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Factorization and its applicability in weak nonleptonic processes
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The role of the weak effective Hamiltonian in nonleptonic physics is studied. The ap-
plication of the short-distance technique in simple pole transitions in mesons is justified.
The amplitude, which is proportional to the matrix element of the Hamiltonian, is shown
to be factorizable into a product of a coefficient function {hard part) and a matrix element
of some local operator {soft part). The proof for such a factorization, valid to any order
in the perturbative calculation, is given. The pr'oblems encountered in the evaluation of
soft parts are presented. The use of a similar procedure in more complicated weak transi-
tions is questioned, and a discussion of the predictive power of the effective-Hamiltonian

approach is included.

I. INTRODUCTION

In the last 25 years a number of experimental
data on weak nonleptonic processes has been col-
lected. On the other hand, until recently theorists
have not been in a position to make valuable pre-
dictions in this field of physics. Their role was
mainly restricted to looking for most natural ex-
planations of various experimental facts. Even
then the advance was slow and accompanied by
difficulties. A typical example for such efforts is
the chronology of the interpretation of the M = —,

(or "octet") rule in hS =1-transitions. Experimen-
tal evidence for this selection rule by now is so
strong that only the methods which provide an in-

sight into the rule may securely be applied to other
problems in weak nonleptonic physics. While pro-
gress in the explanation of the rule has been
achieved using arguments based on current algebra,
PCAC (partial conservation of axial-vtx:tor
current), and the color symmetries of hadron states
(for baryonic transitions), there was no complemen-

tary interpretation of the octet dominance in terms
of an effective interaction Hamiltonian. '

The concept of the effective Hamiltonian was

created in purely leptonic interactions. It is bised
on the observation that leptonic processes may be
quite adequately described by a localized, current
X current-type operator. A similar framework
was traditionally used in the discussion of hadronic
processes. ' It was tacitly assumed that strong radi-
ative corrections do not spoil the locality of the ef-

fective interaction, and the analysis of nonleptonic
decays was carried out in terms of a local Hamil-
tonian. Although such an approach could qualita-

tively describe nonleptonic processes, the precise
explanation of the AI = —, selection rule was left to
some unspecified strong-interaction dynamical ef-

fect.
The situation changed when Wilson suggested,

in the context of the short-distance operator-
product expansion, a mechanism that could eventu-

ally acquire stronger short-distance singularities for
l 34I = —, than for LD = —, terms. Soon it was real-

ized that the proper framework for the short-
distance expansion is the asymptotically free theory
of quantum chromodynamics (QCD). The fact
that an ever increasing number of strong-
interaction processes has been at least partially cal-
culable using the operator expansion, raised the
hope that something similar might be done even in
a weak hadronic sector.

The pioneering works of Gaillard and Lee and
of Altarelli and Maiani were quite successful. Not
only was the class of QCD corrections to the
bS =1, b,C =0 weak Hamiltonian summed [with
the help of the renormalization-group (RG) equa-
tion], but also the desired result emerged: The oc-
tet part of the effective Hamiltonian was definitely
enhanced. Although the effect was slightly too
weak to account completely for the AI = —, rule, a
number of processes, including decays of newly
discovered heavy mesons, and CP-violating K-
meson decays, ' have been analyzed since then" by
similar techniques.

However, some caution concerning the applica-
bility of the short-distance analysis in weak
processes has been present all the time, ' due to the
low-energy (i.e., long distance) character of-the con-
sidered weak decays. The argument that the ex-
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ponential damping of the weak-boson prapagator
ensures the dominance of short distances may be
considered just as a heuristic one. It comes out
that the "factorization" concept provides a more
natural framework for the discussion of the effec-
tive Hamiltonian and. the influence of short dis-
tances on weak processes.

The procedure, similar to the one used in the
straight QCD analysis, ' consists of two distinct
steps. First, one must demonstrate that up to
powers of the weak-boson mass M (and eventually

up to powers of heavy-quark masses) the structure
of momentum flows allows the weak amplitude to
be factorized into a "soft" part (iri which momenta
are typically of the order of light-quark masses),
and a "hard" subprocess dominated by the large-
momentum (-M) flows. If such a factorization is

possible, the soft part could be described in terms
of hadronic matrix elements of renormalized local
operators, whereas the hard part should be reduced
to a coefficient function dependent on the large in-

variants solely. The next step then is the deriva-
tion of the RG equation for the coefficient func-
tions.

While efforts in studies of weak decays were

mostly restricted to the calculation of anomalous
dimensions required in the RG analysis, little was
done in the explicit justification of the first step. '

One indirect consequence of such a situation was
the lack of a unique definition for the effective
Hamiltonian, so that several difFerent schemes may
be traced in the current literature. ' In this work it
is shown that no room for ambiguities is left when
the- correct approach is adopted. Although some
freedom in the definition (due to the freedom in a
choice of the renormalization and regularization
scheme) remains, the form of the efFective Hamil-
tonian is otherwise completely determined.

However, the main goal of the paper is to justify
the short-distance technique and the use of the RG
analysis in the evaluation of the effective nonlep-
tonic Hamiltonian. It is not a priori clear whether
such an analysis can be carried out in some partic-
ular process or not. ' For each class of processes
its application has to be verified explicitly. In sub-

sequent sections the short-distance approach is jus-
tified for the broad scale of nonleptonic processes,
to any order in the perturbative expansion. To
complete the analysis, the discussion of the actual
predictive power of the method is included.

The plan of the paper is as follows. In the next
section the concept of the factorizability is intro-
duced. In a one-loop example the conditions under

which the F-boson-mass dependence may be ex-
tracted from the amplitude by means of factoriza-
tion will be examined. More precisely, the ampli-
tude (which is proportional to the matrix element
of the effective Hamiltonian) of a simple b,S = 1,
hC =1 transition will be written as a coefficient
function (which does not depend on the dynamics
of the process) and of a matrix element of some lo-
cal gauge-invariant operator. The entire M depen-
dence is included in the caefficient function, and
the matrix element is independent of the 8'-boson
field. -Note that only when such a factorizatian is
exhibited can the RG equation be used to deter-
mine the form of the coefficient function. In Sec.
III, the analysis will be extended to a two-loop
consideration. While the factorization in one-loop
approximation is rather obvious, the higher-order
corrections require more careful treatment. In this
section an explicit proof at the two-loop level is
presented. Before'the general proof of factorizabili-
ty valid to any order in the perturbative calculation
is given (in Sec. V), the b C =0, AS = 1 and 0,
processes are considered in Sec. IV. Included is a
discussion of the "second" factorization. This ten-
tative name is attributed to the procedure in which
the dependence on the heavy-quark masses is ex-
tracted from the amplitude. An immediate conse-
quence of such an extraction is the appearance of
new, "penguin" operators in the calculation. While
the investigatiori in Sec. V definitely proves the fac-
torizability in the sense given above, the disturbing
problems discussed in Sec. VI do not give too
many reasons for optimism: It is easy to see that
the dependence of weak amplitudes an the heavy-
particle masses may be determined by the RG
analysis, but the matrix elements of resulting
operators still hide the completely uncalculable
dependence on the light-quark masses, dynamics,
and renormalization scheme. Therefore, it is un-

likely that more than a suggestive parametrization
(in terms of unknown matrix element) is achieved.
Any insistence on the precise numerical determina-
tion of actual nonleptonic amplitudes is not justi-
fied at present.

Although this paper should rather be considered
as a kind of qualitative analysis, whenever
necessary —especially in the proof of the
factorizability —a detailed calculation is presented.
In many other occasions the reader is referred to
the existing literature on the subject. The stand-
ard, four-quark gauge model (with QCD and elec-
troweak coupling constants denoted by g and h,
respectively) is used. However, the problems and
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conclusions would essentially be the same even in
models with more than four flavors. The weak in-
teractions are described in the renormalizable
gauge.

II. FACTORIZABILITY
IN h, C =LS =1 PROCESSES

In this and in the next section it is shown that
the effective hS =1, hC =1 weak interaction may
be factorized to a hard and soft part, in a class of
processes in which the weak interaction takes place
between two mesons. As an example, the virtual
weak transition D ~(E )* (followed in the. physi-
cal process by strong two-body decay of the pole
particle, %~~Err) is considered (see Fig. 1). The
intention is to show that the eA'ective weak Hamil-
tonian can be replaced by a set of local operators
even when QCD corrections are taken into ac-
count. More precisely, it is claimed that the fol-

lowing equality is valid:

(2.1}

(M denotes the mass of the charged weak boson).
The coeAicients C; in (2.1}are independent both on
external states and dynamics of the process, and
satisfy the RG equation.

Note that the evaluation of the amplitude (2.1}
requires the knowledge of two important pieces of
information. One is the probability of finding the
proper quark-antiquark structure in the incoming
(or outgoing) meson. This information should be
built in wave functions of physical particles. In
addition, the sum of all Born diagrams for weak
c+u~s+d scattering in the perturbative QCD
has to be known. Just at this level the factoriza-
tion should be demonstrated.

In what follows, the factorization will be expli-
citly proved to the order g (two-loop level) by a
careful diagrammatic analysis. In the same
manner an n-loop proof may (at least in principle)
be formulated. However, a simpler (although more
formal) general proof, based on the theory of the

+ - +g'"D;"«;). ,

and that (ii) the coefficients D; satisfy relations

D;=C;, I=0, 1, . . . , (n —1),

(2.3)

(2.4)

i.e., coefficients remain the same as found by the
lower-order analysis. (In addition, a new coeffi-
cient D;":C;" is generated—.} Only when both steps
are confirmed, the inductive proof follows.

It is instructive to start the analysis with the
consideration of the lowest-order corrections to the
process. They are presented in Fig. 2. One can
show that to this order

renormalization of operators, exists. It will be out-
lined in Sec. V.

It is important to emphasize that momenta of
quarks inside mesons are in the further analysis
considered to be much smaller than M and other
large scales involved. (The term "short distances"
should rather be associated. with the large loop-
moments contribution, than with momenta of
external particles. ) Therefore, the terms of order
1/M give small corrections, and —to simplify the
notation —will often be omitted in further expres-
sions.

At the quark level the relation (2.1) can be sym-

bolically written as'

M'(m)o+, ~4+. . .

=(C,'+g'C +g'C, '+ )(d';)

(2 2)

(The subscripts on (A ) and ( d'; ) refer to orders
of g contributions. ) The meaning of the above ex-

pression is as follows. The entire QCD corrections
to the weak Hamiltonian can be factorized as a
product of corrections to the coefficien function(s)
and corrections to the matrix elements of the ap-
propriate operator(s).

The inductive proof of the factorizability should
include two steps; supposing that the relation (2.2)
is valid to the order g ",one must show. :that (i)
the order-g " result is described by the same set of
operators j C&'; ),

C

o'
S I'' h cos8

8M

2

1+ 2A (sc)y q(ud)v q
16m

FIG. 1. D ~Km. process. The interesting part is the
weak virtual transition D ~K . A denotes the effective
weak Hamiltonian.

2

+ B(s&c)y „(uA;d)v
16m.

(2.5)
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c (pi) s(p&) (x)

u(- p&) d(-p4)

(x)

(a)

(b)
FIG. 2. Lowest-order corrections to the considered

hC =hS =1 process: (x) a tree diagram; (a) vertex

corrections; (b) box diagrams. The curly line corre-

sponds to the weak boson ( W), and the dashed line to
the gluon (6).

+ 3 others

FIG. 3. Lowest-order corrections to the operator ver-

tices.

where

A = ——,(A;)(,') f 2ydy f dxln

transforming as components of 84- and 20-
dimensional SU(4) representations. Equation (2.5)
now reads

(2.6)
16m

B = ———lnM
9 3

4 2

1 1

+ f 2ydy f dxlng(x, y;m~, p;pj) . (2.7)

[A and 8 are contributions from Figs. 2(a) and
2(b), respectively. ] Functions X and P depend on
the masses of quarks mq, and external momenta pz.
The function Xs in (2 6) denote. s the contribution of
the counterterm associated with the reno~aliza-
tion of the weak vertex in Fig. 2(a). Its form
depends on the procedure. For example,

Xs =X(mq ~p&'pj —p )
2

for the off-shell renormalization in a symmetric
point" p, and

X,—=X(m, 0, pp, ——~')

1+ 2
(A ——,8) d'2a

16m

(2 9)

Operators in (2.9), due to their color, flavor, and
chiral structure are candidates for the operator
basis on the right-hand side of the expression (2.1).
In order to show the validity of the relation (2.1),
matrix elements of operators (2.8), i.e., the QCD
corrections to the vertices generated by these
operators, have to be found. The basic diagrams
are displayed in Fig. 3. Since the diagrams are
divergent, one must define the appropriate renor-
malization procedure in order to absorb diver-
gences. When some of the known subtraction pro-
cedures are applied, the renormalized result can be
written as

for the class of mass-independent renormalization
schemes. One can—using the Fierz-rearrangement
of both Lorentz and color indexes —reexpress (2.5)
with the help of operators

2«,.&.„= 1+ ' (A+-', 8} ~,.16

(2.10}

d's4 ——(scud +sduc}~ v

(2.8)

g 4
2

(8'„), ,= 1+,(A ——,8} d„,
16m

62a=(scud sduc)( v g}(v g) where
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(2.11)

Ps [like Xs in (2.6)] depends on the renormaliza-
tion procedure. Comparing expressions (2.5)—(2.7)
and (2.9)—(2.11) one finds that

2cos2g
&~&0~2=

2
( C84( @84)0+2

8M

is obvious. However, this procedure does not work
when applied on diagrams 2(b). The shrinking of
the weak propagator introduces an UV divergence
in otherwise convergent integrals. [That is the
consequence of the fact that M dependence of these
diagrams is (lnM)/M rather than 1/M, as may
be seen from (2.7).] Fortunately, the differentiation
with respect to external momenta improves the UV
convergence. By simple power counting one can
convince oneself that

+C20 ( ~20 )0+2 )
h c

0[2(b)]= 2 8[3(b)] . (2.15)

where

(2.12)

2

3

2

3

=1+ 4
16m

—,——, lnM + ff lugs

Cs4
=1+ 4 (8 —8)

&co 16m.
L

(The differentiation is symbolically denoted by B.)
After the integration, (2.15) becomes

2c2
2(b) = [3(b)+const] .

8M
(2.16)

The integration-constant term (proportional to g },
since independent of momenta, must be a tree-
approximation matrix element' of local operators
(2.8). Combining (2.14)—(2.16) one gets [constant
in (2.16) is denoted by c~z~]

(2.13)

Thus, Eq. (2.1) is proved up to the order g . The
coefficients (2.13) are independent of dynamics and,
for a suitable choice of the renormalization pro-
cedure, they do not even depend on the masses of
quarks. Since coefficients (2.13) get their main
contribution from the loop momenta of order M,
they are sometimes referred to as a hard part of the
effective Hamiltonian.

The method presented relies on an explicit
evaluation of diagrams and obviously cannot be
convenient for the higher-orders proof. Another
method, applied already to the short-distance
analysis of AS =2 weak interactions by %'itten, '

seems to be more helpful. It is based on a close
correspondence between diagrams related to (A )
and (W).

In general, two groups of diagrams are encoun-
tered in the evaluation of (A ). In the first group
ultraviolet (UV) behavior allows the replacement of
the weak-boson propagator (k —M )

'
by

—1/M, hence —in terms of graphs —allows the
shrinkage of the propagator to a point. That can,
for example, certainly be done for diagrams (x) and
(a} in Fig. 2. The diagrammatic equality (c—:cos8)

2c2
2(x)+2(a)= [3(x)+3(a)](+O(M 4))

8M

(2.14)

h c(2)= (1+g c(2i)X(3) .
8M

(2.17}

This equality corresponds to the relation (2.12),
derived earlier by a straight diagrammatic calcula-
tion.

In the same manner, the differentiation with
respect to external momenta improves the UV
behavior of higher-order corrections, and helps to
reach the step (i) in the inductive proof. Step (ii)
could not be verified at the one-loop level, and it
might be interesting to check it explicitly in a
two-loop calculation. The procedure, based on the
combinatorics of diagrams, will be illustrated in
the next section.

III. HIGHER-ORDERS CONSIDERATION

While the passage from the tree approximation
to the one-loop result is rather trivial, the extension
to the two-loop level requires the justifications of
both steps (2.3) and (2.4), and may serve as a pro-
totype for the general inductive proof.

To facilitate the writing, unimportant constants
and indices are omitted, and symbolic diagrammat-
ic equations are used. However, careful treatment
always stands behind such simplified notations.

It was already established, see Eq. (2.16), that di-
agrams in Fig. 2(b) differ from those in Fig. 3(b) by
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a constant, which turns out to be proportional to
the tree-approximation matrix element 3(x):

2(b) =3(b)+g'c(2) X 3(x) (3.1)
J

A class of higher-order corrections (C) to diagrams
in Fig. 2(b) is presented in Fig. 4. Superficially, di-
agrams 2(b) in a circle denoted in the figure may
be replaced by the diagrams on the right-hand side
of Eq. (3.1). But this expectation is false; the dia-
grams in Fig. 4, otherwise convergent, would be-
come divergent, and the relation

ment of the starting operator(s).
The simple power counting shows that all the

other two-loop corrections either give g contribu-
tions to the matrix element of operators (2.8), or
add to the integration constant [thus changing c(4)
in (3.5} to c(4) ], but leave the middle term on the
right-hand side of Eq. (3.5) unchanged. Since the
corrections to the diagram 3(x) are just the order-

g corrections to the matrix element of the starting
operator(s),

C(2(b)) =C(3(b)+g c(2) X3(x)} (3.2) one gets the final result

is not correct. However, the differentiation with
respect to external momenta improves the conver-
gence. It is explained in Fig. 5. If the derivative
(marked with an X) acts on a propagator inside
the subdiagram 2(b) [as denoted symbolically in
Fig. 5(a)], the boson propagator —as in Sec. II—
can be replaced by —1/M:

(3.3)

B( )[C(2(b))]= (}(b)[C(3(b))]

+g c(2)(}[C(3(X))] . (3.4)

Equalities (3.3) and (3.4), summed and integrated,
give the relation

C(2(b))= C(3(b))+g c(z)C(3(x))

+g c(4)[3(x)], (3.5)

which is now the correct form of (3.2). The last
term in (3.5) is the integration constant. It is of
the order g, and represents the tree matrix ele-

(}(,)[C(2(b))]=(}(,)[C(3(b))] .

When the derivative acts outside the subdiagram
[as in Fig. 5(b)], the overall convergence is im-

proved, but the convergence of the subdiagram is
not. Therefore, the simple shrinking of the weak
propagator is now forbidden. However, as demon-
strated by Witten, ' the momenta that flow into
the subdiagram 2(b) become upon integration of
the order of external momenta, and one may use
the relation (3.1):

(~&4- (&)4+g'c(2) ( &)2+g'c(4) ( & &o . (3.6)

As expected, c[2] is the same constant as already
found in Sec. II. Any other outcome would mean
that the factorization does not exist.

The elements of the analysis just described may
be of use in a general inductive proof. The dif-
ferentiation improves the convergence of any n-

loop diagram. It is illustrated in Fig. 6. The posi-
tion of the diA'erentiation mark determines what
should be considered as a subdiagram. As before,
when the derivative acts on the external leg of the
subdiagram [for which, by the assumption, (2.2)
has air'eady been shown], the subdiagram becomes
dominated by loop momenta of the same order as
external momenta. That enables one to express the
subdiagram as a linear combination of matrix
elements of local operators (see Fig. 6). The
integration-constant term (independent on external
momenta) is—due to the chiral, color, and flavor
structure —the tree matrix element of the starting
operator(s), and no new operators enter the
analysis. That completes part (i) of the inductive
proof. The proof of step (ii) requires the careful
sorting of n-loop diagrams: in the first group
"simple" corrections to the (n —1)-loop Hamiltoni-

+ g C(2)
2

FIG. 4. Higher-order corrections to diagrams 2(b).

FIG. 5. The effect of the differentiation (marked with
an X sign). The derivative acts on (a) quark propaga-
tors inside the subdiagrams, and (Q) external legs of the
subdiagrams.
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k pg+ X g c(~g)

FIG. 6. The differentiation of an n-loop diagram.

an have to be classified. (Corrections analogous to
those in Fig. 4 are called simple. ) For this class,
just as in the two-loop calculation, one should get

+C(g C(2)(@~2n 4+

+g "(const) X ( 6 )o . (3.7)

All other n-loop corrections should contribute ei-
ther to the first, or to the last term on the right-
hand side of (3.7), not affecting the remaining part
of the expression.

Note, by the way, that through a similar analysis
one may show a factorizability of the electromag-
netic corrections to weak AS =AC =1 processes.
The factorizability, as far as weak interactions are
considered, has nothing to do with the specific
asymptotic behavior of QCD (or QED), but is rath-
er the consequence of the renormalizability. '

The rough sketch given above just indicat'es the
path which could be followed by the actual proof.
In reality the proof of step (ii) becomes extremely
complicated due to the variety of corrections that
have to be taken into account when the number of
loops exceeds two or three. To circumvent these
difficulties a completely different method is used in
Sec. V, in the general proof of the factorizability.
However, the technique presented in the preceding
section and this section has the advantage that one
can visualize what is actually done in the calcula-
tion: a weak-interaction problem (the evaluation of
(A ) ) is transformed into the "pure" QCD prob-
lem (the calculation of matrix elements ( d') ). The
weak interactions have left their trace in the chiral
and flavor structure of operators, but the 8'-boson
field is completely eliminated. Only the mass of
the weak boson appears as an argument upon the
value of which the coefficient functions C; depend.

One might wonder what the main goal of such a
procedure is. The situation is not analogous to
that encountered in the application of the short-
distance technique in straight QCD. ' There. , in

the class of reactions at large-transverse momen-

turn q the dynamics of the (hard) scattering pro-
cess can be factorized from the physics of the ha-
dronic wave function. Thus the ratio of two quan-
tities measured at different energies does not
depend on bound-state dynamics and on the precise
evaluation of the matrix elements (the soft part at
both energies is the same). The characteristic ex-

ample is the description of the pion form factor at
large q . In few cases not only the hard part, but
also hadronic wave functions can be treated pertur-
batively. ' In weak processes matrix elements can-
not be calculated and the 8'-boson mass —which

plays the role of (large) q —is fixed, there is no
— possibility for the comparison, and the soft part

cannot be removed. Although the M dependence
of the coefficients can be found, as long as the
QCD corrections to the operator vertices are uncal-
culable, nothing but a suitable parametrization is
achieved. Such parametrization may have sense

only if the matrix elements of various operators are
expected to be of the same order of magnitude.
Then, by comparing coefficients, the relative im-

portance of operators with diverse substructure
(e.g. , hI =0 and 1 isospin-changing operators),
contributing to a single process, can be determined.
Otherwise, the further improvement of the analysis
must be looked for. The processes in which an ap-
proximate equality of matrix elements of operators
is not expected, are studied i' the next section.

IV. dLC =0 PROCESSES:
"SECOND" FACTORIZATION

As far as the elimination of the 8'-boson field is
considered, the analysis of the factorizability for
the AS =1, AC =0 processes does not differ much
from the analysis in the preceding section. Howev-
er, while in the h, C = 1 case the exchange of the
weak boson always happens between two quark
lines, in the hC =0 processes the weak transition
may occur even in a single quark line. Neverthe-
less, as will be shown, the operator basis remains
similar to those found in the previous case, and is
constructed by only two operators.

The discussion is again restricted to virtual weak
decays in the meson sector. The particular process
to be considered is the (K )* +sr transiti—on, the
weak part of the E ~m. +m decay displayed in
Fig. 7.

The free-field result (no QCD corrections) can be
described with the help of two operators related by
their SU(4) properties to operators (2.8):
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K
U U J

U~C

FIG. 9. s~d transition in the lowest order in weak
interactions.

FIG. 7. K ~~++ decay. The interesting weak
transition is enclosed.

hSC 2 2 22
2(m„—m, ) — +const —lnM

8M' n —4

d'g4 ——[(duus —dccs)+(dsuu —dscc)](v q)(v ~),
&& dp (1—y5)s +0 (M ) . (4.2)

(4.1)

&2o=[(duus —dccs) —(dsuu —dscc)](v —w)(v —~) .

When higher-order corrections are taken into ac-
count, a set of diagrams which have no precedents
in Secs. II and III may be constructed (see Fig. 8).
Such new penguin diagrams might create a new set
of local operators (penguin operators) not included
in (4.1). However, as a consequence of the renor-
malizability, such a situation does not occur: the
entire contribution of penguin diagrams (in which
the weak transition takes place in a single quark
line) may be absorbed into the matrix elements of
operators (4.1), and no new operator is needed in

the basis.
To illustrate this statement let me first consider

the diagram in Fig. 9. [The degree of divergence
for such a "self-energy" diagram is so high that
even the Higgs ghost particle P contributes to the
order O(1/M ).] To the lowest order, the s~d
transition is described by the unrenormalized am-
plitude (s:—sin8)

I

The residue at the pole n~4 is proportional to
(m„—m, )/M, and no mass-independent renor-
malization scheme exists for the weak-interaction
part of the standard model. However, the renor-
malization constant can be defined as the value of
the expression (4.2) calculated at some fixed exter-
nal momentum. Since the interesting part of (4.2)
is independent of momenta, the entire 1/M con-
tribution of Fig. 9 is absorbed into the (weak) re-
normalization constant

A SC
2

(m —m )—s
8M 2 Q c

2 +const —lnM 2

n —4

(4.3)

and diagrams 9 [and 8(a)] do not contribute to
(~

~

~
~

Ic*).
Another interesting diagram is presented in Fig.

10. While the dsG part of this vertex correction is
absorbed by the renormalization constant (4.3), the
remainder deserves attention. The appropriate ma-
trix element, up to 1/M terms, is

2 2
h2sc m„—q x(1—x) aaPaP2+ —4~assG- 2 f dxx(l —x}ln dy (1 —y&}A,'s(q q —g q )G~+O(M ) .
8M 0 m, —q x(1—x} 4n.

However, the result:(4. 4) does not have lnM
dependence, and that means that weak propagators
in Fig. 10 can be shrunk to a point. In other
words, diagrams 10 [and 8(b)] do not generate new

(4.4)

I

operators, but rather contribute to matrix elements
of starting operators (4.1), as indicated in Fig. 11.
This property is the consequence of the Glashow-
Iliopoulos-Maiani (GIM) mechanism and of the re-
normalizability (the dimension-six counterterm,

w, f
I

I

)
uc u

= (ds)v A (uu~v

(~) (b)
FIG. 8. "Penguin" diagrams, in which the weak

transition takes place in a single quark line. FIG. 10. s~dG transition, related to Fig. 8(b).
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, C

(o) (b)
FIG. 11. Diagram (a) does not generate new opera-

tors. As indicated in (b) it may be related to matrix ele-

ments of operators (4.1). In the three-flavor theory only
the up-quark contributes in the loop.

( d,4) and ( Wgp) . (4.6)

However, looking back on diagrams that determine
(4.6), one finds two clearly distinctive classes: dia-

dsBBG, is forbidden in the renormalizable I.agran-
gian), and hence it must be fulfilled to any loop
level (see the related discussion in Ref. 20).

Once the possible source of new operators is el-

iminated, the analysis proceeds just as in Secs. II
and III. The contribution of standard diagrams
(analogous to those in Fig. 2) may be factorized,
leading to the efI'ective AS =1, AC =0 Hamiltoni-
an of the form

(A )=,—(c„(d'„)+c„(d'„)) . (4.5)
h2sc 1

The coefficients C are the same as in (2.13). As in
the hS =AC = 1 case, the factorization is true for
any choice of both the renormalization scheme and
the renormalization scale.

So far, the amplitude of the weak process is
parametrized by two, generally unknown, matrix
elements

grams without [similar to those in Figs. 3(a) and
3(b)], and with [see Fig. 11(b)] closed fermion
loops. The former "standard" diagrams are ex-

pected to maintain the original left-left chiral struc-
ture, but the latter —due to vector coupling of the
gluon field —must in addition have left-right parts,
too. Since mesons contain both left- and right-
handed quarks, it is expected that diagrams with
closed loops (being able to annihilate both com-
ponents of the meson wave function) have an im-
portant role in the description of the process.
Therefore, one would like to separate their contri-
bution. According to the decoupling theorem, ' it
may be done in certain circumstances.

More precisely, of none of the external particles
is the charm quark, and if external momenta may
be considered small as compared to m„ the matrix
elements (4.6) can be further factorized

(4.7)

where the new operator basis [ HJ I belongs to the
"effective field theory, "' ' ' with only three quark
flavors; The method is described extensively in the
literature ' ' and here only the main idea will be
illustrated.

The goal of the second factorization (4.7) is ex-
plained earlier: two parameters (4.6) are replaced
by a larger number of unknown matrix elements

( HJ ), but with the expectation that in the new
basis dominant penguin operators will appear ex-
plicitly. '

The factorization (4.7) is almost evident for the
standard diagrams, and the discussion will be con-
centrated on the contribution of diagram 11(b). It
is easy to get (in the four-flavor theory)

1 m„—q x(1—x)
(&s4,2o)F)s. ))(b)-g J dxx(I —x)»

2 2 dy (1—y5)A, 'suy A, 'u .
0 m, —q x(1—x) 4ir

The integral in (4.8) can be rearranged to read

1 &s m„—q x(1—x)J—+g J dxx(l —x)ln +g I dxx(l —x)ln "
+O(m, ),0 m, rs

(4.8)

(4.9)

where rs is some constant (independent of external
momenta), the interpretation of which will become
clear in the following. The first term in the
decomposition (4.9) may be considered as an
order-g correction to the (m, -dependent) coeffi-
cient function D in (4.7), and the second term as an

appropriately renormalized g correction to the

matrix element of operators

(suud+sduu)(v „)(), „), (4.10)

in a theory with only three quark flavors. In such
an interpretation ~s characterizes the renormaliza-
tion scheme. As (Ibs and Xs before (see Sec. II), rs
may be either dependent, or independent on masses
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of (light) quarks.
The appearance of the renormalization function

rs implicitly signals the presence of the new com-
ponent in the basis of renormalized operators. The
new term has a form [see (4.8) and (4.9)] charac-
teristic for penguin operators:

W„$

I

l

d

Z, f' U

uL

L+R L+ R

(dks) v —a (uk u) v . (4.11)

FIG. 12. AS =hC =0 processes. There is no GIM
mechanism, .and diagrams on the left-hand side generate
the penguin operator on the right.

Note that the elimination of the charm-quark field
in the course of the second factorization made the
GIM mechanism inoperable, and penguin diagrams
(Fig. 11) divergent. Consequently, new counter-
terms had to be introduced (or in other words, new
operators were admixed) in the renormalization
procedure, and the goal of the second factorization
was achieved: penguin operators (4.11) emerged
explicitly in the basis I H I.

Higher-order contributions to AS =1, hC =0
processes will be discussed in context of the general
proof of the factorizability, in the next section, and
this section will be concluded with a brief analysis
of the AS =0, 4C =0 weak interactions.

The new feature is that even the neutral currents
can contribute to AS =AC =0 processes, consider-
ably increasing the operator basis already in the
free-field limit. In addition to 84 and 20 terms,
the basis contains operators transforming as 15-
and 1-dimensional representations. Furthermore,
due to the fact that neutral currents in the stand-
ard model are coupled to the left- as well as to the
right-handed quarks, the operators with mixed
left-right chirality emerge even before the QCD
corrections are introduced. That affects substan-
tially the higher-order calculation. For example, at
the one-loop level the leading contribution of the
penguinlike diagrams in Fig. 12 is not of the order
1/M [compare with (4.4)], but of the order
(lnM )/M2. Thus the shrinking of weak propaga-
tors is forbidden, and diagrams in Fig. 12 must be
related to matrix elements of the new, penguin
operator (compare with the different situation in
Fig. 11). In other words, already the extraction of
the weak-boson masses introduces the penguin
operators in the effective Hamiltonian. (In the pre-
vious example those operators appeared only when
the charm-quark mass was extracted from the am-
plitude. )

From the technical point of view. the analysis be-
comes extremely involved, but no new concepts are
required and the procedure suggested throughout
this work suffices for the proof of the factorizabili-
ty even in this case.

V. GENERAL PROOF OF FACTORIZABILITY

The "diagrammatic" analysis given in previous
sections raised a hope that the factorization might
really be done for weak transitions discussed so far.
Furthermore, throughout the analysis the very con-
cept of the effective interaction became more plau-
sible and understandable. The same technique will,
therefore, serve in the next section as the basis for
the discussion on the applicability of the factoriza-
tion in nonlepionic processes. However, one must
be aware of problems arising when an attempt is
made to transmute the sketch of the inductive
proof, given at the end of Sec. III, to the rigorous
and general proof. In order to circumvent difficul-
ties, another method will be used in this section. It
is based on the close relationship between the
theory of the renormalization of operators (TRO),
and the factorizability. Since the TRO is already
known to be valid to any loop order, such an ap-
proach seems to be more convenient for a general
proof.

It is useful to start the analysis by forgetting
weak interactions for a moment, and concentrating
attention to the straight QCD problem of the re-
normalization of operators. The objects under con-
sideration in a TRO are Green s functions involv-
ing insertions of operators. In general an operator
will mix with other operators in a renormalization
procedure. However, a simpler example of multi-
plicatively renormalizable operators [such as opera-
tors (2.8)] suffices for the purpose of the introduc-
tory discussion.

To remove the divergences in Green's functions
(GF's) of some operator, one has to add counter-
terms to the Lagrangian in such a way that coun-
terterms cancel poles in GF's. As far as GF's
with only one insertion of a multiplicatively renor-
malizable operator are considered, the TRO proves
to any loop order that one and only one counter-
term is needed. Furthermore, the right regulariza-
tion procedure —which isolates the infinities ap-
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pearing in individual diagrams —has to be chosen.
In principle, any regularization, as long as it
preserves the gauge symmetries of the theory, may
be adopted. The suitable choice of the regulariza-
tion will be the main step in the following proof.

The basic source of interesting divergences (i.e.,
of divergences that cannot be removed by the QCD
renormalization of fields and coupling constants) is
the vertex in which an operator is placed. To be
more concrete, operators (2.8) are examined. The
Feynman rule for the vertex corresponding to one
of the operators in (2.8) is typically of the form

[y„(I-ys)]) 2I y"( 1 —y5)13 4, (5 1)

(5.2)

Here A is some parameter, and q is the momentum
flowing through the vertex from quark lines 1-2 to
lines 3-4. (In general q is the function of external
as weil as of loop momenta. ) For small values of
q, vertex (S.2) exhibits the same behavior as vertex
(5.1), but when q grows and becomes larger than
A, the expression (5.2) turns off. On the other
hand, as A ~oo, the original UV divergence is
rediscovered. Then it follows that A in (S.2) is the
regularization parameter which plays a role of an
UV cutoff.

In the actual theory, only the diagrams with the
vertex (5.1) appear. However, through the regular-
ization procedure, to any diagram with the vertex
(5.1) another diagram with the vertex (5.2) may be
related; that is illustrated in Fig. 13. In Fig. 14,
the statement of the renormalizability is explained:
The divergent part (when A~a() ) of diagrams on
the left-hand side of the picture can be isolated in;
constant multiplying the remaining, finite, A-

independent part.
Figure 15 illustrates the crucial step in the.proof.

One considers a regularized vertex for the sum of
operators d'q4 and Wpp,

where subscripts denote quark lines along which
the vertex has to be read. Let me now consider di-
agrams in which (5.1) is replaced by the following
nonlocal vertex:

[y) (I —y5)]) 2[y~(1 —y )h-4 2
2 p 1

XX-Q2 ~ Q) - P;Pj

(l)m z- (g, m') xren
A

+ ) + ~ 0 '
Pfpj

FIG. 14. The scheme for the renormalization.

1

p ( @()4+@20) scud( v —A)( v —A) (5.3)

It is easy to see that the regularized vertex corre-
sponding to the operator (5.3) describes exactly the
hS =hC =1 interactions in a theory with a weak
boson of mass A. Consequently, the right-hand
side of Fig. 15 corresponds to (Mas ac (), pro-
vided that A is replaced by M. By comparison of
Figs. 13—15, the following relation can be derived:

M (4 ) .. .-Z84 '(M )Xren(d'g4)(~, q. )
J

+Zz() '(M ) )& ren ( d'p() )(q p )

+O(M ') . (5.4)

+ ~ ~ ~

—A~ =M~

Note again that the left-hand side of the relation
(5.4) represents properly regularized (with a "cut-
ofF' A=M), but unrenormalized four-quark one-
particle-irreducible Green s function with the inser-
tion of the operator (5.3). However, the relation
(5.4) is just the required proof of the factorizability:.
matrix elements of the effective Hamiltonian are
written in the operator basis (2.8). While the simi-
lar result has already been derived at the two-loop
level [compare with (3.6)], the factorization (5.4) is
now valid, according to the TRO, to any loop or-

+ + ~ ~ ~

+ ) + ~ ~ ~ + ) + )) + ~ o ~

FIG. 13. Diagrams with a local vertex are, in the
course of the regularization, replaced by diagrams with
a nonlocal vertex (denoted by a small circle).

FIG. 15. For the certain value of the regularization
parameter weak interactions are rediscovered. 6 stands
for (6'&4+ 8'2o)/2. The result is true in the leading order
inM.
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der in the perturbation theory.
To summarize, the renormalization of two par-

ticular gauge-invariant operators listed in (2.8) is
considered. The insertion of an operator in a GF
creates divergences, yet a well-defined procedure of
the renormalization exists. In order to deal with
divergent quantities, a procedure relating finite (but
procedure dependent) expressions to all infinite
quantities is established. This regularization pro-
cedure is selected very carefully: It is designed in
such a way that it reproduces the original diver-

gences when the regularization parameter tends to
infinity, but imitates the weak-interaction theory
when the parameter takes a finite value of the
weak-boson mass. Thus, GF's with operator inser-
tions are in a unique manner related to GF's with
a (single) W-boson exchange. However, the matrix
elements of the eAective Hamiltonian may be ex-

pressed with the help of such GF's, and one finally
finds that (A ) can be factorized in the operator
basis {d's4, d 2p J. Moreover, the factorization coef-
ficients correspond to renormalization constants of
operators evaluated at the finite value A=M.

Let me now consider the AS = l, AC =0 transi-
tions. The first step in the proof of the factoriza-
bility for these transitions is as simple as it was for
the hS =hC =1 processes. The new feature, how-

ever, appears when the next step—the second
factorization —is examined. Let me remind the
reader that the goal of the second factorization is
to reexpress the matrix elements of certain opera-
tors in the four-flavor theory, with the help of an
operator basis in the three-flavor theory. In the
sense of the previous discussion, first the renormal-
ization of operators in the QCD with only three
flavors has to be analyzed. Interesting operators
are those mixing with the operator (4.10) in the re-

normalization procedure.
It turns out that (quadratically divergent) dia-

grams with closed quark loops, created by (4.10),
remain divergent even after the operator vertex is
reaaranged according to (5.2). (See Fig. 16. For
simplicity, the procedure is illustrated at the one-

loop level. } Therefore, another regularization
parameter has to be introduced. The purpose is
the same as before—to choose the regularization
scheme in such a way that, to a certain limit, the
underlying weak theory emerges explicitly. The
following procedure fulfills this requirement: The
u-quark propagators appearing in a diagram with a
closed quark loop originated from the operator
(4.10) have to be replaced throughout the regulari-
zation procedure, according to the instruction

I I I

DI VERGENT Dl VERGENT FINI TE

FIG. 16. The regularization procedure in the three-

quark theory. H stands for the operator (4.10).

ff (p; —m„)

~g l'p; —m„} ' —g (gf; —p) (5.5)

VI. CRITICAL LOOK QN THE APPLICATION

In the preceding sections several weak virtual
transitions in mesons were discussed. It was
shown that the processes really exhibited specific
short-distance behavior, and that the factorizatioo

Here p; is the momentum flowing through the ith
fragment of the up-quark loop (in general, p; is a
function of external and loop momenta), while p is
the new regularization parameter. It is clear that
the p~m limit reproduces the original divergences
of the three-flavor theory. However, for any finite
value of the regularization parameter, (5.5) is noth-
ing but the GIM mechanism in the four-quark
model with the heavy quark of the mass p. A sim-
ple combinatorics now leads to the proof of the
second factorizability (4.7): Matrix elements (4.6)
may be reexpressed (to the accuracy 1/m, ) in the
three-flavor operator basis, to any given order in
the perturbation theory.

So far, it was tacitly assumed that the selected
regularization procedure preserved the global and
local gauge symmetries. One intuitively feels that
such an assumption is justified, at least to the lead-

ing order in M and m, : the regularization is
chosen in such a way that the features of the stand-
ard electroweak theory, known to obey the gauge
invariance, are imitated.

In this section the factorizability (including the
"second" one) has been proved to any loop order.
However, the more formal character of the proof
has pushed the real physical problems into the
background. As already mentioned, the discussion
on the applicability in the next section is based on
the "more physical" diagrammatic approach
adopted in Secs. II—IV.
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could be carried out. Once the factorizability is
proven (and only then), it is quite easy to show
that coefficient functions satisfy a renormalization-

group equation. . For example, the coefficients C;
(i =84,20) in (2.12) and (4.5) obey, in a mass-

independent renormalization scheme, the equation

+P(g)
&

—y;(g) C;(M/o, g)=0, (6.1)
a a

Bo' Qg

for any value of the parameter 0. (the "renormaliza-
tion point"). However, the mass-independent
scheme is not the unique choice. For some other
renormalization procedure the additional terms
might appear in (6.1) and the RG equation would

have different form and solutions. Yet the differ-
ences in C; are compensated for by the differences

I

emerging in the calculation of the matrix elements
of operators. In principle Eq. (6.1) may be solved
to any order of accuracy. (In reality the calcula-
tion is mostly restricted to the leading-logarithmic
approximation. See, however, Ref. 23.) Therefore,
the coefficients C; [and D;—see Eq. (4.7)] are from
now on treated as known, and attention will be
concentrated on the matrix elements.

In the course of this paper it was emphasized
that by doing factorization the main problem of
the analysis was shifted from the weak interactions
to the straight QCD regime. A certain class of ra-
diative corrections to the 8'-boson exchange was
summed, but strong corrections related to the ver-

tices generated by operators remained undeter-
mined. This problem was already known to the
authors of the pioneering works on the subject.
However, the progress in the description of ha-
drons by quark-model wave functions turned suspi-
cion into hope. Indeed, considerable success in ac-
counting for many properties of hadrons (in partic-
ular static) was achieved in this farmework.
Therefore, it might seem that the quark wave func-
tions provide the solution to the problem of calcu-
latioo of operator matrix elements. Yet at present
their application in nonleptonic physics seems to be
justified only in rough estimates and one still does
not have a suitable basis for precise numerical cal-
culations. This conclusion emerges from the fol-
lowing observation. While the real matrix ele-
ments crucially depend on both the renormaliza-
tion parameter and the renormalization procedure,
the accessible wave functions (for example, in the
bag or in the harmonic-oscillator model ) are to-
tally insensitive on the variation of those elements.
Arguments that some choice of the procedure
might describe the physics more adequately than

some other, have by now no solid confirmation. It
is hard to imagine any substantial progress before
the renormalization dependence is built in the wave
functions.

Up to this point simple, virtual, two-body meson
transitions have been considered. The problems
concerning the calculation become even more signi-
ficant when more complicated transitions are taken
into account. One example is displayed in Fig. 17.
The factorization may again be achieved by the
method used in previous sections. However, not
only the renormalization procedure dependence,
but the momentum and light-quark-mass depen-

dence, and even the chiral and color structure of
the expression in square brackets (Fig. 17) remain
now unknown. (The analogous problems are en-
countered in the analyses of the three-body meson
and baryon decays; see for an example Fig. 18.) In
all such transitions a four-quark operator is
"forced" to describe a process in which six or more
quarks take place. The approximation in which
the quark not interacting with the weak boson is
considered as a mere "spectator" might help to
lessen the problem, however, new data (especially
for the D-meson decays) cast considerable doubt
on this popular approach.

Let me look at another aspect of the problem.
The "direct" application of the weak Hamiltonian
is by no means the only way by which the nonlep-
tonic decays in terms of the effective interaction
are treated. While the considered virtual transi-
tions represent the so-called pole contribution, at
least two other distinctive types of theoretical con-
tributions can be isolated. The first one is based
on the current-algebra analysis. ' By reducing the
pion field via PCAC in a process A~B +a one is
left with the rotated Hamiltonian between states A

and B. Schematically

(Bn
~

4
~

A )~const X (B
~

5
~

A ) . (6.2)

Thus a matrix element of the Hamiltonian between
baryon (or meson) states emerges and the analysis
corresponds to the analysis of the pole contribu-

l

I

+ 1 + ~ ~ ~
I

=G(M) X ren + + ' +"'
1 I

FIG. 17. The prototype of a weak transition in a
baryon. The effect of the factorization is indicated.
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corrections

W~-O' A'

I

A

j

A'

~ I
o ~ ~ . X ~ ~ ~ I

I I

=C X ren orrectionS
FIG. 19. The failure of the separability.

FIG. 18. The factorization for a three-body meson

decay.

tions (Secs. II—V).
Another type of contribution is related to the

operator structure of the effective Hamiltonian. It
is the "separable" contribution, following from the
assumption that the four-quark operator can be
written as a product of two quantities ("currents")
bilinear in quark fields. For example, if the opera-
tor d'=(ab)(ed) contributes (via an efFective Ham-
iltonian) to a transition A~B +sr, the assumption
is that the separation

(B~~ d'~A)-(B ~(ab) ~A)(~~(cd) ~0) (6.3)

can be done. The assumption (6.3) bears far-
reaching consequences. Namely, as shown else-

where, ' ' without separable contributions [based
on (6.3)] it is almost impossible to describe success-

fully the decays of the kaon and hyperons. There-
fore, it is worthwhile to examine how the assump-
tion (6.3) fits the factorization picture developed by
now.

I.et me remind the reader of the meaning of an-

gular brackets around an operator in a factorized
result. ( 8') denotes the renormalized contribution
of all-order QCD radiative corrections to the vertex
generated by the operator W. That means that
(6') carries the information on the subtraction
scheme used in the course of the renormalization.
Imagine now that the operator may be written as a
product of two other operators, 6'= HA. Let me
consider the product

(6.4)

Each operator in (6.4) has now its own
renormalization-procedure subtraction scheme.

Even more, these schemes are completely unrelated
to the scheme used in the evaluation of ( d'). This
fact can be represented pictorially. In general the
diagram in Fig. 19 cannot be cut through the
operator vertex. Vertices on the right-hand side
acquire, by the renormalization, the counterterms
which cannot be brought into relation with the
counterterm belonging to the operator d' on the
left-hand side. It must be concluded that the
separation (6.3) might easily be ill-defined. In oth-
er words, (6.3) is correct just to some level of ap-
proximation. The gluon corrections that "bridge"
the operator (as the one in Fig. 19) are of the
greatest importance in the estimate of the validity
of the separation (6.3). The more important these
corrections are, the less confident the relation (6.3)
is. Unfortunately, no real attempt to elucidate this
problem has been described so far in the litera-
ture.

VII. CONCLUSION

An increasing number of papers using the effec-
tive weak Hamiltonian and the short-distance tech-
nique in calculations of nonleptonic decay rates, of
both mesons and baryons, has intensified the neces-
sity for an explicit proof of the factorizability. The
main part of this paper is addressed to this prob-
lem, and the proof valid to any order is achieved.
By the same method it is easy to prove that the
factorization (as far as under this name the isola-
tion of the F-boson and heavy-quark masses from
the amplitude is considered) may be done even for
more complicated nonvalence Fock states (i.e., qqG,
qqqqq, . . . ) of mesons and baryons.

Despite this attractive feature, the problem of
applicability still seems to be far from the solution.
The part of QCD corrections in the amplitude can
be definitely summed and incorporated into the
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coefficients of the operators; but at present there is
no way to take into account the remaining correc-
tions confined in the matrix elements of operators.
The analyses exploring the quark-model wave func-
tions may be used in a rough estimate of the ma-
trix elements, but a more pretentious application
does not seem to be justified. A suggestive
parametrization is achieved by the factorization,
but that sheds little light on the problem: As long
as more reliable wave functions sensitive on the de-
tails of the renormalization procedure are not ac-
cessible, the predictive power will be small.
Presumably, the ability to produce more realistic
wave functions will be improved with time. In the
meantime an immediate application of the concept
of the effective Hamiltonian might be tried in a
calculation depending more on experimental data.
One should investigate and understand more prop-
erly the reliability and the range of applicability of
the separation indicated in (6.3). Then, if such a
separation proves reasonable, the unknown matrix
elements of operators and the measured (rather

than calculated) weak form factors could be
brought into relation, and the semiempirical calcu-
lation might be feasible.

Another possibility is that a completely new ap-
proach, not necessarily based on the effective Ham-
iltonian, should be devised. Anyhow, the opti-

1

mism regarding the understanding of the EI = —,

rule, and —more generally —the calculability of
nonleptonic amplitudes in terms of the operator ex-
pansion, seems to be premature. There is still a lot
to be done before an ultimate and successful con-
cept emerges.
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