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Short-distance contribution to Eorm y and the EI=1/2 rule

J. L. Lucio M.
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We analyze E+~+m y and E~ ~~+a y decays in connection with the explanation of the hl = 1/2 rule
proposed by Shifman, Vainshtein, and Zakharov. We ask whether the mechanism which enhances the AI = 1/2
transition can enhance SC ~ m'y', thus contradicting the experimental observation 1 (&*~~ ~'p)
-(a/rrjI'(E ~ m' j. We show, within the same approximation scheme used in the M = i/2 rule analysis,
that the Al = 1/2 rule enhancement is absent in the decay K ~ w'y.

I. INTRODUCTION

In 1969 Wilson' proposed a mechanism to explain
the 41= 2 rule which is observed in the weak non-
leptonic decay of strange particles. The basic hy-
pothesis used by Wilson are the following.

(a) Operator-product expansion. At short dis-
tances the product of currents can be expressed in
terms of a set of operators „constrained by sym-
metry laws.

(b) Existence of anomalous dimension. The di-
mension of fields (and operators) in mass units are
modified by the strong interactions.

Gaillard and Lee, and Altarelli and Maiani de-
veloped the method proposed by Wilson in the
standard model, i.e., using the Glashow-Weinberg-
Salam (GWS) model to describe electroweak inter-
actions and quantum chromodynamics (QCD) for
strong interactions. The results obtained by these
authors show that the short-distance contribution
of the strong-interaction corrections only modify
the weight of the operators already existing in the
free theory (GWS). In fact strong interactions en-
hance the 4~= & and suppress the &I= 2 operators;
however these corrections are far from reproduc-
ing the experimental data.

Recently Shifman, Vainshtein, and Zakharov'
(SVZ) have reconsidered the problem. The point
remarked by these authors is that the calculations
by Gaillard and Lee, and Altarelli and Maiani are
only valid if the quark masses are negligible with
respect to the mass of the vector boson S" as well
as the other mass scale which comes into the
problem, the square of the momentum transferred
by the gluon q'. If quark masses are negligible
with respect to q' the strong-interaction correc-
tions coming from the penguin diagram (Fig. 1)
vanish. On the other hand, once the penguin-dia-
gram contributions are taken into account, strong
interactions not only modify the weight of the oper-
ators already existing in the free theory but also
introduce new operators. This means that the cal-

which are commonly used to exemplify the bl = &

rule. The results obtained by SVZ are in good
agreement with the experimental data once the co-
efficients of the different operators are fitted us-
ing experimental data from other nonleptonic de-
cays. ~ Furthermore, several authors have
applied the same approach to hyperon ~ and
charmed-particle decays' with analogous results.
Thus, it seems that the standard model (GWS
+ QCD) provides a natural explanation of the 4I
= 2 rule. '

'She purpose of this paper is to extend the appli-
. cation of this scheme to the radiative nonleptonic

decays associated with (I):
K-g wy, E -m'm y.

These processes are interesting by themselves
since they provide a further test of the structure
of the weak Hamiltonian. If the penguin diagram

G(q')(
=Q,C

FIG. 1. Penguin-diagram contribution to JJgff .

culations by Gaillard and Lee, and Altarelli and
Maiani are only able to take into account strong-
interaction corrections coming from gluon ex-
change whose momentum transfer q' is larger than
the heaviest quark mass squared. The new opera-
tors, called penguin operators, have the following
characteristic s.

(a) They satisfy the b &= a rule; in other words
they only induce ~&= & transitions.

(b) The matrix elements of these operators are
strongly enhanced with respect to the matrix ele-
ments of the operators existing in the free theory.

Using this scheme SVZ have studied the decays
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axial-vector parity-conserving party ~+„.
Using Lorentz and gauge invariance, the most

general form of these amplitudes are

FIG. 2. Inner-bremsstrabtung contribution to E ~

7T Yo
0

contributed to K'-m'n. y, which is not necessarily
a ~I= 2 transition, we might expect

leading to a contradiction of the experimental ob-

servationn.

In general, processes of type (2) have two con-
tributions.

Inner bremsstraMung (IB); Fig. 2. This term
can be understood independently of any model. It
necessarily exists as a consequence of the decay
K-mw; its contribution can be directly calculated
once the amplitude for K-mm is known.

Direct emiss-ion contribution (DE); Fig. 3. In

order to understand this term we have to consider
a particular model, given that here the photon is
emitted by some intermediate states.

It is therefore interesting to ask whether or not
the direct-emission contribution is directly related
to the mechanism that produces the ~I= 2 rule, or
in other words if the penguin diagram is the domi-
nant intermediate state of the direct-emission con-
tr ibution.

Our plan is as follows: Section II contains the
most general form of the effective Hamiltonian,
as mell as a brief discussion of the main points in
evaluating the matrix elements. In Sec. III we pre-
sent the experimental data and compare mith our
results. Finally, Sec. IV contains the conclusions.

II. DESCRIPTION OF THE MODEL

Let us consider the decay

where K,p„.. . denotes the four-momentum asso-
ciated with each particle. Because of the weak
nature of the decay, the amplitude M„ for this
process contains in general two contributions: a
vector part ~„which is parity violating, and an

FIG. 3. Direct-emission contribution to E'- 7t
~

7t y.

M„=ieAO —'" — " -iy(X qp, „-p, qK„),p, 'q k'q '" ' " '
()

M' =Pg „E"pi,'q~

in the expression AO=Ao(K'- w'v') denotes the on-
shell nonradiative amplitude. ' On the other hand

y, P are two arbitrary form factors which depend
in general on two independent variables to be
chosen. In discussing the DE contribution, it is
convenient to write the invariant amplitude in the
form

M —= g~M„—= g" (M„+M'„)=M,e +y+P,
where &„ is the photon polarization vector'

In this may we can identify ~» as the i,nner-
bremsstrahlung contribution, whereas y and P are,
respectively, the electric (vector) and magnetic
(axial-vector) contributions to the DE term. '

The IB contribution to the decay K'-~'w'y and
Ko~-m'm y will be strongly suppressed and in fact
will vanish if we consider the &I= ~ rule and CP
conservation as exact. ' This can be directly de-
duced from the fact that the IB contribution is pro-
portional to the on-shell nonradiative amplitude
A„and because of the 41= 2 rule and CI' conser-
vation:

So me hope the DE term will be important both in
K~ &~ma& and in K& m'w y but not in K m'm'

where there is nothing to suppress the IB contribu-
tion. In the following we will not discuss the IB
contribution and we only give the results for it as
obtained from the low-photon-energy theorem.
This allows us to forget all q' terms (where q is
the photon energy) arising from the DE term,
since these are exactly known and included through
the low-energy theorem in the IB one. '

A. The effective Hamilfonian

Following SVZ, the basic idea in deriving the
form factors y and P is to construct an effective
Hamiltonian, independent of the initial and final
states, which describes 4S= 1 radiative decays.
Once the Hamiltonian is constructed, we have to
evaluate the matrix elements.
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'TABLE I. Value of the coefficients e&, .. . ,c6 [see Eq.
(8)] in the 0%/ model and including @CD corrections.

GVN+ @CD

Cg

C2
i
T

2
K
2

-2.49

0.086

0.083

0.415

—0.064

-0.064

We can divide the construction of the effective
Hamiltonian H, f, in two steps.

First me construct B,«, by using the Wilson ex-
pansion and the renormalization-group equation in
the absence of electromagnetism. This is precise-
ly the H,«constructed by SVZ':

6

If„=-v 2 G~ sin8, cose, + (c,e, +H.e.), (8)
Jul

where

y u~df. y"s~ -d~y uLu17"sL, ,

e,=u y„u d y"s +d y„u u y"s

+ MI yf,dI dIy sI. +2sI.y ~srdLy sI

3=ugy QzdLy s +d y utuI y sI (9)
+2d y„d d y"s~ -3sr.y„srdgy"sg,

e,=u~y„u I,d y"sI, +dr, y„u ~uI, y"SI, —d y„dr, d~y "sL,

6,=d~y X,s~(u„y "X'us+day" X'ds+sy" Usa),

6,=d,r „s,(u„r"us+ dsr "ds+ sar "ss) .
The coefficients e, are given in Table I, q~ &

—= 3(l +y,)q, and the X' are the color-SU(3) ma-
trices.

The second step consists in investigating which
are the modifications introduced by electromag-
netism. Using Lorentz and gauge invariance, and

given that me are interested only in the 4S=1
operators of dimension six or less, the possible
operators introduced by electromagnetism are

d(a+by, ) c~"st „„,
d X'"'s8 "I"„„,

where I'" „ is the electromagnetic field tensor.
For real photons 8"E„„=Oand therefore the only
possibility is (10a). At lowest order in electro-
weak interactions, this operator is generated by
the diagrams shown in Fig. 4. However an explicit
calculation of these diagrams lead us to the con-
clusion that a, b are of order (m, -m„')/MN and
therefore negligible with respect to (9).'0'"

Thus we can conclude that electromagnetism
does not introduce any change in weak-interaction
models where only left-handed currents appear
when we are interested in describing real-photon
processes. Therefore meak nonleptonic decays
with only real photons are described by the matrix
elements of the effective Hamiltonian (8).

B. Evaluation of the matrix elements

In order to evaluate the matrix elements we will
assume that a good approximation is obtained fac-
torizing the matrix elements, by inserting the
vacuum in all possible mays between the product
of currents which form the operators (9)."

First of all, let us consider the matrix elements
of 6„6„which are the operators directly related
to the penguin diagrams:

(&'(p.)v'(p»(q) lc.65+csee I&'(A'»= —;(c, ,+~, c,)( cT). ,

where

(Tc),=(v' Isu IJf'&("r Iu(1 —r.) d Io&+(~' Isd I
&'&(v'r

I
d(1 —y, ) d+s(1 —y, ) s I0&

-("r
I
s(1+y.) u

I
ff'&("I.y, d lo&+(0 I sr, u

I
x

&
(v"'y

I
u(1 —r.) d 10&.

In this expression there are tmo typical classes of
matrix elements.

The first class is

(i) ("I«l&'&("ylu(l-r. )dl0&.

Without loss of generality we can write

(v'(p) Isul z'(x)&=ap z,
(v'(p. ) r(q, ~) I u (1 r, ) d

I 0& = b—(p„q)p. ~ .

FIG. 4. Radiative decay of the strange quark. These
diagrams lead to contributions of the type g.Oa).

However using these two expressions it is impos-
sible to construct a contribution with the structure
of P or y given in Eq. (8) imposed by Lorentz and

gauge invariances. Therefore
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( w
I
su

I
K'& (w 'y

I
u (I —y,)d I 0& = 0 .

The second class is

(ii) (w'(p)y(q) Is(1+y &u IK &(w luy. d I0&.

(15)

Using in this case the soft-pion approximation and
current algebra one obtains a relation for these
matrix elements

(w'y Is(1+y.) u
I
K') "(y Is«+y. ) u IK'&

and then using the same argument as in (i), we

conclude

(w'y Is(1+yg) u I
K') (w'Iuygd I0)=0. (ae)

With similar approximation the matrix elements
of the operators 6„.. . , 64 can be expressed in
terms of the form factor E„,E„. (See Appendix B
for the definition of the four factors E„,E„.) In
fact, given that the contributions coming from the
penguin diagram vanish [Eqs. (12), (15), and (16)],
the relation between these matrix elements and the
invariant transition amplitude is

4

Mn E = -~2 Gw sin8, cos 8, g c,(w'w'y
I 6, I

K'&
jag

=-~2G„sin8, cos8 [eF„Be„„„e"K"pq~+ieF~D(p, eK'q-p, qK' g)].

The value of the coefficients 8,D are given in
Table II for all three decays (2).

III. NUMERICAL RESULTS

The formulas for the partial and total decay
rates, expressed in terms of the form factors y
and P which are directly deduced from Eq. (17),
have been left for the Appendix A. To derive these
equations we have used the following approxima-
tions:

(a) We have neglected all CP violation except
that induced through the IB contribution.

(b) We have neglected the momentum-transfer
dependence of the form factors 1&,E„.

The predictions obtained under these assump-
tions for the different decay rates are given in
Table III. In Appendix B we have estimated the
error introduced by these approximations.

I
and neutral-kaon decay are in reasonable agree-
m, ent with the experimental data.

In conclusion the standard model (GWS+QCD)
gives a satisfactory explanation of the decays E- mmy. Furthermore, the mechanism proposed by
SVZ to explain the 4~= & rule does not play an im-
portant role in the decay E-m~y within the context
of the vacuum-saturation approximation. Study of
the correction to the vacuum-saturation approxi-
mation and how such a correction might influence
E-wry is beyond the scope of this paper.
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IV. CONCLUSIONS APPENDIX A

In this paper we have extended the scheme of
SVZ to the nonleptonic radiative decays (2).

If the 4& = ~ rule is a consequence of some dy-
namical mechanism, instead of being an intrinsic
property of weak interactions, then it is possible
that this mechanism (in this case, the penguin dia-
grams) does not play any role in the radiative de-
cays ~

Using the soft-pion limit and current algebra we
have shown that the contribution of the mechanism
(penguin diagrams) proposed by SVZ to the direct-
emission term of the process (2) vanishes. On the
other hand, we have also analyzed (see Tables II
and III) the importance of the short-distance contri-
bution to the strong-interaction corrections in the
description of (2).

Taking into account the approximations used in
the calculations (see Sec. 1V and Appendix B), the
decay rates that we obtain both for the charged-

K=(m, o), P, =(s,p„), K'=m',

q=(~, q), p=(t, p), p.'=p'=~,
the differential decay rate is' "

(Al)

TABLE II. Value of the coefficients B and D in the
GWS model and including @CD corrections.

GWS GWS+ @CD
8 D

K 7t 7t. y

K

Ks'- '
~

-0.169

6.63

-2.04

3.277

9.27

-4.166

The invariant transition amplitude for the decay
K'(K)- w'(P, )+ w'(P)+y(q) is given in Eq. (5). In
the frame where E' is a.t rest
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= B+2 I cos(6» —6„+P }

where

(Aa)

(
4m*)'&*

(A4)

OJ, . 8lp l 2 1 8 —lp I

wP, M(2E-M) M 2E-M E+ Jp, J

o.(2E -M}
~ J

M' M —E+ Jp+ I

wP, ,

' 2 M-E —ip

M M(E+ Ip+ I }—M
2 M(E —ip, l) —M'

aM ip„ I

' (2E —M)'
6n P, (1+m'/M' —2E/M)' '

e2
Q 4w'

(A6)

is the total decay rate for the nonradiative process
X ~ 7F g and

the inner-bremsstrahlung, interference, and di-
rect-emission contribution to the total decay rate.
The phases 4», where I and J denote respectively
the isospin and angular momentum, take into ac-
count the rescattering of the particles in the final
state, whereas Q is introduced to parametrize a
possible CP violation. "

In order to obtain the total decay rate we have to
integrate Eq. (A5) over the pion energy according
to the experimental conditions. Here we give the
numerical results for the experimental data of
Ref. 14.
W»(A'-w m))

W(Z' - au)

w,„,(z' - w'm'y)
W(K' - all)

=4.28x 10' 2 —cos —sing') tan

(A6)
""'~~=&.OSx &0" ~ '+ ~ '}

W(X' - all) e e

In the case of the neutral-kaon decay we begin by
considering the photon energy spectrum

1 a%' e 2y,.
d(o+ nP '~ leA l

Let us remark that B, I, and D are, respectively, eAO eA,
(AV)

TABLE III. Summary of the theoretical and experimental results for the decays K —x'~ p and Kl. g ~'~-'y.

Expt. Ref. Expt. Ref. Theor (x= -0.44) Theor. (y = —2.-36)

W~(K vt g y)
W'-all)

WDE(K x x y)
W(K'- all)

W,„,(K'- H~'q)
W(K'- all)

W~(K). x ~ y)
W(Ki —all)

WDE(Ki « 'Y)

W(Kg —all)

W,~S'i- ~'~ V)
W(td~ all)—

w(z&- ~'~ v)
W(Ks-«)
W~R~&- ~'~ y)

w(K', —.'.-)
Wns(KL ~ W 1l p)

WR', -w'~ )

(2.55+ 0.17)x 10 4

(1.56~O.35)x 10 '

(1.56~ 0.16)x 10 '

(2.89+ 0.28)X 10

(2.S +0.6) x1O '

&6x 10

&9X10 '

19

19

20

20

20

(2.87~ O.32) X1O '

(2.3 + 0.32) x 10 ~

0

(2.6S+ O. 15)x1O '

18

21

2.61 x10

0.52x10 '

0.29x 10

1.41x10 '

1.73 X 10

0.16x10 '

0.33x10 '

1.5 x10 '

1.5 xlo

2.55x10 '

4.69x10 8

1.77x10 '
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Here W, = W, (K', - w'w ) is the total decay rate for
the nonradiative process; the index i = I., 8 refers
to the "long-lived" and "short-lived" neutral kaon:

M»= 1 — —1+v' ln -2v2~* 1 ( 2 1+V
M (u~ ( 1 —v

W(w(A w+w r)
W(Z'. - w'w )

+ S

(2 22 1O')
W(A. ', - w'w-) e

( ', - '
)

'' P*'I
W(K,'- w'w ) e e i

(A11)

Mm, =—1- M (u* v — — ln, A8
Finally we give the expressions of the form

factors in terms of the constants B, D of Table
II as

m'E =—1 — W(u*'v'

Here v is the pion velocity in the c.m. frame of the
two pions and it is related to the photon energy +*
in the rest frame of the decaying particle by the
equation

r = v 2 eFvrDGP sinoe cos8e,

P= —&2eFvBGw single cos&e,

where we have introduced"

E

(A12)

4m'
V =

M2 —2M&+
(A9)

W[w(X~ w w r) 1 41 10
W(Z,'- all)

W' ICQ w w ) ~r (2 55 10 )W(K~- all) e
(A 10)

rv..(z'. -w'w y) ~y' ' ~V' '), „„„.,
W(Koz - all) e e

(b) ~*& 50 MeV:

&
w'( p, )r(q) I

@r'd
I o& = —«„.P.e "q'p,'F, (p„q),

In this case we will give the numerical results for
the total decay rate for two experimental condi-
tions. "

(a) w* & 20 MeV:

Currently there are two experimental values for
this parameter. "

I
- a.ss,
0.44.

APPENDIX B

In evaluating the results presented in Table ID
we have neglected in Eq. (A2) all CF violation
except that induced through the IB, i.e., we have
considered p = P' = 0. On the other hand, we have
al.so neglected the momentum-transfer dependence
of the form factors E~, E~. We can make an esti-
mation of the modification introduced by this ap-
proximation in the following way. Let us consider

7 =&w'(p) l»,~IA"@)&&w'(p,)r(q) I&r"d Io& (Bl)

using the definitions of the form factors E~, E~,

(w'(p, )r(q) I~r, rdlo&=-ie ~~f. ' (q+p, ), -~~f,e„+(p, q~, p, eq„) E-( p„. q),
+

(B2)

(w'(p)IerplA'&= ——2[f,Ã+p)P+f (& —p)"].

Then

Z'= '— (K+p)'e„,p, e "q'p,'.e,E~

[
then

T(K~ p+ ~ q) g+ p

T(O) m», ' —(K-p)' mp' —(q+p, )'
(»)

Given that a possible approximation in paramet-
rizing the momentum dependence of the form fac-
tors is

Therefore

T(K, p„q) $-,'T(0). (B6)
2

f('p) ~ (, )
f()

E„(p„q)=, , ' „E,(0),mz' - ~q+P~)

(B4)
Equation (B6) allows us to establish a limit on
the possible modifications introduced once we
consider the momentum-transfer dependence of
the form factors E», E„, and f, .
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