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Topological supersymmetric structure of hadron cross sections
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A way of fully implementing unitarity and confinement in the framework of a dual-topological-unitarization
theory, including not only' mesons but also baryons, has recently been found. This theory consists in the topological
description of hadron interactions in terms of two two-dimensional surfaces {a closed "quantum" surface and a
bounded "classical" surface). We show that this description directly leads, at the zeroth order of the topological
expansion, to certain relations between hadron cross sections, in nice agreement with experimental data. A new
topological suppression mechanism is shown to play an important dynamical role. We also point out a new
topological supersymmetry property, which leads to realistic experimental consequences. A possible topological
origin of the p and ~ universality relations emerges as a by-product of our study.

I. INTRODUCTION

It is well known that dual topological unitariza-
tion' (DTU) is a promising approach to S-matrix
theory, which attempts to calculate hadron spect-
roscopy and scattering using only crossing and
unitarity, and the maximal analyticity consistent
with these properties. This approach, which is
particularly suitable for small momentum trans-
fers (and hence large distances), can be regarded
as a way of dealing with quark confinement. In
this sense, the DTU approach appears to be com-
plementary to the perturbative quantum-chromo-
dynamics (QCD) theory, which nicely describes
large-momentum-tr ansf ers physics.

The DTU program involves two stages:
(i) In the lowest order of the topological expan-

sion one assumes that the full amplitude ~ can be
written as a linear combination of a set of "or-
dered" amplitudes T with simpler properties.
Namely, they satisfy simple crossing properties
and also a form of reduced unitarity, which does
not incorporate exchange effects. If we now com-
bine this reduced unitarity and crossing with max-
imal analyticity, we are led to a system of self-
consistent (bootstrap) equations, whose solution
would give a lowest-order hadron spectrum. It
is important to note that in the zeroth order of the
topological expansion, duality appears as an exact
property (topologists give the name "the Whitehead
move" to the transformation which physicists refer
to as "the duality property").

(ii) In higher orders of the topological expansion
one brings in exchange effects through a topologi-
cal expansion. All higher-order contributions are
systematically computed from the zeroth-order
contribution. The topological complexity index
defines the meaning of "higher orders". It must
possess an "entropy" property: under any uni-
tarity product either it stays stationary or it in-

creases. An "order relation" can be so defined.
The assumed convergence of the topological ex-
pansion ensures that more complex, "disordered"
contributions are suppressed when compared with
simpler, "ordered" contributions. DTU can thus
be viewed as an S-matrix topological perturbation
theory, which incorporates (and even requires) a
given quarklike structure of hadrons.

The' DTU approach to hadron physics is quite
successful in the case of the mesons. ' However,
its extension to the baryons is intrinsically diffi-
cult, because of the complex nature of the topo-
logical complexity index which governs the topo-
logical expansion. For several years, no way was
found for fully satisfying any kind of reduced uni-
tarity at the lowest level.

Recently, important progress has been made in
this direction. This has led to the necessity of
considering a new "quantum surface'"' which is
conceived as the source of the internal quantum
numbers and is responsible for confinement. This
new topological variety has to be considered in
addition to the "classical surface" which describes
the space-time structure of hadron collisions. 4

An important step forward has been the elaboration
of a coherent method for incorporating spin into
the topological expansion. '

Finally, a complete topological expansion theory,
involving both the "classical" and "quantum" sur-
faces, has been formulated. ' An interesting novel
feature of the theory of Ref. 6 is the explicit em-
bedding of the Landau unitarity graphs on the
classical surface, which now appear in addition to
the familiar Harari-Bosner graphs. ' The rich
topological content of the theory allows the tack-
ling of questions such as the following: Vfhy is
there a confinement of quarks'P Why are there
three colors? Why is there a limited number of
flavors? At the same time it provides a firm con-
text for computing hadron observables in a region
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where the confinement phenomenon is fully re-
levant.

In this paper we want to show that the lowest-
entropy level of the theory is able to determine
a great deal of physics for an important class of
phenomena. Namely, we apply the DTU forma-
lism to the study of hadron total and inclusive
cross sections and discover that many empirical
regularities, some of them known for a long time, '
seem to have a general topological foundation. A
new topological suppression mechanism, which
appears as a consequence of the inclusion of Lan-
dau graphs on the classical surface, is shown to
play an important dynamical role. Moreover, we
show that the topological amplitudes satisfy a
"supersymmetry" property, which leads to con-
sequences which are in agreement with the data.

A short summary of the features of the new DTU
theory (including baryons)' which are relevant for
this paper, is made in Sec. II. The supersym-
metry property of the topological amplitudes re-
lating bosons to fermions is derived in Sec. III.
The topological supersymmetric structure of had-
ron cross sections is discussed in See. IV and
compared with the experimental data in Sec. V.
An interesting consequence of this topological
structure for Begge couplings is shown in Sec. VI.
Conclusions are drawn in Sec. VII.

II. SHORT DESCRIPTION OF THE GENERAL
DfU FRAMEWORK

Hadron interactions are described in the theory
of Ref. 6 by a pair of surfaces, a quantum surface
and a classical surface. The quantum surface is
two-dimensional, orientable, and closed. The
last property is related to the conservation of in-
ternal quantum numbers. The quantum surface is

I

the space of structures, the space of confined con-
stituents. The classical surface is, like the quan-
tum surface, two-dimensional and orientable.
Its distinctive feature is the fact that itisbounded
and multisheeted. The boundary of the elassica1.
surface is obtained via its intersection with the
quantum surface. This intersection (the "belt"')
leads to graphs which are very similar to the fa-
miliar Harari-Rosner graphs. ' However, the quark
lines of these new graphs describe neither the
flow of the energy-momentum of the quarks nor
their flavors, but are consistently associated with
+ —', -spin indices of the quarks. ' The space-time
aspects of hadron collisions are described by
Landau graphs embedded on the classical surface,
each Landau arc being associated with the energy-
momentum four-vector- of a particle.

A basic achievement of the theory of Ref. 6 is
the rigorous mathematical definition of a topo-

logical complexity index which possesses the pre-
viously mentioned "entropy" property: Under any
unitarity product either it stays stationary or it
increases. A given set of fixed values of the in-
dices which enter into the structure of the topo-
logical complexity index determines a given a11owed
surface pair, up to a finite number of possible
choices. The theory is thus perfectly defined at
any given order of the topological expansion.

A proper mathematical definition of the overall
topological entropy index involves a triangulation
of the quantum surface. The triangle —the two-di-
mensional simplex —appears naturally as the
"basic" object of the present construction.

The fundamental, "primordial" level of the topo-
logical expansion is the zero-entropy level, where
the nonlinearity of the bootstrap problem is con-
centrated. ' The definition of hadrons has to be
made at this lowest entropy level. All higher or-
ders have to be obtained via appropriate connected
sums (i.e., unitarity products) of the zero-entropy
amplitudes.

At zero entropy the quantum surface is a sphere
and the classical surface is a multiplane surface
with a "three-feathered" structure (i.e., can be
expressed through connected sums of an appro-
priate succession of three bounded planes inter-
secting along a "junction line" ). The Landau graph
is a univertex graph and is located on the classical
surf ace.

At the same zero-entropy level, the particles
are represented by "discs," i.e. , by bounded re-
gions of the quantum sphere without topological
singularity points (in simpler words, a disc is a
region of the sphere whose perimeter touches it-
self only once). The perimeter of a disc gives the
"identity" of a hadron, being a representation of
flavor indices, while the interior of a disc has to
be related to color indices.

It is important to note the close relationship be-
tween the notion of disc and the notion of "multi-
particle channel resonance. " Namely, the topo-
logical contraction of any collection of discs be-
longing to a given sector (or channel) of the "sphe-
rical" (or ordered) Hilbert space leads uniquely
to a given particle disc. In other words, the par-
ticles belonging to that channel resonate. Here
one can find the very root of the potential physical
mechanism controlling the convergence of the
topological expansion.

Now, the hadrons are represented in the follow-
ing way. A meson is represented by a four-edge
disc consisting of two "peripheral triangles" [Fig.
1(a)j, a baryon is represented by a six-edge disc
consisting of three peripheral triangles surround-
ing a "core triangle" [Fig. 1(b)], and a baryonium
is represented by an eight-edge disc consisting of
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.(a) (b)

FIG.-l. (a)-(c) Meson, baryon, and baryonium discs
on the quantum surface. The heavy solid lines repre-
sent the traces left by the corresponding intersection
between the classical surface and the quantum surface
(in other words they represent the segments of the
overall "belt"). The crosses denote the ends of Landau
arcs and the points J denote the ends of junction lines.
(d)-(f) The classical surfaces corresponding to the
propagators of the particles shown in (a)-(c). The
dashed-dotted lines denote Landau arcs and the wiggly
lines denote junction lines. (g)- (i) Hadron propagators
in a Harari-Rosner form, obtained by "opening" the
vertices in (d)-(f).

four peripheral triangles surrounding two core
triangles [Fig. 1(c)]. We call here "peripheral
triangles" the triangles which have a trivial ver-
tex (i.e., a vertex which joins only two edges).
It is seen from Figs. 1(b) and 1(c) that the core
triangles have no trivial vertex. All, rivial ver-
tices lie on the disc perimeters. The orientations
of the triangles correspond to an overall patch-
wise orientation of the quantum sphere' (any two
contiguous triangles in a given triangulation pat-
tern, which share at least one edge, have oppo-
site orientations).

The peripheral triangles describe the topologi-
cal flavor of the quarks (e.g. , by attaching orien-
tations on their edges one obtains eight possible
topological flavors). ' The orientations of the in-
teriors of the peripheral triangles distinguish be-
tween quarks and antiquarks. The peripheral
triangles are not discs —they have incomplete

boundaries. Therefore, they cannot appear as
physical states. The topological quarks are, by
construction, confined. It is important to remem-
ber that flavor resides on the quantum surface,
not on the classical surface.

Qn the classical surface, a meson is represent-
ed by a bounded plane as in Fig. 1(d), a baryon by
three bounded planes intersecting along a junction
line [Fig. 1(e)] and a baryonium by five bounded
planes and two junction lines [Fig. 1(f)]. (These
representations are somewhat similar to those
considered by Rossi and Veneziano' in a different
context. ) It is easy to verify that by covering the
quantum sphere with one of the particles of Figs.
l(a) —1(c) and its corresponding antiparticle and
intersecting it with the associated classical sur-
face one obtains as "belt" precisely the boundary
of the corresponding topological form shown in
Figs. 1(d)-1(f). By "opening" the vertices of Figs.
1(d)—1(f) and by an appropriate projection onto a
plane one obtains the meson, baryon, and baryon-
ium propagators in their usual Harari-Rosner
form [Figs. 1(g)-1(i)], supplemented, of course,
with Landau arcs (one per particle) and junction
lines (0 for mesons, one for baryons, and two for
baryonia). As we already discussed in the Intro-
duction, the quark lines of Figs. 1(d)-1(f) or of
Figs. 1(g)-1(i) are associated with the spin indices
of the quarks.

The consistency of the theory imposes the fol-
lowing alternative: either the spectrum of had-
rons consists of only ordinary mesons, ordinary
baryons, and baryonia or one has to start new
bootstrap cycles, involving additional multiquark
hadrons which are completely stable at zero en-
tropy (i.e., a single particle of this kind does not
couple to the particles defined in Fig. I; their non-
zero coupling would involve intersections between
Landau lines and junction lines, which are for-
bidden at zero entropy). We adopt here, for sim-
plicity, the attitude of Ref. 6, i.e., we choose the
first case: the hadron spectrum stops at the bar-
yonium level. However, the results presented in
our paper do not depend on this choice.

In order to illustrate the above general consid-
erations let us consider the simplest hadron amp-
litude: the elastic meson-meson amplitude. This
amplitude corresponds to the pair of two-dimen-
sional surfaces shown in Fig. 2(a). The'quantum
surface is the surface of the sphere of Fig. 2(a)
covered by four mesons of the type shown in Fig.
1(a), i.e., by eight triangles ("topological quarks"
or "topological antiquarks"). It is obviously patch-
wise oriented. The classical surface is the equa-
torial plane of the sphere in Fig. 2(a). It contains
a univertex Landau graph, the Landau lines ter-
minating at the quantum sphere. The belt is the



2504 P. GAURON, B. NICOLESCU, AND S. OUVRY

(c)

(e)

FIG. 2. (a) The topological representation of the meson-meson scattering amplitude M&M2 M3M4 by a quantum
sphere covered by eight triangles and by a classical plane on which is embedded the corresponding Landau graph. The
intersection of the classical and quantum surfaces is an oriented belt (the equatorial circle divided into eight segments).
(b)-(d) Alternative representations of the classical surface. (e) Ortho and (f) para oriented classical surfaces. {g)
Connected sums of spheres j,eading to a sphere. (h) Connected sums of cross-shaped classical surfaces leading to a
cross-shaped classical surface.

intersection of the equatorial plane with the
sphere: It is the equatorial circle passing through
all trivial vertices and is divided into eight seg-
ments; these segments are delimited by the quark
or antiquark triangles residing on the quantum
sphere. The belt naturally acquires a well de-
fined orientation, as a consequence of the patch-
wise orientation of the quantum surface. For ex-
ample, if the segment of the belt delimited by a

topological quark is oriented towards the trivial
vertex, then the orientation of the contiguous topo-
logical antiquark is away from the corresponding
trivial vertex. The belt thus acquires the con-
tinuous orientation shown in Fig. 2(a}.

An alternative representation of the classical
surface as an octagon is shown in Fig. 2(b}. By
continuous deformation of the octagon of Fig. 2(b}
one obtains the cross shape shown in Fig. 2(c}.
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FIG. 2 (Continued. )

By opening the boundary at the points My Mg
one obtains a graph similar to the familiar Hara-
ri-Rosner duality diagram [Fig. '2(d)) which, how-
ever, as seen from Fig. 2(d}, is supplemented
with the corresponding Landau graph.

One can, of course, orient also the interior of
the classical surface. This orientation can be in
agreement ["ortho" orientation —Fig. 2(e)] or in
disagreement ["para" orientation —Fig. 2(f)] with
the orientation of the boundary. It is precisely
this two-valued topological degree of freedom
which allowed Stapp' to include the spin of the
quark in the DTV theory.

One important feature of the zero-entropy level
can now be visually stressed: The zero-entropy
quantum and classical surfaces are self-reproduc-
ing under the connected sum (unitarity product)
operation [Figs. 2(g) and 2(h)]. This is a graph-
ical illustration of the previous statement that the
nonlinearity of the bootstrap problem is concen-
trated at the zero-entropy level of the topological
expansion. Of course, at the zero-entropy level,
only ortho-ortho or para-para transitions are al-
lowed on the classical surface [Fig. 2(h)]. In all

other cases the entropy index increases due to the
appearance of transition lines between ortho and
para patches.

Examples of tropological representations of more
complicated amplitudes involving baryons will be
given in Sec. IV.

III. THE SUPERSYMMETRY PROPERTY
OF THE TOPOLOGICAL AMPLITUDES

RELATING BOSONS TO FERMIONS

As was already stated in Sec. II, in the theory of
Ref. 6 the spectrum of hadrons consists only of
ordinary mesons, ordinary baryons, and baryonia.
The four types of zero-entropy three-particle
topological amplitudes ("coupling constants "}are
shown in Figs. 3(a)-3(d) and the six types of zero-
entropy four-particle amplitudes are shown in Fig.

We shall now show that the zero-entropy boot-
strap leads naturally to a topological supersym-
metric solution at this level of the topological ex-
pansion, in which the three-particle topological
amplitudes of Fig. 3 are related to each other.
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(a) (c)

We will use Stapp's M-function formalism. '
AnM function is an analytic function of the par-

ticle four-momenta characterizing a given pro-
cess, apart from isolated singularities described
by the Landau graphical rules; it also has a well-
defined crossing-principle property. It is not im-
mediately equal to an S-matrix connected part but
is related thereto by an explicit momentum-de-
pendent spin-index transformation. Finally it
depends on particle spin indices +, which trans-
form independently of the values of the momenta
in changes of Lorentz frames of reference.

For a topological M function, each a, is a col-
lection of two-valued indices belonging to (0, —,') or
(—,', 0) spinor representations of the Lorentz group;
a single such index is attached to each peripheral
triangle of the corresponding particle disc. At
the zero-entropy level the spin dependence then
simply reduces to a product of Kronecker 6's (see
Appendix D of the last paper of Ref. 6), one for
each Harari-Rosner (HR) line joining two mated
peripheral triangles (i.e., triangles which share
all their vertices). One may then associate a

/'

/

FIG. 3. The supersymmetry property for the four
possible types of zero-entropy three-particle ampli-
tudes, as seen on the classical surface. The quark-
spin line directions are not indicated. The dashed-dotted
lines represent Landau arcs.

single spin index to each HR line. (One can also
note [see, e.g. , Fig. 2(a)] that, even if, strictly
speaking, flavor resides on the quantum surface,
one can still make a one-to-one correspondence
between the peripheral triangles carrying flavor
and the corresponding HR line, lying on the belt.
One may therefore also associate a single flavor
index to each HR line. ) The momentum dependence
of a topological M function resides in a separate
factor E.

The spin dependence of theM functions has the
essential property of transitivity (self-reproduc-
ing) in zero-entropy connected sums.

Let us begin by considering an imaginary world
in which the only particles are qq mesons (M,).
Its momentum-space dynamics would be represen-
ted by Fig. 5, where u, v, w are spin-flavor labels
associated with the HR "quark" (q) lines and where
it is understood that the left-hand side is merely
shorthand notation for all possible total sums of
"fishnet" graphs of the type shown in Fig. 6. We
must consider all possible u, v and sum over all
possible w. Because of our spin-momentum fac-
torization the resulting equations are clearly
symmetric with respect to the values of the u, v,

xo labels. The usual (label-value-degenerate) so-
lution of this bootstrap, if it exists, then gives all
possible M, mass ratios and couplings g. The lat-
ter are given by conditions of the form g N;-1,
where X; is a spin-flavor multiplicity factor aris-
ing from the summation over w. We have used
the spin-momentum factorization result that each
of the terms in the sum of Fig. 5 gives the same
contribution in this case.

Let us next turn to a realistic zero-entropy
world which also includes qqq(B, ) and qqqq(M4)
states. We must now replace Fig. 5 by Fig. 7,

, where we have also introduced spin-flavor labels
~', v', m' associated with the (qq) "diquark"
double lines. Because of our spin-momentum fac-
torization, however, we see that, given the solution
of the previous paragraph (to the equations rep-
resented by Fig. 5), we immediately have a so-
lution to the bootstrap of Fig. 7 in which the rnas-
ses of corresponding M„B„andM, states are equal.
Such a solution wouM sati. sfy label-value-degener-
ate equations which are identical to formally re-

/
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FIG. 4. The supersymmetry property for the six pes-
sible zero-entropy amplitudes, as seen on the classical
surface. As in Fig. 3, the quark-spin line directions
are not indicated.

(N&
ter ms)

gVMg ~

FIG. 5. Bootstrap dynamics in a zero-entropy world
containing only M2 mesons.
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FIG. 6. A given fishnet graph.

placing each (qq) by q and collapsing Fig. V into
Fig. 5, but with extended I, v, ze labels and with
N-, -N;+N„. Indeed, since each of the terms in
the sum over gg of this modified Fig. 5 gives the
game contribution in this case, the corresponding
coupled integral equations can be reduced exactly
to ones satisfied by our solution of the original
Fig. 5, making only trivial numerical rescalings
of the amplitudes involved. In particular, we ob-
tain exactly the same M, Regge trajectories in the
two cases (at least if we use the same energy scale
to normalize our masses} whereas g'-g' =g'N;/
(N;+N„)where g (=g~ „u=g~ s, ~, = ) is
then any given coupling.

Thus, given. our solution of the bootstrap equa-
tions for the original imaginary (Ms only) zero-
entropy world of Fig. 5 we also trivially have a
supersymmetric solution for the expanded world
of Fig. V. If we make the usual bootstrap assump-
tion that our zero-entropy bootstrap (Fig. V) must
have a unique solution, this supersymmetric so-
lution is also the only solution at this level; in
particular, we then obtain the equalities of Figs.
3 and 4.

It is important to note that the trivial numerical
rescaling N-, -N—,+N„is in fact crucial from the
physical point of view. Owing to the fact that each
closed quark loop carries a (-1) factor, ' the had-
ron spectrum cannot consist only of ordinary mes-

Ierms) . Ier msi

—JgX~-
~l~l

{Nq {Nqq
ter res) le& ms)

FIG. 7. Expanded bootstrap dynamics in a zero-en-
tropy world containing M2, Bs, and M4 hadrons.

ons: A consistent world has to contain also at
least baryons and baryonia. Here we considered
that the hadron spectrum terminates at the bary-
onium level. However; it can be easily verified
that our results are valid even when one assumes
that other multiquark hadrons are present.

The supersymmetry property can be intuitively
stated by introducing the notion of "active" and
"spectator" quarks. The active quarks are the
quarks which correspond to quark lines on the
classical surface which are immediate neighbors
of a Landau arc (see Fig. 3), while the spectator
quarks are those quarks which correspond to
quark lines on the classical surface which are not
immediate neighbors of a Landau arc. The coup-
lings (b), (c), and (d) (see Fig. 3) are obtained
from the coupling (a) (which involves only active
quarks) by adding each time a new spectator quark.
Roughly speaking, topological supersymmetry
amounts to the statement that adding spectator
quarks at zero entropy changes nothing. The same
statement is true for the topological amplitudes of
Fig. 4. The addition of spectator quarks changes,
of course, the spin description (via the quark
lines of the classical surface) but leaves unchanged
the dynamics described by Landau graphs. Rigor-
ously speaking, the notion of active and spectator
quarks requires "thickened" Landau graphs th(I }
[see Appendix B of the last paper of Ref. 6 for a
precise topological definition of th(I, )], together
with the association of a cyclic older on the quan-
tum surface with the order of quarks within a di-
quark (i.e., a pair consisting of an active and a
spectator quark}.

The existence of a topological-supersymmetric
solution for the M functions does not immediately
imply supersymmetry for S-matrix connected
parts. The two are related by explicit momentum-
dependent spin-index transformations which may
be different for diff erent amplitudes. In particular,
when we make the replacement q- (qq} we gener-
ally obtain a difference from the fact that q propa-
gates spin in the sense reverse to (qq) in a hadron.
As long as the particle momentum is the same at
the two ends of a quark line ("forward scattering")
this direction reversal makes no difference, how-
ever. In addition, the amplitude structure arising
from our momentum-dependent spin-index trans-
formations simplifies considerably at high ener-
gies, making it possible to essentially ignore spin
complications (in the usual sense) and directly
apply supersymmetry to a comparison of two for-
ward amplitudes ai high energies.

One might note that the topological supersym-
metry is a property peculiar to the zero-entropy
level of the topological expansion. Supersymmetry
must be broken by higher orders of the topological
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expansion.
The supersymmetry property is not explicitly

stated in the theory of B,ef. 6. However, as we
just showed, it can in fact be derived from this
theory.

IV. TOPOLOGICAL SUPERSYMMETRIC STRUCTURE
OF HADRON CROSS SECTIONS

A. Topological structure of hadron cross sections

I et us start with hadron-nucleon total cross
sections. Through the optical theorem, they are
proportional to the imaginary parts of forward
elastic amplitudes and we know that such hadron
amplitudes have a topological representation via
the quantum and classical surfaces.

It is well known that the channels having the
quantum numbers of the Pomeron are strongly
affected by the higher orders of the topological ex-
pansion. ' Since we want to test the zeroth order
of the topological expansion, we choose to deal
with the amplitudes which are antisymmetric
under crossing, i.e., we study. the differences of
the antihadron-nucleon and hadron-nucleon total
cross sections

«s(s) =or7N(s) -~HN(s)

above that, for the case of baryonium channel
discs, one obtains five identical contributions. The
fact that the baryonium is now in the t channel is
irrelevant, the s and t channels being identical in

pp -pp scattering.
It is clear that no channel disc can be formed in

pp scattering (the gluing is performed only via
quark-antiquark pairs). The disc contribution to
o» is therefore zero.

From the above considerations, we finally obtain

«pp =5~M("'+ 5~(M",", (2)

where crM and vM correspond to quantum spheres
2 4

whose t-channel discs are of the ordinary meson
(M, ) and baryonium (M, ) types; the upper index of
g refers to the nature of the s-channel discs.

In a similar way, we obtain, for the first gen-
eration of quarks (u and d}, that there are (always
in the s channel} four M, contributions and four
M2 contributions in the case of pn scattering, no
contribution for pn scattering, two baryon (8,)
contributions for m p, one B, contribution for m'p

scattering, one B, contribution for m n and two B,
contributions for m'n scattering. We therefore ob-
tain

(M4) 4 (M2)
pfi M2 M4

lmz&-„~ „„(s,i=O),
1

N~L

where mN is the mass of the nucleon.
Let us now study the implications of the DTU

theory for the amplitudes which come into Eq. (l).
At zero entropy, the discs which represent the

initial particles on the one hand and the final par-
ticles on the other are contracted in all possible
ways in order to build channel discs. Then, by
unitarity, the amplitudes are obtained by gluing
together these channel discs so as to cover the
quantum sphere. It can happen that different
gluing operations lead to the same pair of quantum
and classical surfaces. This topological equiva-
lence leads to a well-defined topological structure
for ~0. For example, it can be seen from Fig. 8
that in the fp s channel there are five possible
ways of gluing together a proton p and an antipro-
ton p so that we obtain a pp channel disc of the
baryonium type. Then there are five connections
of one channel disc with itself Lthe amplitude in
Eq. (l) is elastic j which lead to the same quantum
and classical surfaces. (Here u-d symmetry is
naturally assumed. ) Each baryonium channel disc
is dual to a channel disc of the ordinary meson
type in the t channel.

One can obviously also form pp s channel discs
of the ordinary meson type, which are dual to t-
channel baryonium-type discs. But we established

AO' =-EO' =0M .(a )
ep 7( ff

From Eqs. (2) and (3) we obtain the following re-
lation between Av» and 4op„: (4)

1
5 AO»=4 Lap„.

It is important to note the absence of the term o„,
in Ao „,and Aa, „which is a consequence of one of
the most remarkable manifestations of the topo-
logical selection rules": the noncommunication on
the sphere between baryonium and ordinary meson
channels.

It should also be noted that the superposition of
zero-entropy topological amplitudes M within the
topological expansion

(6)
y

(where y is the topological complexity index, f the
final state, and i the initial state) carries no co-
efficients that depend on f and i For exam. ple, we
do not insert factors like i/W for each baryon.
The rule (6) can be justified on the basis of uni-
tarity and cluster decomposition, "

By means of the Mueller generalized optical
theorem, we can make the same topological anal-
ysis in the case of the inclusive reactions 71'p-7t'X
and p'p-m'X in the fragmentation region of the pro-
ton target, where there exists a coherent set of
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FIG. 8. (a) The five possible ways of obtaining the pp s-channel baryonium disc by the contraction of a quark-anti-
quark pair. (b) One of the corresponding pp pp quantum spheres. The dotted edges delimit the core triangj. es, while
the solid edges delimit the peripheral triangles. The heavy solid curve is the belt —see Ref. 6. (c) The pp -pp classi-
cal surface corresponding to the "belt" of (b). The heavy solid lines represent quark-spin lines, the dashed-dotted
lines represent Landau arcs, while the wiggly lines represent junction lines. The flavor indices, which actually reside
on the quantum sphere, are indicated merely to guide the eye.

(8)

(S}

(10}

data. From a topological point of view, we will
consider the pion to belong to the fragmentation
region of the proton when the pion disc shares at
least one quark triangle with the proton disc. For
example, Fig. 9 shows a possible configuration
which is allowed at the lowest entropy level where-
as Fig. 10 shows a configux ation which is forbid-
den at the same level due to an increase of the to-
pological complexity index attached to the classi-
cal surface: It can be seen from Fig. 10 that a
Landau line has to cross a junction line. After
having counted all possibilities, we find

(~ )'
(7)

(g )160 7r P 7f +g 2g+
2

++Pt} - fr X
(~ )i (N2)'
"2

where o'~, and 0~4 have the same meaning as cr„
and c„.From Eqs. (7) and (8) we obtain the fol-
lowing interesting relation:

«~p- *x =-2«~p-~-x.
We can make a similar analysis of the cross

sections involving s quarks. However, a clear
analysis of these cross sections involves an un-
derstanding of the problem of quark generations
which is, of course, not yet solved. We are con-
fronted by the following alternative: Either (1)
there is a SU(N} flavor symmetry at the lowest-en-
tropy level, which has subsequently to be broken by
a mechanism as yet unknown or (2} the quarks
which do not belong to the first generation are not
associated with the peripheral triangles, but,
rather, with more complicated topological forms
(e.g. , spheres or tori), so that there is a "break-
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ing" from the beginning: Only the u and d quarks
then appear at the lowest-entropy level.

We can make certain predictions which do not
depend on which of the two aforementioned cases
is assumed. Namely, we treat s as an index with
an unspecified topological form and we assume
once again that the hadron interaction proceeds
via the minimum-possible-entropy contribution.
We then obtain the following relations:

(~3)"
2 Dog~ =Ao'g„=0~

(g ) I

fI X

«~- x=o.

(12)

(13)

(14)

B. Relations between hadron cross sections based
on the topological supersymmetry property

Topological supersymmetry has important con-
sequences at the practical level. For example,
the second equality belonging to the series of re-

An important feature of our analysis has to be
stressed here. In the case of the total cross sec-
tions, the relations (2)-(5) and (12) can also be
obtained in models which combine the usual Harari-
Rosner duality diagrams (where the flavors are
associated with the classical surface) with the ad-
ditive quark. model. " Of course, good empirical
relations can sometimes be obtained for the wrong
reasons. In any case, the above-mentioned paral-
lelism is generally not valid. Because of our
richer topological content, the higher-order cor-
rections are different from those of the previous
models. Even more important is the fact that in
the case of the inclusive cross sections the infor-
rnation coming from the lowest order of the theory
of Ref. 6 is different from that obtained from the
previous models. The difference comes essentially
from the explicit consideration of the Landau
graphs on the classical surface. For example, the
graph shown in Fig. 10(c) would be considered, in
the absence of the Landau graph, as a-perfectly
planar, allowed diagram. The topological rnech-
anism for the suppression of the graphs involving
intersections between Landau lines and junction
lines was previously ignored. Clearly then the
conclusions based on the old formalism of Harari-
Rosner duality diagrams are not always equivalent
to our present conclusions. For example, if we
ignore intersections between a Landau line and a
junction line, we obtain a nonvanishing value for
the difference between the cross sections for
K p-n'X and K'p m'X.

The overall agreement of our relations with the
experimental data (see Sec. V) is an a posteriori
argument for the necessity of this topological
graph-suppression mechanism.

lations shown symbolically in Fig. 4 implies that

&83) {&4)—

We therefore find, from Eqs. (2), (4), and (15),
that

(15)

5 ™xyp—&o ~g =&~ &0 ~
{N2)

4 (16)

The supersymmetry property also implies that

o(~3)'-o{&4)' =0~0' 0

which, when combined with Eqs. (V)-(10), gives

{N2)'
g +~PP~P X +~gP -+fI X 2 JN4

«pg -~-x+«~p-~+x =0~4(Q )I

(e2)&
2 ™0'pp-m'x —«~p-~-x =2~

4

x +~ p +x ~Af4
(N2)'

(18)

(19)

(20)

(21)

Qf course, for sufficiently high energies, the
baryonium contribution is expected to be negligi-
ble:

(Af 2) 0 (A/2)' 0Ng s N4

In this case, Eq. (16) becomes the well-known
Fr eund relation"

1
5 b 0~~ =«„~,

and one also obtains the remarkable relations
1
2 &Opp- -x =&Owp-~-x~

(23)

(24)

V. COMPARISON WITH THE EXPERIMENTAL DATA

We will use the data for total cross sections
which can be found in Ref. 14 and the data for in-
clusive cross sections given in Ref. 15.

Let us begin by making a general remark: Con-
trary to what we might expect superficially, the
data for total cross sections are sufficiently pre-
cise to test our relations in an unambiguous man-
ner. It is commonly believed that cross-section
differences are subject to errors which are com-
parable with the data themselves (and this state-
ment is, of course, true for the raw data). How-
ever, if we first make a best interpolation of total
cross sections (and this is effectively what we did

b(T~~ „+»= —ho„~ „+», (25)
the differences of cross sections involving a pro-
ton beam being approximately equal at high ener-

giess:

(26)

as can be seen from Eqs. (9), (10), and (22).
In the next section we will see that the equations

obtained as a consequence of the supersymmetry
property are in general agreement with the experi-
mental data.
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(&)
(u)

(u)

FIG. 9. (a) The building of a channel disc for m'p x'X in the fragmentation region of the proton. (b) A quantum

sphere and (c) a classical surface corresponding to the reaction 7('p —x'X. The notation is the same as in Fig. 8.

for data involving proton targets) and then com-
pute the corresponding differences, we obtain
rather small errors for ho, simply because the
data combining both low and high energies are in
fact very accurate. The particular parametriza-
tion used to interpolate the data is obviously not
very interesting in itself (and we will not describe
it here), the only impoxtant thing being the use of
a best interpolation in order to describe in an
accurate manner the general trend of the data.

The situation for the total cross-section data in-
volving a neutron target is slightly different. The
data are subject to bigger errors, due to the fact
that a theoretical model (the Glauber model) is
used to extract. the neutron data. For this reason
we will use, in this case, the raw data directly.

However, their precision will be sufficient to
clearly test our relations.

Finally, the inclusive data are the most ambig-
uous from the point of view of testing our rela-
tions. This is not essentially connected with the
actual precision of the measurements themselves,
but rather with the fact that the experimental num-

bers are obtained as the result of an integration in

somewhat different ranges of rapidity by different
experimental groups. "" However, since the ex-
perimental results are practically the same, this
does not affect our analysis. In any case, here
too me will use raw data, which exhibit in a suf-
ficiently clear manner the general trends existing
in the data,

In testing our relations we will discuss sepa-
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FIG. 10. A forbidden contribution at the lowest-entropy level in m p vr X. One may note the intersection between

the Landau line and the junction line in (c).

rately the relations which are obtained without the
explicit use of the supersymmetry property and
those which are based upon this property.

A. Relations between hadron cross sections
which are independent of the topological

supersymmetry property

The relation (5) between n,v» and b.v~„appears
to be in nice agreement with the experimental
data (see Fig. 11).

The relation (12) between nvr~ and Lvr„is also

in nice agreement with the experimental data (see
Fig. 12).

Equation (11)correctly predicts the opposite
sign of Sv„,+» relative to Sv„~,-x (see Fig.
13). However, their ratio (-2) is not in agree-
ment with the experimental ratio = —1. As can be
readily checked, the origin of the coefficients 1 and
-2 in Egs. (7)and (8) lies simply in the fact that the
proton has two times as many u quarks as d quarks.
This naive quark-counting rule was shown in the
past to lead to realistic predictions for other sets
of data. " Of course, we saw that such naive
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quark-counting rules are not valid in general, the
results being modified by the suppressions arising
from the intersection of Landau lines with junction
lines. However, in particular cases, like the one
just discussed, the naive results remain un-
changed.

It is also interesting to notice that an overall
Hegge-pole fit of inclusive data' requires a value
—2 for the above-mentioned ratio. It therefore
seems to us that a careful'reanalysis of the ex-
perimental data for m' inclusive production would
be worthwhile. New experiments on these proces-
ses would also be welcome.

The approximate equality of 60», -x and

~o», +x at high energies IEq. (26)] is satisfied
by the data in the range 156p~ 6 150 GeV/c (see
Fig. 18).

Finally, the vanishing of ho~~, +~ predicted by
Eg. (14) is also compatible with the data for 8
4 p~ 6 150 GeV/c (Fig. 14). It is interesting to
note that if one ignores the intersections between
Landau lines and junction lines (glitches}, one ob-
tains, in particular, a nonvanishing Ao~~ „+xin
disagreement with the data. This result shows
once again the importance of the topological selec-
tion rules originating from the classical surface. '
As we stressed in Sec. IVA existing quark models
ignore this topological suppression of graphs due
to glitches and they therefore lack, in our opinion,
an important piece of dynamical information.

Qg (mb)

), Qo (mb)

1— —D, Cr„p

I ~~"

3-

5 10
, t

p (GeV/c)

FIG. 12. The experimental verification of Eq. (12)
(see text). The solid curve is affected by an overall
-10% error.

B. Relations between hadron cross sections
which are based on the topological

supersymmetry property

Let us now turn to the relations (16) and (18)-
(21) which were obtained using the supersymmetry
property.

The relation (16}is supported in a spectacular
manner by the experimental data (Fig. 15). The
nonvanishing of the difference of cross sections
involved in Eq. (16) can be regarded as one of the
most convincing phenomenological proofs of the
existence of baryonium (in the absence of bary-
onium, the X' corresponding to the curve in Fig.
15 is y'/point= 100 in the region 4& p~ ~ 50 GeV/c).

7-

1
5 ~™pp

I
Acr(p b)

3-

400-

200-

~~p .x
A~~pp~ n -X

—~~pp~ ++XA

2
1 A
2 ~+KP P-X

10 100 pL(GeV/c)
lE

r

0

p (QeV/c}

FIG. 11. The experimental verification of Eq. (5)
(see text). The solid curve represents the best fit of
40 obtained via the best fit of the pp and pp total cross
sections themselves. This curve is subject to an over-
all -5% error (not shown in the figure). The bars
represent raw data 60&„data.

-200- r

FIG. 13. The experimental verification of Eqs. (11),
(18)-(21), and (24)-(26) (see text).
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~(83)" ~(~ )
~%2 N2

The Johnson- Treiman relation~'.

(27)

j.
2 «zp =«~p (28)

is therefore approximately valid at high energies,
Also, as can be seen from Fig. 13, &o~p „-~.ap-
proaches n, o ~,-„for p~ 2' 8 GeV/c, indicating
[from Egs. (7) and (13)] that

This conclusion is in agreement with the somewhat
less constrained analysis of Gavai and Roy.""
It is the presence of baryonium which is respon-
sible for the violation of the Freund relation (23)
below pz 4 50 GeV/c. The contribution of bary-
onium obviously corresponds to a Begge-pole be-
havior (Fig. 16). The baryonium intercept lies
in the well-known range"'o -16 o.„(0)4 0.

The relations (18)-(21), (24), and (25) are
more difficult to test, owing to the lack of precise
inclusive data at low energies and the possible
problem connected with the inclusive production
data which was mentioned above when we discus-
sed Eg. (11}. However, it is nevertheless impor-
tant to note that the positive sign of the cross-
section combinations (18)-(21) is in clean agree-
ment with the data (see Fig. 13}, pointing to a
baryonium contribution. One may also note that
the relations (24) and (26), which have to be valid
at high energies, are in agreement with the data
for 15Sp~ S 150 GeV/c, while the relation (25) is
not satisfied by the data. We find here a hint that
the doubtful m-inclusive production data are pro-
bably the m' data.

Let us close with a note concerning SU(3) flavor
symmetry. As can be seen from Fig. 17, —,

'
Ao~p

approaches the common limit of h,o,p and —,
' Ac»

after p~ = 30 GeV/c, indicating [from Eqs. (4) and
(12)] that

I, Q~(mb)
3-

0—

10

i I 4 ~ x I

1OO p„(GeV/C)

FIG. 15. The experimental verification of Eq. (16)
(see text) as a hint for the existence of baryonium.

&(~3)'" z(~3) '
M2 N (29}

One can interpret these relations as being a xnani-
festation of SU(3) flavor symmetry (at least for
sufficiently high energies). However, the big non-
zero difference between —,

'
Acr~p and Lo,p at low

and medium energies (see Fig. 17}also exhibits
the existence of a big breaking of this symmetry.
We therefore think that the simultaneous existence
of (i} a big nonzero difference between —', Sax~ and

ho „~at low and medium energies and (ii) the near
equality of —,

'
hex~ and n,az„for the entire range of

energies seems to indicate that the second possi-
bility mentioned in Sec. IV A concerning the prob-
lem of flavor generations is empirically favored.
Of course, this is just a hint, not a demonstration.
It is obvious that as long as masses are negligible,
SU(3) flavor symmetry is effectively restored In.
any case all our predictions d'iscussed above are

ho.(pb) h(yb)

200-

I I I I0

-200-

10
, T, , i T

p (GeV/c)
L

.~—b, crpp
—Acr„

5

10 I I I I I 1 l

5 10
I I I I I a s

&0 p (GeV/c)
L

FIG. 14. The experimental verification of the vanish-
ing of Earp +x predicted by Eq. {14).

FIG. 16. The Regge-pole behavior of the baryonium
contribution (dashed curve) compared with the familiar
p- Regge-pole contribution (solid curve).



TOPOLOGICAL SUPERSYMMETRIC STRUCTURE OF HADRON. . . 2515

ii Qg (rnb)
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5-

3-

I I I I I I

5 10

1

5 h,
gpss

100 P„(6ev/d

of strong interactions. From Eqs. (31), (32), (39),
and (40) we then obtain

r,' =2r'. . (42)

Equations (41) and (42) are nothing other than
manifestations of the celebrated p universality and
& universality properties, which are known to be
not too badly violated when compared with experi-
ment. ' From Eqs. (35), (SV), (41), and (42) we
obtain

(43)

and from Eqs. (36), (38), (41), and (42) we obtain

(44)

Of course, we also have, from Eqs. (37) and (38),

FIG. 17. The common limit of 5~GPP 2~GKP, and
b, g,&

at high energies.

independent of the assumption of SU(3) flavor sym-
metry.

VI. CONSEQUENCES OF THE TOPOLOGICAL
STRUCTURE OF HADRON CROSS SECTIONS

ON REGGE COUPLINGS

Let us consider the leading Regge contributions
to Ao, namely p and td, which are exchange-de-
generate at the lowest entropy level,

Gp =A =—Q~. (30}

We will assume, as usual, ' that ~ is built up only
out of u and d quarks.

We therefore obtain, from Eqs. (2)-(4}, (V)-(10},
(15), (17), and (22), with the obvious notation for
Regge couplings, ' the following system of equa-
tions at high energies:

All these results are obviously independent of the
assumption of SU($) flavor symmetry, but some
of them are dependent on the assumption of our
supersymmetry property.

It would be interesting now to take into account
the cross sections involving K mesons and to
assume SU($) flavor symmetry. From Eqs. (12}-
(15}, (1V}, (2V}, and (29), we then obtain

&&zp =2(yp~yI+ ypyz)s

&~z, = 2(y, y» + y, 'y»)s

(47}

(48)

«»p-. +» =2(y»&p. ++yP'p. +)s"" ' =o ~

It is easy to see that Eqs. (4V), (48), and (39)-(41)
imply

+g', ~+ =-2&p&- ~ (45)

The &o couplings satisfy a relation similar to (45)
which follows from Eqs. (43}-(45):

(46}

b(happ =2[(ypP)'+(yp)']s"& ' =5v,

«p„=2(yPYP +pyy„)s"& ' =4m,

a0,~=2y~~y~s" '=o,
ao' „=2y„~y~s& '=-o',

acr„, ,- =2y'„I",,-s ~ '=o',
AG p +x =2r EI, +s & = —20'

From Eqs. ($$) and (34) we obtain

yp rq

($1}

(32}

(33)

(37)

($8)

(39)

yIC yK & (51)

which is an exchange-degeneracy relation, while
Eqs. ($$), (41), (42), (47), and (51) imply

re yp &

P — P (52)

which is again a manifestation of the p universa-
lity property.

It is amusing to note that because Ao», ~x are
equal to 2o' [Eqs. (35) and (36)], «„,-» and

Lv»p „-»are equal to o' [Eqs. (SV) and (49)],
«„p +» is equal to —2o' [Eq. (S8)] and sv»p +»

is equal to 0 [Eq. (50)], one trivially gets the
relation

which, together with the assumed relation VI~X 3++Kg ~Vi~X ~™~PVI~X (53)

yp yg & (40)

is simply a statement of the charge independence

obtained previously in a Regge-pole model based
on p and universality. 22 This demonstrates once
again the power of a topological analysis of hadron
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cross sections.
Using Eqs. (43), (43), (51), and (53) one sees

that Eq. (49) is automatically satisfied [in the sens
that Eq. (49) becomes identical with Eq. (3V)] and,
using Eqs. (44) and (51), one sees that Eq. (50) is
also automatically satisfied. The fact that the
overall system of equations (31)-(38) and (4V)-(50;
is a compatible system is, of course, interesting.
This simply means that SU(3) flavor symmetry is
a perfectly acceptable property from the topologi-
cal point of view. In fact SU(N) flavor symmetry is
present in the theory of Ref. 6. It is also impor-
tant to note that a coefficient - 1 on the right-hand
side of Eq. (38), suggested by the present data on
60' ~,+x, will destroy the compatibility of the
above-mentioned system of equations. This is an
additional reason for be1ieving that these data
are doubtful.

The previous considerations also clarify, we
hope, the topological origin of the p and ('d univer-
sality properties, which were used in the past as
more or less ad hoc assumptions.

VII. CONCLUSIONS

One can conclude that the recent generalized
DTU theory of Chew and Poenaru' leads, at its
lowest-topological-entropy level, to a realistic
description of an important piece of experimental
data: differences of total and inclusive hadron
cross sections. The data are sufficiently precise
to test in an unambiguous manner our relations
between hadron cross sections.

As discussed in Sec. Iv our relations are deri-
ved directly from the theory of Ref. 6. The con-
dition of the nonintersection of Landau lines and

junction lines on the classical surface was crucial
in the derivation of the relations discussed in Sec.
IVA. We therefore expect these relations to be
valid even at certain nonzero values of the topo-
logical entropy where the above-mentioned non-
intersection still occurs. (More specifically we
expect them to be valid at the so-called "parity-

patched" planar level of Ref. 6.)
Our second set of relations (those of Sec. IV 8)

were based on the topological supersymmetry
property, which we derived within the framework
of the theory of Hefs. 5 and 6 from a certain spip-
momentum dependence which is valid only at zero
entropy. Theoretica1ly, thes. e relations are ex-
pected to be violated by higher-order corrections.

Of course, we expect higher-order corrections
to have important dynamical consequences, via a
renormalization of propagators and couplings.
However, the overall agreement of our zero-en-
tropy relations with the experimental data suggests
that these corrections are such that the scale im-
posed by the topological zero entropy on the amp-
litudes which are antisymmetric under crossing
has to be globally preserved. The "primordial"
world could well be a topological world.

We also showed that the topological supersym-
metric structure of hadron cross sections has in-
teresting consequences for Regge couplings. As
a by-product of our study, we find a possible to-
pological origin of the p and + universality re-
lations.

A topological description of hadron interactions
in terms of two two-dimensional surfaces, the
quantum surface and the classical surface, cer-
tainly shows great promise.
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