 0)

(25)

Therefore, any isotroPic, homogeneous cosmology
which satisfies the standard Friedmann equation
for a radiation and/or vacuum energy-dominated
universe is also an exact solution of the general-
ized Friedmann equation (22) arising from the ac-
tion (f) after rescaling the radiation density in
accordance with (24)." Note that if p«-0 (pure
radiation) or pos=0 (pure vacuum energy}, no re-
scaling is required and the Friedmann solutions
directly satisfy (22). These "pure" solutions are
independent of &.

It is easy to see that the rescaling of the radia-
tion energy density implied by (24) must hold in
spacetimes much more general than the Friedmann
cosmologies. The field equations arising from the
action (1) with P =0 for an arbitrary spacetime
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filled with radiation and/or vacuum energy are

T„„„+p,rg„„=(8mG) 'G„„
+u(2R.„.„-2g„„R+2RR„„

—2g„.R'), (26

where G„„=—R„„-2g„+is the Einstein tensor. If
u =0, the trace of (26) is

R 327T~p« (2'I)

since T~=0. Because R is constant, the full field
equations (26) with «0 reduce to

T„„„.+p,rg„„=(8m G) 'G„„+u(2RR„„——,'g„„R')
= (8wG) '(I+1&rGuR)G„„+p ug„„R'.

(28)

Rearrangement of (28) and division by I+16mGuR
yields

(8~G)-'G„„=(1+16 GuR) 'T „„-
+ (1+16~GuR)-'(p,„-.' uR') . (29a)

Substituting (27) into (29), we have finally

(8vG) ~G„„=[1— (88wG)' puov] 'T„„„+pong„„
(29b)

which is just the ordinary Einstein equation with a
rescaled energy-momentum tensor T~„„definedby
the analog of Eq. (24):

T„„„=T„„„[1—8(8vG) upov] '. (30)

To establish limits on u (since p is irrelevant to
cosmology), we consider the nonrelativistic, stat-
ic, weak-field limit of the field equations arising
from the action (3) when P =0. In this limit, the

gravitational potential V(r) due to a point mass M
at ~=0 takes the form"

V(r)= —— e~[ (48vGu) '~-'r]. (31)3r

V(r) has a well-behaved Newtonian limit contain-
ing a Yukawa term e ""/r if u~ 0. Taking u&0
yields the oscillatory term e"""/r, most likely
indicating the unacceptable presence of tachyons
in the underlying quantum theory. In order that
the Yukawa contribution to V(r) not spoil agree-
ment with Newtonian gravitation for distances &1

cm, we have the limits

0 ~ 0. ~ 10".

By (24), the effective radiation density p» be-
comes infinite and changes sign when p«
= [8(BING)'u] '=10"u ' gcm ', or, using (32), when
p«&10" gcm '. This vacuum energy density is at
least 10"times larger than the densities consid-
ered in Hefs. 9 and 10. Moreover, if &= 1, as is
plausible by analogy to gauge theories, p«would
have to reach the Planck density (10' gem ') to
significantly rescale p». Barring such extremely
large vacuum densities, we conclude from (24)
that p» = po„and thus from (25) that Q is indistin-
guishable from the usual Friedmann solution. In
particular, for p««10"+ ' gcm ' the presence of
—,'uR'+ 2P C„„„C""in the action (1) cannot (clas-
sically) halt the collapse of a contracting homo-
geneous, isotropic universe to a singularity. '

The recent history of the universe (Q&10 ')
appears to have been matter dominated, p= p,&~ ',
in which case (22) can be written

Q '(Q'+pQ') — Q '( —18uQ '[ k'+ (Q 'Q)'+2k(Q 'Q)' —2( Q 'Q) Q]]
3

(33)

While we have not discovered an exact solution of
(33), the second term on the right can be viewed
as a correction to the matter density constant p~.
At the present epoch, ~ = 1, 0= H= 10 "cm '
= 10 ", where H is the Hubble parameter, equal to
10" in Planck units where G=c =@=1. In these
units we can also estimate ~ &&'=10 "', Q~H'
=10" k~H =10 ' . Since &~10' we find the
correction to p» is

18uQ [-Q + (Q 'Q')'+20(Q 'Q)' —2(Q 'Q) Q]

~ 't2uII'= 10 . (34)

Because p,~ = 10 "
g cm ' = 10 "', the correction

(34) is completely negligible and at the present the
ordinary Friedmann equation is applicable. To see

Q(r) = P'" -+~(r),2«pa~&'
(36)

where e «l. Inserting (36) into (33), setting 0 =0,
and keeping only those terms which are both first
order & and domin. ant as 7- ~, we find

I

that this conclusion holds throughout the matter-
dominated era, we resort to an approximate solu-
tion. For ~ small, we can ignore k, simplifying
the ordinary Friedmann equation to

4 ~, 8m 6
Qp Q~ = po~Q~3

with solution Qz(7) = 2mGp, „r/3 We ther. efore at-
tempt a solution of the full equation (33) (with k = 0)
by
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2m& pa~7 648&
~(&) = + 4 ~

5po~~
(37) fl(r) ~t8 Pox ~+ v Pou Pox 76

) 3./2

3 ) 810~ (40)

-.4g 2 PQR g -4~ Bmc
F F 3 F (38)

The solution of (38) is Qr ——(8wapos/3)~t 2T, so for
the full theory with some matter present, we write
the solution as

The correction to the ordinary Friedmann solution
is significant only for times ~ & (648o'/5p, „)'t'
= 10 '=10 sec, which is long before matter domi-
nance begins. A solution of the generalized Fried
mann equation (33) aPProPriate to a matter domi--

nated uni verse is approximated avitjiin negligible
error by a matter domin-ated solution of the ordi
nary Eriedrnann equation.

For 0 «1, the universe should be radiation dom-
inated. It may nevertheless contain a small
amount of nonrelativistic matter (e.g. , heavy
monopoles"). We now verify that such a matter
contamination cannot qualitatively alter our pre-
vious conclusions. We have previously established
that for pure radiation, 0 = ~, where D~ is a solu-
tion of the ordinary Friedmann equation (with 0 = 0
since «&1):

The correction term is rapidly vanishing as v -0,
so that at early enough times the matter contami-
nation is indeed inconsequential.

We conclude that, barring fantastically large
vacuum energy densities, the evolution of an iso-
tropic, homogeneous universe for which the grav-
itational action is (1), cannot be distinguished from
that of the standard Friedmann models. Including
higher and higher powers of the curvature tensor
and its derivatives in the gravitational action
(view the Lagrangian as a scalar formed from a
power series in A,„„andits derivatives) neces-
sitates the introduction of higher and higher pow-
ers of dimensional constants. We have seen that
the effect on Friedmann cosmology of the second-
order terms is negligible; we expect the effects
due to third- and higher-order terms to be small-
er still. None of these higher-derivative theories
can then substantially deviate from the standard
cosmology. Since the Friedmann solutions also
arise in Newtonian gravitation, "which is the non-
relativistic limit of Einstein's theory, this demon-
strates the universality of the Friedmann models
across a wide class of possible gravitational the-
ories."

where again e «1. Substituting (39) into the gen-
eralized Friedmann equation (22), with h =0 and p

pog+ +pp~ +, and keeping only terms first ord-
er in z and dominant as 7;0, we find
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